Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 72, 2023 - Issue 6
155
Views
2
CrossRef citations to date
0
Altmetric
Articles

Discrete empirical interpolation and unfitted mesh FEMs: application in PDE-constrained optimization

, ORCID Icon &
Pages 1609-1642 | Received 18 Oct 2020, Accepted 13 Jan 2022, Published online: 15 Feb 2022

References

  • Aretaki A, Karatzas EN. Random geometries for optimal control PDE problems based on fictitious domain FEMS and cut elements. 2022. Available from: https://arxiv.org/abs/2003.00352.
  • Dedé L. Reduced basis method and a posteriori error estimation for parametrized linear- quadratic optimal control problems. SIAM J Sci Comput. 2010;32:997–1019.
  • Lions JL. Optimal Control of Systems Governed by Partial Differential Equations. Vol. 170. Springer Berlin Heidelberg; 1971.
  • Tröltzsch F. Optimal control of partial differential equations: theory, methods and applications. Vol. 112. Graduate Studies in Mathematics, AMS, Providence; 2010.
  • Negri F, Manzoni A, Rozza G. Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations. Comput & Math with Appl. 2015;69:319–336.
  • Kärcher M, Grepl MA. A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM Control Optim Calc Var. 2014;20:416–441.
  • Negri F, Rozza G, Manzoni A, et al. Reduced basis methods for parametrized elliptic optimal control problems. SIAM J Sci Comput. 2013;35:A2316–A2340.
  • Dihlmann M, Haasdonk B. Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. Comput Optim Appl. 2015;60:753–787.
  • Kunisch K, Volkwein S. Proper orthogonal decomposition for optimality systems. ESAIM MAth Model Numer Anal. 2008;42:1–23.
  • Tonn T, Urban K, Volkwein S. Comparison of the reduced basis and a posteriori error estimators for an elliptic linear-quadratic optimal control problem. Math Comput Model Dynam Syst. 2011;17:355–369.
  • Strazzullo M, Ballarin F, Mosetti R, et al. Model reduction for parametrized optimal control problems in environmental marine sciences and engineering. SIAM J Sci Comput. 2018;40(4):B1055–B1079.
  • Burman E, Clauss S, Hansbo P, et al. CutFEM: discretizing geometry and partial differential equations. Int J Numer Meth Engn. 2005;104:472–501.
  • Peskin CS. Flow patterns around heart valves: a numerical method. J Comput Phys. 1972;10:252–271.
  • Wu CH, Faltinsen OM, Chen BF. Time-Independent finite difference and ghost cell method to study sloshing liquid in 2D and 3D tanks with internal structures. Commun Comput Phys. 2013;13(3):780–800.
  • Pasquariello V, Hammerl G, 'Orley F, et al. A cut-cell finite volume-finite element coupling approach for fluid-structure interaction in compressible flow. J Comput Phys. 2016;307:670–695.
  • Kolahdouz EM, Bhalla APS, Craven BA, et al. An Immersed Interface Method for Faceted Surfaces. preprint (2018). Available from: arXiv:1812.06840v2.
  • Bo W, Grove JW. A volume of fluid method based ghost fluid method for compressible multi-fluid flows. Comput Fluids. 2014;90:113–122.
  • Main A, Scovazzi G. The shifted boundary method for embedded domain computations part I: Poisson and Stokes problems. J Comput Phys. 2018;372:972–995.
  • Duprez M, Lozinski A. ϕ-FEM: a finite element method on domains defined by level-sets. preprint 2019. Available from: arXiv: 1901.03966v3.
  • Burman E, Hansbo P. Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput Meth Appl Mech Engrg. 2010;199(41-44):2680–2686.
  • Burman E, Hansbo P. Fictitious domain finite element methods using cut elements II. A stabilized Nitsche method. Appl Num Math. 2012;62(4):328–341.
  • Lozinski A. CutFEM without cutting the mesh cells: a new way to impose Dirichlet and Neumann boundary conditions unfitted meshes. preprint 2019. Available from: arXiv: 1901.03966.
  • Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Computer Meth Appl Mech Engrg. 2002;191(47–48):5537–5552.
  • Karatzas EN, Rozza G. A reduced order model for a stable embedded boundary parametrized Cahn–Hilliard phase-field system based on cut finite elements. J Sci Comput. 2021;89(9): DOI: 10.1007/s10915-021-01623-8.
  • Mittal R, Iaccarino G. Immersed boundary methods. Annu Rev Fluid Mech. 2005;37(1):239–261.
  • Karatzas EN, Ballarin F, Rozza G. Projection-based reduced order models for a cut finite element method in parametrized domains. Computers & Math Appl. 2020;79:833–851.
  • Karatzas EN, Stabile G, Atallah N, et al. A reduced order approach for the embedded shifted boundary FEM and a heat exchange system on parametrized geometries. In: Fehr J, Haasdonk B, editors. IUTAM Symposium on Model Order Reduction of Coupled Systems. Stuttgart, Germany, May 22–25, 2018; Cham: Springer; 2020. (IUTAM Bookseries; 36).
  • Karatzas EN, Stabile G, Nouveau L, et al. A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow. Comput Methods Appl Mech Engrg. 2019;347:568–587.
  • Karatzas EN, Stabile G, Nouveau L, et al. A reduced-order shifted boundary method for parametrized incompressible Navier-Stokes equations. Comput Methods Appl Mech Engrg. 2020;370:113–273.
  • Rozza G, Huynh DBP, Patera AT. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng. 2008;15:229–275.
  • Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput. 2010;32:2737–2764.
  • Antil H, Heinkenschloss M, Sorensen DC. Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems. In: Quarteroni A, Rozza G, editors. Reduced order methods for modeling and computational reduction. Milan: Springer Italia; 2014. p. 101–136. (MS&A. Model. Simul. Appl.; 9).
  • Tiso P, Rixen DJ. Discrete empirical interpolation method for finite element structural dynamics. In Kerschen G, Adams D, Carrella A, editors. Topics in nonlinear dynamics. Vol. 1, Vol. 35, New York: Springer; 2013. p. 203–212. (Conference Proceedings of the Society for Experimental Mechanics Series).
  • Quarteroni A, Manzoni A, Negri F. Reduced basis methods for partial differential equations: an introduction. UNITEXT, La Matematica per il 3+2, 92, Springer International Publishing Switzerland; 2016.
  • Gräßle C, Hinze M, Scharmacher N. POD for optimal control of the Cahn-Hilliard system using spatially adapted snapshots. In: Radu FA, Kumar K, Berre I, et al., editors. Numerical mathematics and advanced applications ENUMATH 2017. Springer International Publishing; 2019. p. 703–711.
  • Schöberl A, Arnold J, Erb JM, et al. C++11 implementation of finite elements in NGSolve. Tech. Rep., Institute for Analysis and Scientific Computing, Vienna University of Technology, ASC Report 30/2014, (2014).
  • Karatzas EN, Nonino M, Ballarin F, et al. A reduced order cut finite element method for geometrically parameterized steady and unsteady Navier-Stokes problems. Comput Math Appl. 2021; DOI: 10.1016/j.camwa.2021.07.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.