44
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Porous Alumina Template based Nanodevices

&
Pages 293-306 | Published online: 26 Mar 2015

REFERENCES

  • A P Alivistos, Semiconductor clusters, Nanocrystals, and Quantum dots, Science, vol 271, pp 933–35, 1996.
  • CR Martin, Chem Mater, vol 8, p 1739, 1994.
  • R A Morgan, S H Park, S W Koch, N Peyghambarian, Semicond Sci Technol, vol 5, p 544, 1990.
  • M A Reed, Sci American, vol 268, p118, 1993.
  • C R Martin, Nanomaterials: A membrane based synthetic approach, Science, vol 266, pp 1961–1966, 1994.
  • T Itoh, T Kirihara, J Lumin, vol 31, p 120, 1984.
  • R Leon, P M Petroff, D Leonerd & S Fafard, Spatially resolved visible luminescence of self assembled semiconductor quantum dots, Science, vol 267, pp 1966–68, 1995.
  • H Luth, Semiconductor nanostructures: a new impact on electronics, Applied Surface Science, vol 130–132, pp 855–865, 1998.
  • Y Zhu, H Wang & P P Ong, J Phys D-Appl Phys, vol 33, 2000, p 2687.
  • A I Ekimov, A L Efros & A A Onuschenko, Solid State Commun, vol 56, p 921, 1985.
  • N F Borreli, D W Hall, H J Holland & D W Smith, J Appl Phys, vol 61, p 5399, 1987.
  • A Blondel, J P Meier, B Doudin & J Ph Ansermet, Appl Phys Lett, 65, p 3019, 1994.
  • G A Ozin, Nanochemistry: Synthesis in diminishing dimensions, Adv Mater, vol 4, pp 612–648, 1992.
  • A D Berry, R J Tonucci & M Fatemi, Appl Phys Lett, vol 69, p 2846, 1996.
  • T M Whitney, J S Jiang, P C Searson & C L Chicn, Fabrication and magnetic properties of arrays of metallic nanowires, Science, vol 261, pp 1316–1319, 1993.
  • J Electrochem Soc, vol 95, p 262, 1995.
  • E Braun, Y Eichen, U Sivan, and G Ben-Yoseph. Nature, vol 391, p 750, 1998.
  • H Masuda and K Fukuda, Ordered metal nanohole arrays made by a two step replication of honeycomb structures of anodic alumina, Science, vol 268, pp 1466–1468, 1995.
  • Miller, Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays, United States Patent 5,747, 180, 1998.
  • J Phys D: Appl Phys vol 25, p 1258, 1992.
  • F Li, L Zhang & R M Metzger, On the growth of highly ordered pores in anodized aluminium oxide, Chem Mater, vol 10, pp 2473–80, 1998.
  • G E Thompson & G C Wood, Anodic films on aluminium, in Corrosion Aqueous Processes and Passive Films- Treatize of Materials Science Technology, J C Scully, Ed New York, Academic Press, 1983, vol 23, pp 205–329.
  • F Keller, M S Hunter and D L Robinson, Structural features of oxide coatings on aluminium, J Electrochem Soc, vol 100, pp 411–419, 1953.
  • J W Diggle, T C Downie, C W Goulding, J Electrochem Soc 116, p 737, 1969.
  • V V Yuzhakov & H C Chang, A E Miller, Pattern formation during electropolishing, Phys Rev, vol B56, pp 12608–12624, 1997.
  • V V Konovalov, G Zangan & R M Metzger, Highly ordered nano-topographies on electropolished aluminium single crystals, Chem Mater, vol 11, no 8, pp 1949–1951, 1999.
  • H Masuda, F Hasegwa & S Ono, Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J Electrochem Soc, vol 144, pp L127–L129, 1997.
  • H Masuda & M Satoh, Jap J Appl Phys, vol 35, p L126, 1996.
  • H Masuda, K Yada & A Osaka, Jap J Appl Phys vol 35, p L1340, 1998.
  • J P O'Sullivan & G C Wood, The morphology and mechanism of formation of porous anodic films on aluminium, Proc Roy Soc London. A, vol 317, pp 51 1–543, 1970.
  • O Jessensky, F Mller & U Gosele, Self organized formation of hexagonal pore structures in anodic alumina, J Electrochem Soc, vol 145, pp 3737–3740, 1998.
  • O Jessensky, F Muller, U Gosele, Self organized formation of hexagonal pore arrays in anodic alumina, Appl Phys Lett, vol 72, pp 1173–75, 1998.
  • B, Lu, S Bharathulwar, D E Laughlin, & D N Lambeth, Time and orientation dependence of ordering in anodized aluminium for self organized magnetic arrays, J Appl Phys, vol 87, pp 4721–4723, 2000.
  • B Das & S P McGinnis, Novel template based semiconductor nanostructures and their applications, Appl Phys A, vol 71, pp 681–688, 2000.
  • D Crouse, Y H Lo, A E Miller and M Crouse, Self ordered, pore structure of anodized aluminum on silicon and pattern transfer, Appl Phys Let? vol 76, pp 49–51, 2000.
  • V Caboni, Italian Patent 339232, 1936.
  • A P Li, F Muller, A Birner, K Nielsh & U Gosele, J Appl Phys, vol 84, p 6023, 1998
  • K Nielsch, F Muller, A-Ping Li, & U Gosele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv Mater, vol 12, pp 582–586, 2000.
  • C A Huber, T E Huber, M Sadoqi, J A Lubin, S Manalis & C B Prater, Nanowire Array Composites, Science, vol 263, pp 800–802, 1994.
  • Ying, et al. Process for fabricating an array of nanowires, United States Patent, 6, 231,744 May 15, 2001.
  • D J Pena, B Razavi, P A Smith, J K Mbindyo, M J Natan, T S Mayer, T E Mallouk & C D Keating, Mat Res Soc Symp, vol 636, p D4 6.1, 2001.
  • P Forrer, F Schlottig, H Siegenthaler & M Textor, Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique, J Appl Electrochem, vol 30, pp 533–541, 2000.
  • J L Yaoa, J Tanga, D Y Wua, D M Sunb, K H Xueb, B Rena, B W Maoa & Z Q Tian, Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration, Surface Science, 2002.
  • Y Joo & J S Suh, SERS on silver formed in anodic aluminium oxide nanotemplates, Bull Korean Chem Soc, vol 16, pp 808–810, 1995.
  • G Sauer, G Brehm, S Schneider, K Nielsch, R B Wehrspohn, J Choi, H Hofmeister & U Gosele, Highly ordered monocrystalline silver nanowire arrays, J Appl Phys, vol 91, pp 3243–3247, 2002.
  • L E Brus, J Chem Phys, vol 80, p 4403, 1984.
  • A Balandin, K L Wang, N Kouklin, & S Bandyopadhyay, Raman spectroscopy of electrochemically self assembled CdS quantum dots, Appl Phys Lett, vol 76, pp 137–139, 2000.
  • D Al-Mawlawi, C Z Liu & M Moskovits, Nanowires formed in anodic oxide nanotemplates, J Mater Res, vol 9, pp 1014–1018, 1994.
  • D Routkevitch, T Bigioni, M Moskovits & J M Xu, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminium oxide templates, J Phys Chem, vol 100, pp 14037–14047, 1996.
  • D Routkevitch, T L Haslett, L Ryan T Bigioni, C Douketis & M Moskovits, Synthesis and resonance Raman spectroscopy of CdS nanowire arrays, Chemical Physics, vol 210, pp 343–352, 1996.
  • G S Cheng, L D Zhang, Y Zhu, G T Fei, L Li, C M Mo & Y Q Mao, Large scale synthesis of single crystalline gallium nitride nanowires, Appl Phys Lett vol 75, pp 2455–57, 1999.
  • Y Wang, J Mo, W Cai, & L Yao, L Zhang, Synthesis of nano-Agl arrays and their optical properties, J Mater Res, vol 16, pp 990–992, 2001.
  • B B Laxmi, P K Dorhout & C R Martin, Chem Mater, vol 9, p 857, 1997.
  • F Schlottig, M Textor, U Georgi & G Roewer, J Mat Sci Lett, vol 18, p 599, 1999.
  • Y Li, G W Meng, L D Zhang & F Phillipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl Phys Lett, vol 76, pp 2011–2013, 2000.
  • B B Lakshmi, Chem Mater, vol 9, p 2544, 1997.
  • P Hoyer, Adv Mater, vol 8, p 857, 1996.
  • H Masuda, K Nishio & N Baba, Fabrication of porous TiO2 films using two step replication of microstructure of anodic alumina, Jpn J Appl Phys, vol 31, pp L1775–L1777, 1992.
  • J Mater Sci Lett, vol 15, p 1228, 1996.
  • Y Lei, & L W Zhang, Fabrication, characterization and photoluminescence properties of highly ordered TiO2 nanowire arrays, J Mater Res. vol 16, pp 1138–1144, 2001.
  • X Zhang, A B Yao, A L Zhao, A C Liang, A L Zhang & Y Maob, Electrochemical fabrication of single crystalline anatase TiO2 nanowire arrays, J Electrochem Soc, vol 148, pp G398–G400, 2001.
  • J Li, C Papadoulos, J M Xu & M Moskovits, Highly ordered carbon nanotube arrays for electronics applications, Appl Phy Lett, vol 75, pp 367–369, 1999.
  • J S Suh & J S Lee, Highly ordered two dimensional carbon nanotube arrays, Appl Phys Lett, vol 75, pp 2047–49, 1999.
  • W Hu, D Gong, Z Chen, L Yuan, K Saito, C A Grimes & P Kichambare, Growth of well aligned carbon nanotube arrays on silicon substrates using porous alumina film as a template, Appl Phys Lett, vol 79, pp 3083–3085, 2001.
  • T Iwasaki, T Motoi & T Den, Multiwalled carbon nanotubes growth in anodic alumina nanoholes, Appl Phys Lett, vol 75, pp 2044–2046, 1999.
  • S L Sung, S H Tsai, C H Tseng, F K Chiang, X W Liu & H C Shih, Well aligned carbon nitride nanotubes synthesized in anodic aluimina by electron cyclotron resonance chemical vapor deposition, Appl Phys Lett, vol 74, No 2, pp 197–199, 1999.
  • B Das, S P McGinnis & P Sines, Solar Energy Mat & Solar Cells, vol 63, p 117, 2000.
  • D Routkevitch, A A Tager, J Haruyama & D Almawlawi, Nonlithographic Nanowire Arrays: Fabrication, Physics & Device Applications, IEEE Trans Electron Dev, vol 43, pp 1646–1657, 1996.
  • J Cibert, P N Petroff, G J Dolan, S J Pearton, A C Gossard, J H English, Appl Phys Lett, 49 (1986) 1275.
  • H R Khan & K Petrikowski, Anoisotropic structural & magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina, J Mag & Mag Mat, vol 215–216, pp 526–528, 2000.
  • K Ounadjela, R Ferre & L Louail, J Appl Phys, vol 81, p 5455, 1997.
  • J L Bubendorff, E Beaurepaire, C Meny, P Panissod, & J P Bucher, Phys Rev B vol 56, pp R710, 1997.
  • N Grobert, W H Hsu, Y Q Zhu & J P Hare, Appl Phys Lett, vol 75, p 3363, 1999.
  • T M Whitney, L S Jiang, P C Searson, C L Chien, Fabrication and magnetic properties of arrays of metallic nano-wires, Sciences, vol 261, p 1316, 1993.
  • D H Qin, C W Wang, Q Y Sun & H L Li, The effect of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays, Appl Phys A, vol 74, pp 761–765, 2002.
  • Y Chou, IEEE Tran Magn, vol MAG-85, pp 652, 1997.
  • D AIMawlawi, N Coombs & M Moskovits, Magnetic properties of Fe deposited into anodic aluminium oxide pores as a fuction of particle size, J Appl Phy, vol 70, pp 4421–25, 1991.
  • R M Metzger, V V Konovalov, M Sun, T Xu, G Zangari, B Xu, M Benakli & W D Doyle, Magnetic nanowires in hexagonally ordered pores of alumina, IEEE Trans Mag, vol 36, pp 30–35, 2000.
  • M Sun, G Zangari, M Shamsuzzoha & R M Metzger, Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite, Appl Phys Let, vol 78, pp 2964–66, 2001.
  • K Nielsch, F Muller, A-Ping Li, & U Gosele, Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition, Adv Mater. vol 12, pp 582–586, 2000.
  • H W Kwon, S K Kim, Y Jeong, Effect of magnetic field on the electrodeposition of Fe, Co into the pores of anodic film on aluminium J Appl Phys, vol 87, pp 6185–87, 2000.
  • H Zeng, L Menon, Y Liu, S Bandyopadhyay, R Skomsky, D Sellmyer, Co dep.
  • S H Jeong, H Y Hwang, H Lee & Y Jeong, Template based carbon nanotubes and their application to a field emitter, Appl Phys Lett, vol 78 pp 2052–2054, 2001.
  • Kyotani, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminium oxide film Chem Mater, vol 8, 1996.
  • A L Prieto, M S Sanders, M S Martin-Gonzalez, R Gronsky, T Sands & A M Stacy, J Am Chem Soc, vol 123, pp 7160, 2001.
  • Y M Lin, S B Cronin, O Rabin, J Y Ying & M S Dresselhaus, Transport properties of Bil-x Sbx alloy nanowires synthesized by pressure injection, Appl Phys Lett, vol 79, pp 677–679, 2001.
  • Konno A composite palladium & porous aluminium oxide membrane for hydrogen gas separation, J Membrane Sci, vol 37, pp 193–197, 1988.
  • R C Furneaux, W R Righy & A P Davidson, The formation of controlled porosity membranes from anodically oxidized aluminium, Nature, vol 337, p 147, 1989.
  • D Routkevitch, A N Govyadinov & P Mardilovich, High aspect ratio, high resolution ceramic MEMS, MEMS vol 2, pp 39–44, 2000.
  • D Almawlawi, K A Bosnick, A Osika & M Moskovits, Fabrication of nanometer-scale patterns by ion-milling with porous alumina masks, Adv Mat vol 12, pp 1252–1257, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.