80
Views
0
CrossRef citations to date
0
Altmetric
Chemical Engineering

Li(NixMnyCoz)O2 with high specific surface area prepared by electrospinning

, , , , &
Pages 706-712 | Received 19 Jul 2020, Accepted 27 Jul 2022, Published online: 06 Oct 2022

References

  • Armand, M., and J. M. Tarascon. 2008. “Building Better Batteries.” Nature 451 (7179): 652–657. doi:10.1038/451652a.
  • Cui, S. H., Y. Wei, T. C. Liu, W. J. Deng, Z. X. Hu, Y. T. Su, H. Li, et al. 2016. “Optimized Temperature Effect of Li-Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li-Ion Battery.” Advanced Energy Materials 6 (4): 1501309. doi:10.1002/aenm.201501309.
  • Goodenough, J. B., and Y. Kim. 2009. “Challenges for Rechargeable Li Batteries.” Chemistry of Materials 22 (3): 587–603. doi:10.1021/cm901452z.
  • Jung, S. K., H. Gwon, J. Hong, K. Y. Park, D. H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang. 2014. “Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries.” Advanced Energy Materials 4 (1): 1300787. doi:10.1002/aenm.201300787.
  • Khalil, A., and R. Hashaikeh. 2014. “Electrospinning of Nickel Oxide Nanofibers: Process Parameters and Morphology Control.” Materials Characterization 95: 65–71. doi:10.1016/j.matchar.2014.06.005.
  • Liang, Y. L., P. Zhang, S. Q. Yang, Z. L. Tao, and J. Chen. 2013. “Fused Heteroaromatic Organic Compounds for High Power Electrodes of Rechargeable Lithium Batteries.” Advanced Energy Materials 3 (5): 600–605. doi:10.1002/aenm.201200947.
  • Li, Z., N. A. Chernova, M. Roppolo, S. Upreti, C. Petersburg, F. M. Alamgir, and M. S. J. Whittingham. 2011. “Comparative Study of the Capacity and Rate Capability of LiNiyMnyCo1–2yO2 (Y= 0.5, 0.45, 0.4, 0.33).” The Electrochemical Society 158 (5): A516–A522. doi:10.1149/1.3562212.
  • Mai, L. Q., L. Xu, C. H. Han, X. Xu, Y. Z. Luo, S. Y. Zhao, and Y. L. Zhao. 2010. “Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries.” Nano Letters 10 (11): 4750. doi:10.1021/nl103343w.
  • Min, J. W., A. K. Kalathil, C. J. Yim, and W. B. Im. 2014. “Morphological Effects on the Electrochemical Performance of lithium-rich Layered Oxide Cathodes, Prepared by Electrospinning Technique, for lithium-ion Battery Applications.” Materials Characterization 92: 118–126. doi:10.1016/j.matchar.2014.03.008.
  • Noh, H. J., S. Youn, C. S. Yoon, and Y. K. Sun. 2013. “Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x= 1/3,0.5,0.6,0.7, 0.8 and 0.85) Cathode Material for lithium-ion Batteries.” Journal of Power Sources 233: 121–130. doi:10.1016/j.jpowsour.2013.01.063.
  • Ohzuku, T., and Y. Makimura. 2001. “Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries.” Chemistry Letters 30 (7): 642–643. doi:10.1246/cl.2001.642.
  • Shaju, K., G. Subba Rao, and B. Chowdari. 2001. “Performance of Layered Li (Ni1/3Co1/3Mn1/3)O2 as Cathode for Li-ion Batteries.” Electrochimica Acta 48 (2): 145–151. doi:10.1016/S0013-4686(02)00593-5.
  • Su, Y. T., S. H. Cui, Z. Q. Zhuo, W. L. Yang, X. W. Wang, and F. Pan. 2015. “Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3.” ACS Applied Materials & Interfaces 7 (45): 25105–25112. doi:10.1021/acsami.5b05500.
  • Tarascon, J. M., and M. Armand. 2001. “Issues and Challenges Facing Rechargeable Lithium Batteries.” Nature 414 (6861): 359–367. doi:10.1038/35104644.
  • Uchaker, E., and G. Cao. 2014. “Mesocrystals as Electrode Materials for lithium-ion Batteries.” Nano Today 9 (4): 499–524. doi:10.1016/j.nantod.2014.06.004.
  • Vahtrus, M., A. Šutka, S. Vlassov, A. Šutka, B. Polyakov, R. Saar, L. Dorogin, and R. Lõhmus. 2015. “Mechanical Characterization of TiO2 Nanofibers Produced by Different Electrospinning Techniques.” Materials Characterization 100: 98–103. doi:10.1016/j.matchar.2014.12.019.
  • Wang, H. G., S. Yuan, D. L. Ma, X. B. Zhang, and J. M. Yan. 2015. “Electrospun Materials for Lithium and Sodium Rechargeable Batteries: From Structure Evolution to Electrochemical Performance.” Energy & Environmental Science 8 (6): 1660. doi:10.1039/c4ee03912b.
  • Wei, Y., J. X. Zheng, S. H. Cui, X. H. Song, Y. T. Su, W. J. Deng, Z. Z. Wu, et al. 2015. “Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2.” Journal of the American Chemical Society 137 (26): 8364–8367. doi:10.1021/jacs.5b04040.
  • Wu, Z. Z., X. G. Han, J. X. Zheng, Y. Wei, R. M. Qiao, F. Shen, J. Q. Dai, et al. 2014. “Depolarized and Fully Active Cathode Based on Li(Ni0.5Co0.2Mn0.3)O2 Embedded in Carbon Nanotube Network for Advanced Batteries.” Nano Letters 14 (8): 4700–4706. doi:10.1021/nl5018139.
  • Wu, Z. Z., S. P. Ji, Z. X. Hu, J. X. Zheng, S. Xiao, Y. Lin, K. Xu, K. Amine, and F. Pan. 2016a. “Pre-Lithiation of Li(Ni1-x-yMnxCoy)O2 Materials Enabling Enhancement of Performance for Li-Ion Battery.” ACS Applied Materials & Interfaces 8 (24): 15361–15368. doi:10.1021/acsami.6b03730.
  • Wu, Z. Z., S. P. Ji, T. C. Liu, Y. D. Duan, S. Xiao, Y. Lin, K. Xu, and F. Pan. 2016b. “Aligned Li + Tunnels in Core–Shell Li(Ni X Mn Y Co Z)O 2 @lifepo 4 Enhances Its High Voltage Cycling Stability as Li-ion Battery Cathode.” Nano Letters 16 (10): 6357–6363. doi:10.1021/acs.nanolett.6b02742.
  • Wu, Z. Z., S. P. Ji, J. X. Zheng, Z. X. Hu, S. Xiao, Y. Wei, Z. Q. Zhuo, et al. 2015. “Prelithiation Activates Li(Ni0.5Mn0.3Co0.2)O2 for High Capacity and Excellent Cycling Stability.” Nano Letters 15 (8): 5590–5596. doi:10.1021/acs.nanolett.5b02246.
  • Xu, L., H. W. Song, B. Dong, Y. Wang, J. Chen, and X. Bai. 2010. “Preparation and Bifunctional Gas Sensing Properties of Porous In2O3−CeO2 Binary Oxide Nanotubes.” Inorganic Chemistry 49 (22): 10590–10597. doi:10.1021/ic101602a.
  • Yamada, A., M. Tanaka, K. Tanaka, and K. Sekai. 1999. “Jahn–Teller Instability in Spinel Li–Mn–O.” Journal of Power Sources 81−82: 73–78. doi:10.1016/S0378-7753(99)00106-8.
  • Zhang, L., S. H. Ge, Y. L. Zuo, B. M. Zhang, and L. Xi. 2010. “Influence of Oxygen Flow Rate on the Morphology and Magnetism of SnO2 Nanostructures.” The Journal of Physical Chemistry C 114 (17): 7541–7547. doi:10.1021/jp9065604.
  • Zurek, J., M. Michalik, L. Singheiser, and W.J. Quadakkers. 2006. “The Effect of Gas Flow Rate on the Oxide Scale Morphology of a 10%Cr-Ferritic Steels in Ar-H2O and Ar-H2-H2O Mixtures.” Materials Science Forum 522-523: 155–162. www.scientific.net/MSF.522-523.155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.