272
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Analysis of Factors for Improving Functionality of Tin Oxide Gas Sensor

, &

References

  • K. Zakrzewska, et. al., “Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films,” Thin Solid Films, Vol. 310, pp. 161–6, Nov. 1997.
  • M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, R. Lamb, “XPS study of Nbdoped oxygen sensing TiO2 thin films prepared by sol-gel method,” Thin Solid Films, Vol. 326, pp. 238–44, Aug. 1998.
  • M. Batzill, and U. Diebold, “The surface and materials science of tin oxide, Review,” Prog. Surf. Sci. Vol. 79, pp. 47–154, Sep. 2005.
  • M. J. Madou, and S. R. Morrison, Chemical Sensing with Solid State Devices. San Diego, CA: Academic Press, Inc, 1989.
  • R. I. Masel, Principles of Adsorption and Reaction on Solid State Surfaces. New York, NY: John Wiley, 1966, pp. 438–81.
  • R. I. Masel, Principles of Adsorption and Reaction on Solid State Surfaces. New York, NY: John Wiley, 1996, pp. 438–81.
  • G. Korotcenkov “Metal oxides for solid-state gas sensors: What determines our choice?” Mater. Sci. Eng. B, Vol. 139, pp. 1–23, Apr. 2007.
  • N. Barsan, D. Koziej, and U. Weimar, “Metal oxide-based gas sensor research: How to?” Sensors Actuatuators B, Vol. 121, pp. 18–35, Jan. 2007.
  • G. Korotcenkov “The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors,” Mater. Sci. Eng., Vol. 61, pp. 1–39, May 2008.
  • M. Batzill, and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci., Vol. 79, pp. 47–154, Sep. 2005.
  • N. Barsan, M. Schweizer-Berberich, and W. Göpel, “Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report,” Fresenius J. Anal. Chem., Vol. 365, pp. 287–304, Oct. 1999.
  • C. O. Park, and S. A. Akbar, “Ceramics for chemical sensing,” J. Mater. Sci., Vol. 38, pp. 4611–37, Dec. 2003.
  • R. Moos, K. Sahner, M. Fleischer, U. Guth, N. Barsan, and U. Weimar, “Solid state gas sensor research in Germany – a status report,” Sensors, Vol. 9, pp. 4323–65, Jun. 2009.
  • Rumyantseva, et.al. “Chemical modification of nanocrystalline metal oxides: Effect of the real structure and surface chemistry on the sensor properties,” Russ. Chem. Bull., Vol. 57, pp. 1106–25, Jun. 2008.
  • J. H. Lee, “Gas sensors using hierarchical and hollow oxide nanostructures: Overview,” Sensors Actuators B, Vol. 140, pp. 319–456, Jun. 2009.
  • J. W. Fergus, “Oxides for semiconductor-based gas sensors,” Sensors Actuators B, Vol. 123, pp. 1169–79, May 2007.
  • J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials-synthesis, properties and applications,” Mater. Sci. Eng., Vol. 52, pp. 49–91, May 2006.
  • J. W. Orton, and M. J. Powell, “The hall effect in polycrystalline and powdered semiconductors,” Rep. Prog. Phys., Vol. 43, pp. 1263–307, Apr. 1980.
  • A. Rothschild, and Y. Komem, “On the relationship between the grain size and gas-sensitivity of chemo-resistive metal-oxide gas sensors with nanosized grains,” J. Electroceram., Vol. 13, pp. 697–701, Jul. 2004.
  • A. Rothschild, and Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors.” J. Appl. Phys, Vol. 95, 6374–80, Jan. 2004.
  • X. Wang, S. S. Yee, and W. P. Carey, “Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors,” Sensors Actuators B, Vol. 25, pp. 454–7, Apr. 1995.
  • G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches,” Sensors Actuators B, Vol. 107, pp. 209–32, May 2005.
  • N. Yamazoe, and K. Shimanoe, “New perspectives of gas sensor technology,” Sensors Actuators B, Vol. 138, pp. 100–10, Apr. 2009.
  • M. Tiemann, “Porous metal oxides as gas sensors,” Chem. Eur. J., Vol. 13, pp. 8376–88, Oct. 2007.
  • G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta, “Oxide materials for development of integrated gas sensors – a comprehensive review,” Crit. Rev. Solid State Mater. Sci., Vol. 29, pp. 111–88, Jul. 2004.
  • E. Kanazawa, and N. Yamazoe, “Metal oxide semiconductor N2O sensor for medical use,” Sensors Actuators B, Vol. 77, pp. 72–7, Jun. 2000.
  • V. E. Henrich, and P. A. Cox, The Surface Science of Metal Oxides. Cambridge: Cambridge University Press, 1994 , pp. 45–8.
  • C. Wang, L. Yin, et al., “Metal oxide gas sensors: Sensitivity and influencing factors,” Sensors, Vol. 10 no. 3, pp. 2088–106, Mar. 2010.
  • S. G. Ansari, and S. K. Kulkarni, “Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles,” Thin Solid Films, Vol. 295, pp. 511–6, Feb. 1997.
  • A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett., Vol. 5, pp. 667–73, Mar. 2005.
  • C. Xu, N. Tamaki, and N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-based elements,” Sensors Actuators B, Vol. 3, pp. 147–55, Feb. 1991.
  • C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry: Properties of nanocrystals',” Chem. Eur. J., Vol. 8, 28–35, Jan. 2002.
  • K. D. Schierbaum, U. Weimar, W. Göpel, and R. Kowalkowski, “Conductance, work function and catalytic activity of SnO2-based gas sensors,” Sensors Actuators B, Vol. 3, 205–14, Mar. 1991.
  • H. Meixner, J. Gerblinger, U. Lampe, and M. Fleischer, “Thin-film gas sensors based on semiconducting metal oxides,” Sensors Actuators B, Vol. 23, pp. 119—25, Feb. 1995.
  • T. Takeuchi, “Oxygen sensors,” Sensors Actuators B, Vol. 14, pp. 109–24, Jun. 1988.
  • W. Göpel, and G. Reinhardt, “Metal oxide sensors: New devices through tailoring interfaces on the atomic scale,” Sensors Actuators Update, Vol.1, no. 1, pp. 49–120, Jul. 1996.
  • V. M. Jiménez, J. P. Espinós, and A. R. González-Elipe, “Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials,” Sensors Actuators B, Vol. 61, pp. 23–32, Dec. 1999.
  • Y. Shimizu, T. Maekawa, Y. Nakamura, and M. Egashira, “Effects of gas diffusivity and reactivity on sensing properties of thick film SnO2 based sensors,” Sensors Actuators B, Vol. 46, pp. 163–8, May 1998.
  • G. Eranna, B. C. Joshi, D. P. Runthala, and R. P. Gupta “Oxide materials for development of integrated gas sensors – a comprehensive review,” Crit. Rev. Solid State Mater. Sci., Vol. 29, no. 3–4, pp. 111–50, 2004.
  • J. F. McAleer, P. T. Moseley, D. E. Williams, and B. C. Tofield, “Tin oxide gas sensors: Part 2. The role of surface additives,” J. Chem. Soc. Faraday Trans., 1, Vol. 84, no. 2, pp. 474–57, 1988.
  • J. Mizsei, “How can sensitive and selective semiconductor gas sensor be made?,” Sensors Actuators B, Vol. 23, pp. 173–6, Feb. 1995.
  • Y. Shimizu, E. Kanazawa, Y. Takao, and M. Egashira, “Modification of H2-sensitive breakdown voltages of SnO2 varistors with noble metals,” Sensors Actuators B, Vol. 52, pp. 38–44, Sep. 1998.
  • N. Yamazoe, Y. Kurokawa, and T. Seiyama, “Effects of additives on semiconductor gas sensors,” Sensors Actuators B, Vol. 4, pp. 283–9, Jun. 1983.
  • N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sensors Actuators B, Vol. 5, pp. 7–19, Aug. 1991.
  • C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-based elements,” Sensors Actuators B, Vol. 3, pp. 147–55, Feb. 1991.
  • A. R. Phani, S. Manorama, and V. J. Rao, “Preparation, characterization and electrical properties of SnO2 based liquid petroleum gas sensor,” Mater. Chem. Phys., Vol. 58, pp. 101–8, Mar. 1999.
  • A. R. Phani, S. Manorama, and V. J. Rao, “The nature of surface behavior of tin oxide doped sensors: X-ray photoelectron spectroscopy studies before and after exposure to liquid petroleum gas,” J. Phys. Chem. Solids, Vol. 61, pp. 985–93, Jun. 2000.
  • M. Gaidi, B. Chenevier, and M. Labeau, “Electrical properties evolution under reducing gaseous mixtures H2, H2S, CO of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors,” Sensors Actuators B, Vol. 62, pp. 43–8, Jan. 2000.
  • V. Brynzari, G. Korotchenkov, and S. Dmitriev, “Simulation of thin gas sensors Kinetics,” Sensors Actuators B, Vol. 61, pp. 143–15, Dec. 1999.
  • T. B. Fryberger, and S. Semancik, “Conductance response of Pd/SnO2 110 model gas sensors to H2 and O2,” Sensors Actuators B, Vol. 2, pp. 305–9, Oct. 1990.
  • I. Matko, M. Gaidi, J. L. Hazemann, B. Chenevier, and M. Labeau, “Electrical properties under polluting gas CO of Pt- and Pd-doped polycrystalline SnO2 thin films: Analysis of the metal aggregate size effect,” Sensors Actuators B, Vol. 59, pp. 210–5, Oct. 1999.
  • A. Cirera, A. Vilà, A. Diéguez, A. Cabot, A. Cornet, and J. R. Morante, “Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders,” Sensors Actuators B, Vol. 64, pp. 65–9, Jun. 2000.
  • G. Tournier, C. Pijolat, R. Lalauze, and B. Patissier, “Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium,” Sensors Actuators B, Vol. 26–51, pp. 24–8, Jun. 1995.
  • W. K. Choi, S. K. Song, J. S. Cho, Y. S. Yoon, D. Choi, H.-J. Jung, and S. K. Koh, “H2 gas-sensing characteristics of SnOx sensors fabricated by a reactive ion assisted deposition with/without an activator layer,” Sensors Actuators B, Vol. 40, pp. 21–27, May 1997.
  • K. D. Schierbaum, U. K. Kirner, J. F. Geiger, and W. Göpel, “Titol: “Schottkybarrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2,” Sensors Actuators B Vol. 4, pp. 87–94, May 1991.
  • D. Rosenfeld, R. Sanjinés, W. H. Schreiner, and F.. Lévy, “Gas sensitive and selective SnO2 thin polycrystalline films doped by ion implantation,” Sensors Actuators B, Vol. 15–16, pp. 406–9, Oct. 1993.
  • T. B. Fryberger, and S. Semancik, “Conductance response of Pd/SnO2110 model gas sensors to H2 and O2,” Sensors Actuators B, Vol. 2, pp. 305, Oct. 1990.
  • I. Hayakawaa, Y. Iwamotoa, K. Kikutab, and S. Hiranob, “Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor,” Sensors Actuators B, Vol. 62, pp. 55–60, Jan. 2000.
  • H. P. Kim, J. Choi, H. Cheong, J. Kim, and J. Kim, “Sensing mechanism of SnO2- based sensors for alcohols,” Sensors Acuators B, Vol. 13–14, pp. 511–2, Jun. 1993.
  • K. Zakrzewska, M. Radecka, and M. Rekas, “Effect of Nb, Cr, “Sn additions on gas sensing properties of TiO2 thin films,” Thin Solid Films, Vol 310, pp. 161–6, Nov. 1997.
  • E. Cominia, G. G. Sberveglieri, Y. X. Li, W. Wlodarski, and M. K.Ghantasala, “Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb,” Sensors Actuators B, Vol. 64, pp. 169–74, Jun. 2000.
  • E. Cominia, G. Faglia, G. Sberveglieri, Y. X. Li, W. Wlodarski, and M. K. Ghantasala, “Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb,” Sensors Actuators B, Vol. 64, pp. 169–74, Jun. 2000.
  • R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli, and A. Licciuli, “Air quality monitoring by means of sol-gel integrated tin oxide thin films,” Sensors Actuators B, Vol. 58, pp. 283–8, Sep. 1999.
  • A. Diéguez, A. Romano-Rodrı́guez, J. R. Morante, J. Kappler, N. Bârsan, and W. Göpel, “Nanoparticle engineering for gas sensor optimization: improved sol-gel fabricated nanocrystalline SnO2 thick film gas sensor for NO2 detection by calcination, catalytic metal introduction and grinding treatments,” Sensors Actuators B, Vol. 60, pp. 125–37, Nov. 1999.
  • C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Grain size effects on gas Sensitivity of porous SnO2-based elements,” Sensors Actuators B, Vol. 3, pp. 147–55, Feb. 1991.
  • A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Bârsan, and W. Göpel, “Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors,” Sensors Actuators B, Vol. 70, pp. 87–100, Nov. 2000.
  • A. K., Sinha, and D. D. Caviglia, “Designing high-value resistive network using weak inversion region of a PMOS device at the floating gate of a sensor,” IETE Tech. Rev., Vol. 30, no. 6, pp. 473–82, Sep. 2013.
  • Q. Tian, and J. Wu, “A review on face recognition based on compressive sensing,” IETE Tech. Rev., Vol. 30, no. 5, 2013, pp. 427–38.
  • V. A. Chaudhary, I. S. Mulla, and K. Vijayamohanan, “Selective hydrogen sensing properties of surface functionalized tin oxide,” Sensors Actuators B, Vol. 55, pp. 154–60, May 1999.
  • M. Labeau, B. Gautheron, G. Delabouglise, J. Peña, V. Ragel, and A. Varela, “Synthesis, structure and gas sensitivity properties of pure and doped SnO2,” Sensors Actuators B, Vol. 15–16, pp. 379–83, Oct. 1993.
  • D. Mardare, and P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B, Vol. 68, pp. 42–7, Dec. 1999.
  • S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe, “Electronic interaction between metal additives and tin dioxide-based gas sensors,” Jpn. J. Appl. Phys., Vol. 51, pp. 1798–803, Oct. 1988.
  • A. R. Phani, “X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensor,” Appl. Phys. Lett., Vol. 71, pp. 23–58, Oct. 1997.
  • M. Gaidi, B. Chenevier, and M. Labeau, “Electrical properties evolution under reducing gaseous mixtures H2, H2S, CO of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors,” Sensors Actuators B, Vol. 62, pp. 43–8, Jan. 2000.
  • J. Arbiol, A. Ruiz, A. Cirera, F. Peiró, A. Cornet, J. R. Morante, A. Alimoussa, and M.-J. Casanove, “Analysis of Pt-Nanoparticles embedded on crystalline TiO2 studied by Transmission Electron Microscopy,” in MRS Proceedings, Symposium F – Microcrystaline & Nanocrystalline Semiconductors, Vol. 638, Boston, MA, Nov. 2000.
  • M. H. Madhusudhana Reddy and A. N. Chandorkar, “E.Beam deposited SnO2, Pt-SnO2 and Pd-SnO thin films for LPG detection,” Thin Solid Films, Vol. 349, pp. 260–5, Jul. 1999.
  • S. Matsushima, K. Kobayashi, and M. Kohyama, “Semiempirical band calculation of Pd-Adsorbed SnO2 surface,” Jpn. J. Appl. Phys., Vol. 38, pp. 4993–6, Jun. 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.