1,398
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Open-access remote sensing data for cooperation in transboundary water management

, , , , , , , , & show all
Pages 955-974 | Received 08 Feb 2023, Accepted 08 Sep 2023, Published online: 17 Oct 2023

References

  • Akbari, M., & Torabi Haghighi, A. (2022). Satellite-based agricultural water consumption assessment in the ungauged and transboundary Helmand basin between Iran and Afghanistan. Remote Sensing Letters, 13(12), 1236–1248.
  • Ali, S., Wang, Q., Liu, D., Fu, Q., Rahaman, M. M., Faiz, M. A., & Cheema, M. J. M. (2022). Estimation of spatio-temporal groundwater storage variations in the lower transboundary Indus basin using grace satellite. Journal of Hydrology, 605, 127315. https://doi.org/10.1016/j.jhydrol.2021.127315
  • Amarnath, G., Alahacoon, N., Gismalla, Y., Mohammed, Y., Sharma, B. R., & Smakhtin, V. (2016). Increasing early warning lead time through improved transboundary flood forecasting in the gash river basin, Horn of Africa. In T. E. Adams & T. C. Pagano (Eds.), Flood forecasting (pp. 183–200). Academic Press.
  • Ashouri, H., Nguyen, P., Thorstensen, A., Hsu, K.-L., Sorooshian, S., & Braithwaite, D. (2016). Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. Journal of Hydrometeorology, 17(7), 2061–2076.
  • Awange, J. L., Ferreira, V. G., Forootan, E., Andam-Akorful, S., Agutu, N. O., & He, X. (2016). Uncertainties in remotely sensed precipitation data over Africa. International Journal of Climatology, 36(1), 303–323.
  • Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., & Vinukollu, R. (2015). On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. Journal of Hydrometeorology, 16(4), 1449–1455. https://doi.org/10.1175/JHM-D-14-0040.1
  • Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212, 198–212. https://doi.org/10.1016/S0022-1694(98)00253-4
  • Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A. I., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., & Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12), 6201–6217.
  • Bernauer, T., & Böhmelt, T. (2020). International conflict and cooperation over freshwater resources. Nature Sustainability, 3(5), 350–356.
  • Bhangale, U., More, S., Shaikh, T., Patil, S., & More, N. (2020). Analysis of surface water resources using Sentinel-2 imagery. Procedia Computer Science, 171, 2645–2654. https://doi.org/10.1016/j.procs.2020.04.287
  • Bhattarai, N., & Wagle, P. (2021). Recent advances in remote sensing of evapotranspiration. Remote Sensing, 13(21), 4260. https://doi.org/10.3390/rs13214260
  • Biancamaria, S., Hossain, F., & Lettenmaier, D. P. (2011). Forecasting transboundary river water elevations from space. Geophysical Research Letters, 38(11). https://doi.org/10.1029/2011GL047290
  • Bijeesh, T., & Narasimhamurthy, K. (2020). Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustainable Water Resources Management, 6(4), 1–23.
  • Bretreger, D., Yeo, I. Y., & Hancock, G. (2022). Quantifying irrigation water use with remote sensing: Soil water deficit modelling with uncertain soil parameters. Agricultural Water Management, 260, 107299. https://doi.org/10.1016/j.agwat.2021.107299
  • Bretreger, D., Yeo, I. Y., Kuczera, G., & Hancock, G. (2021). Remote sensing’s role in improving transboundary water regulation and compliance: The Murray-Darling basin, Australia. Journal of Hydrology X, 13, 100112. https://doi.org/10.1016/j.hydroa.2021.100112
  • Brisco, B. (2015). Mapping and monitoring surface water and wetlands with synthetic aperture radar. In Remote sensing of wetlands: Applications and advances (pp. 119–136).
  • Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., & Tait, A. M. (2022). Dynamic world, Near real-time global 10 m land use land cover mapping. Scientific Data, 9(1), 251. https://doi.org/10.1038/s41597-022-01307-4
  • Bruckmann, L., Delbart, N., Descroix, L., & Bodian, A. (2022). Recent hydrological evolutions of the Senegal River flood (West Africa). Hydrological Sciences Journal, 67(3), 385–400. https://doi.org/10.1080/02626667.2021.1998511
  • Cai, X., Feng, L., Hou, X., & Chen, X. (2016). Remote sensing of the water storage dynamics of large lakes and reservoirs in the Yangtze river basin from 2000 to 2014. Scientific Reports, 6(1), 1–9. https://doi.org/10.1038/srep36405
  • Cai, X., Molden, D., Mainuddin, M., Sharma, B., Ahmad, M.-U.-D., & Karimi, P. (2013). Producing more food with less water in a changing world: Assessment of water productivity in 10 major river basins. In M. Fisher & S. Cook (Eds.), Water, food and poverty in river basins (pp. 290–310). Routledge.
  • Carius, A., Dabelko, G. D., & Wolf, A. T. (2004). Water, conflict, and cooperation. Environmental Change and Security Project Report, 10, 60–66.
  • Castellazzi, P., Longuevergne, L., Martel, R., Rivera, A., Brouard, C., & Chaussard, E. (2018). Quantitative mapping of groundwater depletion at the water management scale using a combined Grace/InSAR approach. Remote Sensing of Environment, 205, 408–418. https://doi.org/10.1016/j.rse.2017.11.025
  • Chen, T., Song, C., Ke, L., Wang, J., Liu, K., & Wu, Q. (2021). Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. Journal of Hydrology, 593, 125781. https://doi.org/10.1016/j.jhydrol.2020.125781
  • Craglia, M., & Shanley, L. (2015). Data democracy–increased supply of geospatial information and expanded participatory processes in the production of data. International Journal of Digital Earth, 8(9), 679–693. https://doi.org/10.1080/17538947.2015.1008214
  • Das, P., Hossain, F., Khan, S., Biswas, N. K., Lee, H., Piman, T., Meechaiya, C., Ghimire, U., & Hosen, K. (2022). Reservoir assessment tool 2.0: Stakeholder driven improvements to satellite remote sensing-based reservoir monitoring. Environmental Modelling and Software, 157, 105533. https://doi.org/10.1016/j.envsoft.2022.105533
  • Deng, X., song, C., Liu, K., Ke, L., Zhang, W., Ma, R., Zhu, J., & Wu, Q. (2020). Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow river and implications for river discharge alteration. Journal of Hydrology, 585, 124791. https://doi.org/10.1016/j.jhydrol.2020.124791
  • Dinh, K. D., Anh, T. N., Nguyen, N. Y., Bui, D. D., & Srinivasan, R. (2020). Evaluation of grid-based rainfall products and water balances over the Mekong river basin. Remote Sensing, 12(11), 1858. https://doi.org/10.3390/rs12111858
  • Duan, Z., & Bastiaanssen, W. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403–416. https://doi.org/10.1016/j.rse.2013.03.010
  • Dubey, A. K., Kumar, P., Chembolu, V., Dutta, S., Singh, R. P., & Rajawat, A. S. (2021). Flood modeling of a large transboundary river using WRF-Hydro and microwave remote sensing. Journal of Hydrology, 598, 126391. https://doi.org/10.1016/j.jhydrol.2021.126391
  • Eldardiry, H., & Hossain, F. (2019). Understanding reservoir operating rules in the transboundary Nile river basin using macroscale hydrologic modeling with satellite measurements. Journal of Hydrometeorology, 20(11), 2253–2269. https://doi.org/10.1175/JHM-D-19-0058.1
  • Fallatah, O. A., Ahmed, M., Save, H., & Akanda, A. S. (2017). Quantifying temporal variations in water resources of a vulnerable middle eastern transboundary aquifer system. Hydrological Processes, 31(23), 4081–4091. https://doi.org/10.1002/hyp.11285
  • Flores, A., Coulter, D. S., Limaye, A. S., & Irwin, D. (2018). SERVIR: Connecting Earth observation satellite data to local science applications. In K. Vadrevu, T. Ohara, & C. Justice (Eds.), Land-atmospheric research applications in South and Southeast Asia (pp. 31–44). https://doi.org/10.1007/978-3-319-67474-2_2
  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4
  • Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., & Cazenave, A. (2006). Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment, 100(2), 252–264. https://doi.org/10.1016/j.rse.2005.10.027
  • Gao, H. (2015). Satellite remote sensing of large lakes and reservoirs: From elevation and area to storage. Wiley Interdisciplinary Reviews: Water, 2(2), 147–157. https://doi.org/10.1002/wat2.1065
  • Gerlak, A. K., Lautze, J., & Giordano, M. (2011). Water resources data and information exchange in transboundary water treaties. International Environmental Agreements: Politics Law and Economics, 11(2), 179–199.
  • Ghiat, I., Mackey, H. R., & Al-Ansari, T. (2021). A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water, 13(18), 2523. https://doi.org/10.3390/w13182523
  • Gleason, C. J., Wada, Y., & Wang, J. (2018). A hybrid of optical remote sensing and hydrological modeling improves water balance estimation. Journal of Advances in Modeling Earth Systems, 10(1), 2–17. https://doi.org/10.1002/2017MS000986
  • Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
  • Gonzalez-Dugo, M., Neale, C., Mateos, L., Kustas, W., Prueger, J., Anderson, M., & Li, F. (2009). A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agricultural and Forest Meteorology, 149(11), 1843–1853. https://doi.org/10.1016/j.agrformet.2009.06.012
  • Heggy, E., Sharkawy, Z., & Abotalib, A. Z. (2021). Egypt’s water budget deficit and suggested mitigation policies for the Grand Ethiopian Renaissance Dam filling scenarios. Environmental Research Letters, 16(7), 74022. https://doi.org/10.1088/1748-9326/ac0ac9
  • Hensengerth, O. (2009). Transboundary river cooperation and the regional public good: The case of the Mekong river. Contemporary Southeast Asia, 326–349.
  • Hossain, F., Siddique-E-Akbor, A. H., Mazumder, L. C., ShahNewaz, S. M., Biancamaria, S., Lee, H., & Shum, C. K. (2013). Proof of concept of an altimeter-based river forecasting system for transboundary flow inside Bangladesh. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(2), 587–601. Retrieved January 30, 2023, form https://servir.ciat.cgiar.org/service-areas/#water
  • Huang, C., Chen, Y., Zhang, S., & Wu, J. (2018). Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, 56(2), 333–360. https://doi.org/10.1029/2018RG000598
  • Ibrahim, I. A. (2020). Legal implications of the use of big data in the transboundary water context. Water Resources Management, 34(3), 1139–1153. https://doi.org/10.1007/s11269-020-02491-x
  • Irmak, A. (2012). Evapotranspiration: Remote sensing and modeling. IntechOpen.
  • Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R., & McNally, A. (2019). Uncertainties in evapotranspiration estimates over West Africa. Remote Sensing, 11(8), 892. https://doi.org/10.3390/rs11080892
  • Kalma, J. D., McVicar, T. R., & McCabe, M. F. (2008). Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29(4), 421–469. https://doi.org/10.1007/s10712-008-9037-z
  • Karimi, P., & Bastiaanssen, W. G. (2015). Spatial evapotranspiration, rainfall and land use data in water accounting–Part 1: Review of the accuracy of the remote sensing data. Hydrology and Earth System Sciences, 19(1), 507–532. https://doi.org/10.5194/hess-19-507-2015
  • Karimi, P., Bastiaanssen, W. G., Molden, D., & Cheema, M. J. M. (2013). Basin-wide water accounting based on remote sensing data: An application for the Indus basin. Hydrology and Earth System Sciences, 17(7), 2473–2486. https://doi.org/10.5194/hess-17-2473-2013
  • Khaki, M., & Awange, J. (2019). Improved remotely sensed satellite products for studying Lake Victoria’s water storage changes. Science of the Total Environment, 652, 915–926. https://doi.org/10.1016/j.scitotenv.2018.10.279
  • Khoshnoodmotlagh, S., Verrelst, J., Daneshi, A., Mirzaei, M., Azadi, H., Haghighi, M., Hatamimanesh, M., & Marofi, S. (2020). Transboundary basins need more attention: Anthropogenic impacts on land cover changes in Aras River basin, monitoring and prediction. Remote Sensing, 12(20), 3329. https://doi.org/10.3390/rs12203329
  • Kim, J. G., Kang, B., & Kim, S. (2022). Flood inflow estimation in an ungauged simple serial cascade of reservoir system using Sentinel-2 multi-spectral imageries: A case study of Imjin River, South Korea. Remote Sensing, 14(15), 3699. https://doi.org/10.3390/rs14153699
  • Kumar, N., Singh, S. K., Singh, P. K., Gautam, D. K., Patle, P., Pandey, H. K., & Chauhan, P. (2022). Water accounting of a trans-boundary river basin using satellite observations and WA+ framework. Physics and Chemistry of the Earth, Parts A/B/C, 129, 103343. https://doi.org/10.1016/j.pce.2022.103343
  • Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782. https://doi.org/10.1109/LGRS.2017.2681128
  • Leb, C. (2020). Data innovations for transboundary freshwater resources management: Are obligation related to information sharing exchange still needed? Brill Research Perspectives in International Law, 4(4), 3–78. https://doi.org/10.1163/23529369-12340016
  • Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., & Wood, E. F. (2015). Inroads of remote sensing into hydrologic science during the WRR era. Water Resources Research, 51(9), 7309–7342. https://doi.org/10.1002/2015WR017616
  • Liou, Y.-A., & Kar, S. K. (2014). Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A review. Energies, 7(5), 2821–2849. https://doi.org/10.3390/en7052821
  • Long, D., Longuevergne, L., & Scanlon, B. R. (2014). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 50(2), 1131–1151. https://doi.org/10.1002/2013WR014581
  • Martin, A., Rutagarama, E., Cascao, A., Gray, M., & Chhotray, V. (2011). Understanding the co-existence of conflict and cooperation: Transboundary ecosystem management in the Virunga Massif. Journal of Peace Research, 48(5), 621–635. https://doi.org/10.1177/0022343311412410
  • Massari, C., & Maggioni, V. (2020). Error and uncertainty characterization. In V. Levizzani, C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, & F. J. Turk (Eds.), Satellite precipitation measurement: Volume 2 (pp. 515–532). Springer.
  • Mayr, S., Kuenzer, C., Gessner, U., Klein, I., & Rutzinger, M. (2019). Validation of earth observation time-series: A review for large-area and temporally dense land surface products. Remote Sensing, 11(22), 2616. https://doi.org/10.3390/rs11222616
  • McCracken, M., & Meyer, C. (2018). Monitoring of transboundary water cooperation: Review of sustainable development goal indicator 6.5. 2 methodology. Journal of Hydrology, 563, 1–12. https://doi.org/10.1016/j.jhydrol.2018.05.013
  • McMillan, H. K., Westerberg, I. K., & Krueger, T. (2018). Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5(6), e1319. https://doi.org/10.1002/wat2.1319
  • Merem, E. C., & Twumasi, Y. A. (2008). Using spatial information technologies as monitoring devices in international watershed conservation along the Senegal river basin of West Africa. International Journal of Environmental Research and Public Health, 5(5), 464–476. https://doi.org/10.3390/ijerph5050464
  • Mianabadi, A., Davary, K., Mianabadi, H., & Karimi, P. (2020). International environmental conflict management in transboundary river basins. Water Resources Management, 34(11), 3445–3464. https://doi.org/10.1007/s11269-020-02576-7
  • Michailovsky, C. I., McEnnis, S., Berry, P., Smith, R., & Bauer-Gottwein, P. (2012). River monitoring from satellite radar altimetry in the Zambezi river basin. Hydrology and Earth System Sciences, 16(7), 2181–2192. https://doi.org/10.5194/hess-16-2181-2012
  • Mohammed, I. N., Bolten, J. D., Srinivasan, R., & Lakshmi, V. (2018). Satellite observations and modeling to understand the lower Mekong river basin streamflow variability. Journal of Hydrology, 564, 559–573. https://doi.org/10.1016/j.jhydrol.2018.07.030
  • Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil moisture remote sensing: State-of-the-science. Vadose Zone Journal, 16(1), 1–9. https://doi.org/10.2136/vzj2016.10.0105
  • Morris, C. S., & Gill, S. K. (1994). Variation of great lakes water levels derived from Geosat altimetry. Water Resources Research, 30(4), 1009–1017. https://doi.org/10.1029/94WR00064
  • Muala, E., Mohamed, Y. A., Duan, Z., & Van der Zaag, P. (2014). Estimation of reservoir discharges from lake Nasser and Roseires reservoir in the Nile basin using satellite altimetry and imagery data. Remote Sensing, 6(8), 7522–7545. https://doi.org/10.3390/rs6087522
  • Munyati, C. (2000). Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing, 21(9), 1787–1806. https://doi.org/10.1080/014311600209742
  • Nguyen, Q. L. (1982). The development of the Senegal river basin: An example in international co‐operation. Natural Resources Forum, 6, 307–319. https://doi.org/10.1111/j.1477-8947.1982.tb00253.x
  • Pareeth, S., Karimi, P., Shafiei, M., & De Fraiture, C. (2019). Mapping agricultural landuse patterns from time series of Landsat 8 using random forest based hierarchical approach. Remote Sensing, 11(5), 601. https://doi.org/10.3390/rs11050601
  • Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
  • Pelgrum, H., Miltenburg, I., Cheema, M., Klaasse, A., & Bastiaanssen, W. (2010). ETLook a novel continental evapotranspiration algorithm. In Remote Sensing and Hydrology 2010 (Proceedings of a symposium held at Jackson Hole, Wyoming, USA, September 2010) (Vol. 1085, p. 1087). IAHS.
  • Perennou, C., Guelmami, A., Paganini, M., Philipson, P., Poulin, B., Strauch, A., Tottrup, C., Truckenbrodt, J., & Geijzendorffer, I. R. (2018). Mapping Mediterranean wetlands with remote sensing: A good-looking map is not always a good map. In D. A. Bohan, A. J. Dumbrell, G. Woodward, & M. Jackson (Eds.), Advances in ecological research (Vol. 58, pp. 243–277). Academic Press.
  • Povey, A. C., & Grainger, R. G. (2015). Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmospheric Measurement Techniques, 8(11), 4699–4718. https://doi.org/10.5194/amt-8-4699-2015
  • Puy, A., Sheikholeslami, R., Gupta, H. V., Hall, J. W., Lankford, B., Piano, S. L., Meier, J., Pappenberger, F., Porporato, A., Vico, G., & Saltelli, A. (2022). The delusive accuracy of global irrigation water withdrawal estimates. Nature Communications, 13(1), 3183. https://doi.org/10.1038/s41467-022-30731-8
  • Qi, J., Tao, S., Pueppke, S. G., Espolov, T. E., Beksultanov, M., Chen, X., & Cai, X. (2019). Changes in land use/land cover and net primary productivity in the transboundary Ili-Balkhash basin of central Asia, 1995–2015. Environmental Research Communications, 2(1), 11006. https://doi.org/10.1088/2515-7620/ab5e1f
  • Ragettli, S., Siegfried, T., & Herberz, T. (2017). Remotely-sensed mapping of irrigation area in the Chu-Talas river basin in Central Asia and application to compliance monitoring of transboundary water sharing. In American Geophysical Union, Fall Meeting 2017, Abstracts (Vol. 2017, pp. PA23B–0372).
  • Richey, A. S., Thomas, B. F., Lo, M.-H., Famiglietti, J. S., Swenson, S., & Rodell, M. (2015). Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resources Research, 51(7), 5198–5216. https://doi.org/10.1002/2015WR017351
  • Ritchie, J. C., & Cooper, C. M. (2001). Remote sensing techniques for determining water quality: Applications to TMDLS. USDA, Water Environment Federation.
  • Rodell, M., Famiglietti, J. S., Chen, J., Seneviratne, S. I., Viterbo, P., Holl, S., & Wilson, C. R. (2004). Basin scale estimates of evapotranspiration using grace and other observations. Geophysical Research Letters, 31(20). https://doi.org/10.1029/2004GL020873
  • Rodell, M., McWilliams, E. B., Famiglietti, J. S., Beaudoing, H. K., & Nigro, J. (2011). Estimating evapotranspiration using an observation based terrestrial water budget. Hydrological Processes, 25(26), 4082–4092. https://doi.org/10.1002/hyp.8369
  • Rosser, J. F., Leibovici, D., & Jackson, M. (2017). Rapid flood inundation mapping using social media, remote sensing and topographic data. Natural Hazards, 87(1), 103–120. https://doi.org/10.1007/s11069-017-2755-0
  • Sadoff, C. W., & Grey, D. (2002). Beyond the river: The benefits of cooperation on international rivers. Water Policy, 4(5), 389–403. https://doi.org/10.1016/S1366-7017(02)00035-1
  • Sadoff, C. W., & Grey, D. (2005). Cooperation on international rivers: A continuum for securing and sharing benefits. Water International, 30(4), 420–427. https://doi.org/10.1080/02508060508691886
  • Schulte to Bühne, H., Wegmann, M., Durant, S. M., Ransom, C., de Ornellas, P., Grange, S., Beatty, B., & Pettorelli, N. (2017). Protection status and national socio‐economic context shape land conversion in and around a key transboundary protected area complex in West Africa. Remote Sensing in Ecology and Conservation, 3(4). https://doi.org/10.1002/rse2.47
  • SERVIR-Amazonia. (2023). Geospatial information for improved environmental decision-making in the Amazon. Retrieved January 30, 2023, from https://www.nasa.gov/servir/servir-amazonia/
  • SERVIR-Mekong. (2023, January 30). Reservoir assessment tool for Lower Mekong Basin. https://ratmekong-servir.adpc.net/map/
  • Seyler, F., Calmant, S., da Silva, J., Filizola, N., Roux, E., Cochonneau, G., Vauchel, P., & Bonnet, M. P. (2008). Monitoring water level in large trans-boundary ungauged basins with altimetry: the example of ENVISAT over the Amazon basin. In Proceedings Volume 7150, Remote Sensing of Inland, Coastal, and Oceanic Waters; 715017. SPIE. https://doi.org/10.1117/12.813258
  • Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., & Verbist, K. (2018). Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resources Research, 54(12), 9724–9758. https://doi.org/10.1029/2017WR022437
  • Shi, J., Xiong, C., & Jiang, L. (2016). Review of snow water equivalent microwave remote sensing. Science China Earth Sciences, 59(4), 731–745. https://doi.org/10.1007/s11430-015-5225-0
  • Shin, S., Pokhrel, Y., Yamazaki, D., Huang, X., Torbick, N., Qi, J., Pattanakiat, S., Ngo-Duc, T., & Nguyen, T. D. (2020). High resolution modeling of river‐floodplain‐reservoir inundation dynamics in the Mekong river basin. Water Resources Research, 56(5), e2019WR026449. https://doi.org/10.1029/2019WR026449
  • Siabi, N., Sanaeinejad, S. H., & Ghahraman, B. (2022). Effective method for filling gaps in time series of environmental remote sensing data: An example on evapotranspiration and land surface temperature images. Computers and Electronics in Agriculture, 193, 106619. https://doi.org/10.1016/j.compag.2021.106619
  • Singh, P., Srivastava, P. K., & Mall, R. (2021). Estimation of potential evapotranspiration using insat-3d satellite data over an agriculture area. In P. K. Srivastava, M. Gupta, G. Tsakiris, & N. W. Quinn (Eds.), Agricultural water management, theories and practices (pp. 143–155). Elsevier.
  • Slater, P. N. (1985). Radiometric considerations in remote sensing. Proceedings of the IEEE, 73(6), 997–1011. https://doi.org/10.1109/PROC.1985.13231
  • Srivastava, P. K., Han, D., Rico Ramirez, M. A., & Islam, T. (2013). Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through weather research and forecasting model. Atmospheric Science Letters, 14(2), 118–125. https://doi.org/10.1002/asl2.427
  • Stephens, C., Pham, H., Marshall, L., & Johnson, F. (2022). Which rainfall errors can hydrologic models handle? implications for using satellite-derived products in sparsely gauged catchments. Water Resources Research, 58(8), e2020WR029331. https://doi.org/10.1029/2020WR029331
  • Stisen, S., Jensen, K. H., Sandholt, I., & Grimes, D. I. (2008). A remote sensing driven distributed hydrological model of the Senegal river basin. Journal of Hydrology, 354(1–4), 131–148. https://doi.org/10.1016/j.jhydrol.2008.03.006
  • Stisen, S., & Sandholt, I. (2010). Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling. Hydrological Processes, 24(7), 879–891. https://doi.org/10.1002/hyp.7529
  • Sun, A. Y. (2013). Predicting groundwater level changes using grace data. Water Resources Research, 49(9), 5900–5912. https://doi.org/10.1002/wrcr.20421
  • Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K.-L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1), 79–107. https://doi.org/10.1002/2017RG000574
  • Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9). https://doi.org/10.1029/2004GL019920
  • Tarpanelli, A., Mondini, A. C., & Camici, S. (2022). Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe. Natural Hazards and Earth System Sciences, 22(8), 2473–2489. https://doi.org/10.5194/nhess-22-2473-2022
  • Tian, Y., & Peters-Lidard, C. D. (2010). A global map of uncertainties in satellite-based precipitation measurements. Geophysical Research Letters, 37(24). https://doi.org/10.1029/2010GL046008
  • Timmerman, J. G., & Langaas, S. (2005). Water information: What is it good for? The use of information in transboundary water management. Regional Environmental Change, 5(4), 177–187. https://doi.org/10.1007/s10113-004-0087-6
  • Tran-Thanh, D., Rinasti, A. N., Gunasekara, K., Chaksan, A., & Tsukiji, M. (2022). GIS and remote sensing-based approach for monitoring and assessment of plastic leakage and pollution reduction in the lower Mekong river basin. Sustainability, 14(13), 7879. https://doi.org/10.3390/su14137879
  • Uereyen, S., & Kuenzer, C. (2019). A review of earth observation-based analyses for major river basins. Remote Sensing, 11(24), 2951. https://doi.org/10.3390/rs11242951
  • UNECE. (2021). Progress on transboundary water cooperation – 2021 update. Retrieved January 30, 2023, from https://www.unwater.org/publications/progress-transboundary-water-cooperation-2021-update
  • United Nations. (1997). Convention on the law of the non-navigational uses of international watercourses.
  • United Nations. (2015). A/RES/70/1 – Transforming the world: The 2030 agenda for sustainable development. https://sdgs.un.org/
  • Varis, O., Rahaman, M. M., & Stucki, V. (2008). The rocky road from integrated plans to implementation: Lessons learned from the Mekong and Senegal River basins. International Journal of Water Resources Development, 24(1), 103–121. https://doi.org/10.1080/07900620701723307
  • Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., & Verdin, J. P. (2013). A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment, 139, 35–49. https://doi.org/10.1016/j.rse.2013.07.013
  • Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801–823. https://doi.org/10.1016/j.rse.2010.11.006
  • Voss, K. A., Famiglietti, J. S., Lo, M., De Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the middle east from grace with implications for transboundary water management in the Tigris‐Euphrates‐Western Iran region. Water Resources Research, 49(2), 904–914. https://doi.org/10.1002/wrcr.20078
  • Wahr, J., Swenson, S., Zlotnicki, V., & Velicogna, I. (2004). Time‐variable gravity from GRACE: First results. Geophysical Research Letters, 31(11). https://doi.org/10.1029/2004GL019779
  • Wang, X., & Yang, W. (2019). Water quality monitoring and evaluation using remote sensing techniques in China: A systematic review. Ecosystem Health and Sustainability, 5(1), 47–56. https://doi.org/10.1080/20964129.2019.1571443
  • Weerasinghe, I., Bastiaanssen, W., Mul, M., Jia, L., & Van Griensven, A. (2020). Can we trust remote sensing evapotranspiration products over Africa?Hydrology and Earth System Sciences, 24(3), 1565–1586. https://doi.org/10.5194/hess-24-1565-2020
  • Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E., & Whittington, D. (2020). Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-19089-x
  • Xu, H., Bailey, J. O., Barrett, E. C., & Kelly, R. E. J. (1993). Monitoring snow area and depth with integration of remote sensing and GIS. International Journal of Remote Sensing, 14(17), 3259–3268. https://doi.org/10.1080/01431169308904440
  • Yalew, S., Kwakkel, J., & Doorn, N. (2021). Distributive justice and sustainability goals in transboundary rivers: Case of the Nile basin. Frontiers in Environmental Science, 8, 590954. https://doi.org/10.3389/fenvs.2020.590954
  • Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. WIREs Water, 3(6), 834–853. https://doi.org/10.1002/wat2.1168
  • Zhang, X., Qu, Y., Ma, M., Liu, H., Su, Z., Lv, J., Peng, J., Leng, G., He, X., & Di, C. (2020). Satellite-based operational real-time drought monitoring in the transboundary Lancang–Mekong river basin. Remote Sensing, 12(3), 376. https://doi.org/10.3390/rs12030376