277
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Optimal control of a heroin epidemic mathematical model

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3107-3131 | Received 31 Mar 2021, Accepted 10 Nov 2021, Published online: 03 Dec 2021

References

  • NIDA InfoFacts. Heroin. [cited 2018 Jan]. Available from: http://www.nida.nih.gov/infofacts/heroin.html
  • UNODC. World Drug Report. 2018. [cited 2018 June]. Available from: https://www.unodc.org/wdr2018
  • Lipari RN, Hughes A. Trends in heroin use in the United States: 2002 to 2013. In: The CBHSQ report. Rockville (MD): Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality. [cited 2015 April 23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK343534/
  • Li X, Zhou Y, Stanton B. Illicit drug initiation among institutionalized drug users in China. Addiction. 2002;97:575–582.
  • Garten RJ, Lai S, Zhang J, et al. Rapid transmission of hepatitis C virus among young injecting heroin users in Southern China. Int J Epidemiol. 2004;33:182–188.
  • Mulone G, Straughan B. A note on heroin epidemics. Math Biosci. 2009;218:138–141.
  • White E, Comiskey C. Heroin epidemics, treatment and ODE modelling. Math Biosci. 2007;208:312–324.
  • Samanta GP. Dynamic behaviour for a nonautonomous heroin epidemic model with time delay. J Appl Math Comput. 2011;35:161–178.
  • Mushayabasa S, Tapedzesa G. Modeling illicit drug use dynamics and its optimal control analysis. Comput Math Methods Med. 2015;2015:383154.
  • Mushayabasa S, Bhunu CP. Epidemiological consequences of non-compliance to HCV therapy among intravenous drug users. Int J Res Rev Appl Sci. 2011;8:288–295.
  • United Nations Office on Drugs and Crime (UNODC). World drug report 2014. New York: United Nations; 2014. Sales No. E.14.XI.7. Available from: https://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf
  • Wangari IM, Stone L. Analysis of a heroin epidemic model with saturated treatment function. J Appl Math. 2017;2017:1–21.
  • Wang X, Yang J, Li X. Dynamics of a heroin epidemic model with very population. Appl Math (Irvine). 2011;2:732–738.
  • Huang G, Liu A. A note on global stability for a heroin epidemic model with distributed delay. Appl Math Lett. 2013;26:687–691.
  • Liu J, Zhang T. Global behaviour of a heroin epidemic model with distributed delays. Appl Math Lett. 2011;24:1685–1692.
  • Wang J, Wang J, Kuniya T. Analysis of an age-structured multi-group heroin epidemic model. Appl Math Comput. 2019;347:78–100.
  • Saha S, Samanta GP. Synthetic drugs transmission: stability analysis and optimal control. Lett Biomath. 2019;6:1–31.
  • Kassa S, Ouhinou A. The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population. J Math Biol. 2015;70:213–236.
  • Saha S, Samanta GP. Modelling and optimal control of HIV/AIDS prevention through PrEP and limited treatment. Phys A. 2019;516:280–307.
  • Joshi H, Lenhart S, Hota S, et al. Optimal control of an SIR model with changing behavior through an education campaign. Electron J Differ Equ. 2015;50:1–14.
  • Battista NA, Pearcy LB, Strickland WC. Modeling the opioid epidemic. Bull Math Biol. 2019;81:2258–2289.
  • Momoh AA, Fugenschuh A. Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model. Oper Res Health Care. 2018;18:99–111.
  • Bonyah E, Badu K, Asiedu-Addo SK. Optimal control application to an Ebola model. Asian Pac J Trop Biomed. 2016;6:283–289.
  • Area I, Ndaïrou F, Nieto JJ, et al. Ebola model and optimal control with vaccination constraints. J Ind Manag Optim. 2018;14:427–446.
  • Khan A, Zaman G, Ullah R, et al. Optimal control strategies for a heroin epidemic model with age-dependent susceptibility and recovery-age. AIMS Math. 2021;6(2):1377–1394.
  • Khan A, Zaman G, Ullah R,et al. Correction: optimal control strategies for a heroin epidemic model with age-dependent susceptibility and recovery-age. AIMS Math. 2021;6(7):7318–7319.
  • Lakshmikantham V, Leela S, Martynyuk AA. Stability analysis of nonlinear systems. New York (NY): Marcel Dekker, Inc.; 1989.
  • van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180:29–48.
  • Arriola L, Hyman J. Lecture notes, forward and adjoint sensitivity analysis: with applications in Dynamical Systems, Linear Algebra and Optimisation Mathematical and Theoretical Biology Institute; 2005.
  • Rosa S, Torres DFM. Optimal control and sensitivity analysis of a fractional order TB model. Stat Optim Inf Comput. 2019;7:617–625.
  • Silva CJ, Torres DFM. Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Math Biosci. 2013;244:154–164.
  • Zeiler I, Caulkins J, Grass D, et al. Keeping options open: an optimal control model with trajectories that reach a dnss point in positive time. SIAM J Control Optim. 2010;48:3698–3707.
  • Kumar A, Srivastava PK. Vaccination and treatment as control interventions in an infectious disease model with their cost optimization. Commun Nonlinear Sci Numer Simul. 2017;44:334–343.
  • Coddington E, Levinson N. Theory of ordinary differential equations. New York: Tata McGraw-Hill Education; 1955.[Q10]
  • Gaff H, Schaefer E, Lenhart S. Use of optimal control models to predict treatment time for managing tick-borne disease. J Biol Dyn. 2011;5:517–530.
  • Lenhart SM, Workman JT. Optimal control applied to biological models. Boca Raton (FL): CRC Press; 2007.
  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, et al. The mathematical theory of optimal processes. New York (NY): A Pergamon Press Book, The Macmillan Co.; 1964.
  • Zine H, Boukhouima A, Lotfi EM, et al. A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement strategy. Math Model Nat Phenom. 2020;15:14 pp., paper 50.
  • Abraha T, Al Basir F, Obsu LL, et al. Pest control using farming awareness: impact of time delays and optimal use of biopesticides. Chaos Solitons Fractals. 2021;146:110869.
  • Denysiuk R, Silva CJ, Torres DFM. Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem. Comput Appl Math. 2018;37:2112–2128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.