153
Views
7
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Numerical simulation of heat transfer on nanofluid flow in an annular pipe with simultaneous embedding of porous discs and triangular fins

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 158-169 | Received 13 Apr 2020, Accepted 13 Oct 2020, Published online: 04 Jan 2021

References

  • Ahsan, M. 2014. “Numerical Analysis of Friction Factor for a Fully Developed Turbulent Flow Using k–ε Turbulence Model with Enhanced Wall Treatment.” Beni-Suef University Journal of Basic and Applied Sciences 3 (4): 269–277. doi:10.1016/j.bjbas.2014.12.001.
  • Allouache, N., and S. Chikh. 2008. “Numerical Modeling of Turbulent Flow in an Annular Heat Exchanger Partly Filled with a Porous Substrate.” Journal of Porous Media 11 (7): 617–632. doi:10.1615/JPorMedia.v11.i7.10.
  • Al-Sumaily, G. F., J. Sheridan, and M. C. Thompson. 2012. “Analysis of Forced Convection Heat Transfer from a Circular Cylinder Embedded in a Porous Medium.” International Journal of Thermal Sciences 51 (1): 121–131. doi:10.1016/j.ijthermalsci.2011.08.018.
  • Amiri, A., K. Vafai, and T. M. Kuzay. 1995. “Effects of Boundary Conditions on Non-Darcian Heat Transfer through Porous Media and Experimental Comparisons.” Numerical Heat Transfer, Part A: Applications 27 (6): 651–664. doi:10.1080/10407789508913724.
  • Antohe, B. V., and J. L. Lage. 1997. “A General Two-Equation MacroscopicTurbulence Model for Incompressible Flow in Porous Media.” International Journal of Heat and Mass Transfer 40 (13): 3013–3024. doi:10.1016/S0017-9310(96)00370-5.
  • Barnoon, P., and D. Toghraie. 2018. “Numerical Investigation of Laminar Flow and Heat Transfer of Non-Newtonian Nanofluid within a Porous Medium.” Powder Technology 325: 78–91. doi:10.1016/j.powtec.2017.10.040.
  • Braga, C. V. M., and F. E. M. Saboya. 1999. “Turbulent Heat Transfer, Pressure Drop and Fin Efficiency in Annular Regions with Continuous Longitudinal Rectangular Fins.” Experimental Thermal and Fluid Science 20 (2): 55–65. doi:10.1016/S0894-1777(99)00026-6.
  • Calmidi, V. V., and R. L. Mahajan. 1999. “The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams.” Journal of Heat Transfer 121 (2): 466–471. doi:10.1115/1.2826001.
  • Da Silva Miranda, B. M., and N. K. Anand. 2004. “Convective Heat Transfer in a Channel with Porous Baffles.” Numerical Heat Transfer, Part A: Applications 46 (5): 425–452. doi:10.1080/10407780490478515.
  • Heydari, M., D. Toghraie, and O. A. Akbari. 2017. “The Effect of Semi-Attached and Offset Mid-Truncated Ribs and Water/TiO2 Nanofluid on Flow and Heat Transfer Properties in a Triangular Microchannel.” Thermal Science and Engineering Progress 2: 140–150. doi:10.1016/j.tsep.2017.05.010.
  • Heyhat, M. M., F. Kowsary, A. M. Rashidi, M. H. Momenpour, and A. Amrollahi. 2013. “Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-Based Al2O3 Nanofluids in Fully Developed Flow Regime.” Experimental Thermal and Fluid Science 44: 483–489. doi:10.1016/j.expthermflusci.2012.08.009.
  • Hojjat, M., S. G. Etemad, R. Bagheri, and J. Thibault. 2011. “Rheological Characteristics of Non-Newtonian Nanofluids: Experimental Investigation.” International Communications in Heat and Mass Transfer 38 (2): 144–148. doi:10.1016/j.icheatmasstransfer.2010.11.019.
  • Iqbal, M. 2008. “Numerical Study of Laminar Heat Transfer through a Finned Double-Pipe Heat Exchanger.”PhD dissertation, Bahauddin Zakariya University.
  • Iqbal, M., and K. S. Syed. 2011. “Thermally Developing Flow in Finned Double‐Pipe Heat Exchanger.” International Journal for Numerical Methods in Fluids 65 (10): 1145–1159. doi:10.1002/fld.2232.
  • Ishaq, M., K. S. Syed, Z. Iqbal, A. Hassan, and A. Ali. 2013. “DG-FEM Based Simulation of Laminar Convection in an Annulus with Triangular Fins of Different Heights.” International Journal of Thermal Sciences 72: 125–146. doi:10.1016/j.ijthermalsci.2013.04.022.
  • Jamarani, A., M. Maerefat, N. F. Jouybari, and M. E. Nimvari. 2017. “Thermal Performance Evaluation of a Double-Tube Heat Exchanger Partially Filled with Porous Media under Turbulent Flow Regime.” Transport in Porous Media 120 (3): 449–471. doi:10.1007/s11242-017-0933-x.
  • Kakaç, S., and A. Pramuanjaroenkij. 2009. “Review of Convective Heat Transfer Enhancement with Nanofluids.” International Journal of Heat and Mass Transfer 52 (13–14): 3187–3196. doi:10.1016/j.ijheatmasstransfer.2009.02.006.
  • Kefayati, G. H. R. 2016. “Heat Transfer and Entropy Generation of Natural Convection on Non-Newtonian Nanofluids in a Porous Cavity.” Powder Technology 299: 127–149. doi:10.1016/j.powtec.2016.05.032.
  • Khanmohammadi, F., M. Farhadi, and A. A. R. Darzi. 2018. “Numerical Investigation of Heat Transfer and Fluid Flow Characteristics inside Tube with Internally Star Fins.” Heat and Mass Transfer 55 (7): 1901–1911. doi:10.1007/s00231-018-2454-8.
  • Kongkaitpaiboon, V., K. Nanan, and S. Eiamsa-Ard. 2010. “Experimental Investigation of Convective Heat Transfer and Pressure Loss in a Round Tube Fitted with Circular-Ring Turbulators.” International Communications in Heat and Mass Transfer 37 (5): 568–574. doi:10.1016/j.icheatmasstransfer.2009.12.016.
  • Lin, Y., L. Zheng, and X. Zhang. 2014. “Radiation Effects on Marangoni Convection Flow and Heat Transfer in Pseudo-Plastic Non-Newtonian Nanofluids with Variable Thermal Conductivity.” International Journal of Heat and Mass Transfer 77: 708–716. doi:10.1016/j.ijheatmasstransfer.2014.06.028.
  • Mahdi, R. A., H. A. Mohammed, K. M. Munisamy, and N. H. Saeid. 2015. “Review of Convection Heat Transfer and Fluid Flow in Porous Media with Nanofluid.” Renewable and Sustainable Energy Reviews 41: 715–734. doi:10.1016/j.rser.2014.08.040.
  • Mahmoudi, Y., and N. Karimi. 2014. “Numerical Investigation of Heat Transfer Enhancement in a Pipe Partially Filled with a Porous Material under Local Thermal Non-Equilibrium Condition.” International Journal of Heat and Mass Transfer 68: 161–173. doi:10.1016/j.ijheatasstransfer.2013.09.020.
  • Mir, N. A., K. S. Syed, and M. Iqbal. 2004. “Numerical Solution of Fluid Flow and Heat Transfer in the Finned Double Pipe.” Journal of Research (Science) 15 (3): 253–262.
  • Nakayama, A., and F. Kuwahara. 1999. “A Macroscopic Turbulence Model for Flow in A Porous Medium.” Journal of Fluids Engineering 121 (2): 427–433. doi:10.1115/1.2822227.
  • Nandakumar, K., and J. H. Masliyah. 1975. “Fully Developed Viscous Flow in Internally Finned Tubes.” The Chemical Engineering Journal 10 (1): 113–120. doi:10.1016/0300-9467(75)88025-7.
  • Nasiri, M., S. G. Etemad, and R. Bagheri. 2011. “Experimental Heat Transfer of Nanofluid through an Annular Duct.” International Communications in Heat and Mass Transfer 38 (7): 958–963. doi:10.1016/j.icheatmasstransfer.2011.04.011.
  • Nasiruddinn, and M. H. Kamran Siddiqui. 2007. “Heat Transfer Augmentation in a Heat Exchanger Tube Using a Baffle.” International Journal of Heat and Fluid Flow 28 (2): 318–328. doi:10.1016/j.ijheatfluidflow.2006.03.020.
  • Nazari, M., R. Mohebbi, and M. H. Kayhani. 2014. “Power-Law Fluid Flow and Heat Transfer in a Channel with a Built-In Porous Square Cylinder: Lattice Boltzmann Simulation.” Journal of non-Newtonian Fluid Mechanics 204: 38–49. doi:10.1016/j.jnnfm.2013.12.002.
  • Nebbali, R., and K. Bouhadef. 2011. “Non-Newtonian Fluid Flow in Plane Channels: Heat Transfer Enhancement Using Porous Blocks.” International Journal of Thermal Sciences 50 (10): 1984–1995. doi:10.1016/j.ijthermalsci.2011.04.013.
  • Nimvari, M. E., M. Maerefat, and M. K. El-Hossaini. 2012. “Numerical Simulation of Turbulent Flow and Heat Transfer in a Channel Partially Filled with a Porous Media.” International Journal of Thermal Sciences 60: 131–141. doi:10.1016/j.ijthermalsci.2012.05.016.
  • Pavel, B. I., and A. A. Mohamad. 2004. “An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted with Porous Media.” International Journal of Heat and Mass Transfer 47 (23): 4939–4952. doi:10.1016/j.ijheatmasstransfer.2004.06.014.
  • Pedras, M. H. J., and M. J. S. de Lemos. 2001. “Macroscopic Turbulence Modeling for Incompressible Flow through Undeformable Porous Media.” International Journal of Heat and Mass Transfer 44 (6): 1081–1093. doi:10.1016/S0017-9310(00)00202-7.
  • Shenoy, A. V. 1994. “Non-Newtonian Fluid Heat Transfer in Porous Media.” Advances in Heat Transfer 24: 101–190. doi:10.1016/S0065-2717(08)70233-8.
  • Solomon, A. B., M. Sharifpur, T. Ottermann, C. Grobler, M. Joubert, and J. P. Meyer. 2017. “Natural Convection Enhancement in a Porous Cavity with Al2O3-Ethylene Glycol/Water Nanofluids.” International Journal of Heat and Mass Transfer 108 (B): 1324–1334. doi:10.1016/j.ijheatmasstransfer.2017.01.009.
  • Syed, K. S. 1997. “Simulation of Fluid Flow through a Double-Pipe Heat Exchanger.” PhD Thesis, Department of Mathematics University of Bradford.
  • Syed, K. S., M. Iqbal, and N. A. Mir. 2007. “Convective Heat Transfer in the Thermal Entrance Region of Finned Double-Pipe.” Heat and Mass Transfer 43 (5): 449–457. doi:10.1007/s00231-006-0123-9.
  • Syed, K. S., M. Ishaq, and M. Bakhsh. 2011. “Laminar Convection in the Annulus of a Double-Pipe with Triangular Fins.” Computers & Fluids 44 (1): 43–55. doi:10.1016/j.compfluid.2010.11.026.
  • Teamah, M. A., W. M. El-Maghlany, and M. M. K. Dawood. 2011. “Numerical Simulation of Laminar Forced Convection in Horizontal Pipe Partially or Completely Filled with Porous Material.” International Journal of Thermal Sciences 50 (8): 1512–1522. doi:10.1016/j.ijthermalsci.2011.03.003.
  • Vajjha, R. S., and D. K. Das. 2009. “Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations.” International Journal of Heat and Mass Transfer 52 (21–22): 4675–4682. doi:10.1016/j.ijheatmasstransfer.2009.06.027.
  • Xuan, Y., and Q. Li. 2000. “Heat Transfer Enhancement of Nanofluids.” International Journal of Heat and Fluid Flow 21 (1): 58–64. doi:10.1016/S0142-727X(99)00067-3.
  • Yang, Y. T., and M. L. Hwang. 2009. “Numerical Simulation of Turbulent Fluid Flow and Heat Transfer Characteristics in Heat Exchangers Fitted with Porous Media.” International Journal of Heat and Mass Transfer 52 (13–14): 2956–2965. doi:10.1016/j.ijheatmasstransfer.2009.02.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.