276
Views
13
CrossRef citations to date
0
Altmetric
Articles

Adaptive Sliding Mode Control Based on Duhem Model for Piezoelectric Actuators

, , &

REFERENCES

  • G. Y. Gu, and L. M. Zhu, “Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation,” Sens. Actuators A Phys., Vol. 197, pp. 76–87, Aug. 2013.
  • K. Kuhnen, and P. Krejci, “Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: A new Preisach modeling approach,” IEEE Trans. Autom. Control, Vol. 54, no. 3, pp. 537–50, Mar. 2009.
  • Q. Xu, “Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control,” IET Control Theory Appl., Vol. 7, no. 18, pp. 2153–63, Dec. 2013.
  • Y. Sabzehmeidani, M. Hussein, and M. Mailah, “Intelligent hybrid control of piezoelectric actuated micro robot,” Int. J. Syst. Appl. Eng. Dev., Vol. 5, no. 3, pp. 306–13, Oct. 2011.
  • G. Y. Gu, L. M. Zhu, and Y. S. Chun, “Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model,” IEEE Trans. Ind. Electron., Vol. 61, no. 3, pp. 1583–95, Mar. 2014.
  • J. C. Zheng, and M. Y. Fu, “Saturation control of a piezoelectric actuator for fast settling-time performance,” IEEE Trans. Control Syst. Technol., Vol. 21, no. 1, pp. 220–8, Jan. 2013.
  • A. R. Mehrabia, and A. Yousefi-Koma, “A novel technique for optimal placement of piezoelectric actuators on smart structures,” J. Franklin Inst., Vol. 348, no. 1, pp. 12–23, Feb. 2011.
  • C. J. Lin, and P. T. Lin, “Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model,” Comput. Math. Appl., Vol. 64, no. 5, pp. 766–87, Sep. 2012.
  • C. J. Lin, H. T. Yau, C. R. Lin, and C. R. Hsu, “Simulation and experimental analysis for hysteresis behavior of a piezoelectric actuated micro stage using modified charge system search,” Microsyst. Technol., Vol. 19, no. 11, pp. 1807–15, Nov. 2013.
  • W. Li, and X. Chen, “Compensation of hysteresis in piezoelectric actuators without dynamics modeling,” Sens. Actuators A Phys., Vol. 199, pp. 89–97, Sep. 2013.
  • M. L. Zhou, Q. Zhang, and J. Y. Wang, “Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model,” PloS One, Vol. 9, e97086, May 2014.
  • T. Rosario, and I. A. Ivan, “Robust structured controllers for piezoelectric microactuators,” ISA Trans., Vol. 53, no. 6, pp. 1857–64, Nov. 2014.
  • Q. Wang, and C. Y. Su, “Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations,” Automatica, Vol. 42, no. 5, pp. 859–67, May 2006.
  • Y. Cao, L. Cheng, X. Chen, and J. Peng, “An inversion-based model predictive control with an integral-of-error state variable for piezoelectric actuators,” IEEE/ASME Trans. Mechatron., Vol. 18, no. 3, pp. 895–904, Jun. 2013.
  • K. Byeongil, G. N. Washington, and H. S. Yoon, “Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control,” Smart Mater. Struct., Vol. 21, 055018, May 2012.
  • F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 53, no. 9, pp. 1649–61, Sep. 2006.
  • J. H. Oh, and D. S. Bernstein, “Semilinear Duhem model for rate-independent and rate-dependent hysteresis,” IEEE Trans. Autom. Control, Vol. 50, no. 5, pp. 631–45, May 2005.
  • H. Chen, Y. H. Tan, X. P. Zhou, R. L. Dong, and Y. H. Zhang, “Identification of dynamic hysteresis based on Duhem model,” in 2011 International Conference on Intelligent Computation Technology and Automation, Shenzhen, 2011, pp. 810–4.
  • X. Wang, and Y. Mao, “Hysteresis compensation in GMA actuators using Duhem model,” in Proceedings of the World Congress on Intelligent Control and Automation, Chongqing, 2008, pp. 388–93.
  • Y. Feng, C. A. Rabbath, T. Chai, and C. Y. Su, “Robust adaptive control of systems with hysteretic nonlinearities: A Duhem hysteresis modelling approach,” in IEEE AFRICON Conference, Nairobi, 2009, pp. 1–6.
  • X. Tan, and O. Bennani, “Fast inverse compensation of Preisach-type hysteresis operators using field-programmable gate arrays,” in Proceedings of the American Control Conference, Seattle, WA, 2008, pp. 2365–70.
  • M. L. Zhou, S. B. He, B. Hu, and Q. Zhang, “Modified KP model for hysteresis of magnetic shape memory alloy actuator,” IETE Tech. Rev., Vol. 32, no. 1, pp. 29–36, Nov. 2015.
  • X. Wang, G. Alici, and X. Tan, “Modeling and inverse feedforward control for conducting polymer actuators with hysteresis,” Smart Mater. Struct., Vol. 23, no. 2, pp. 25015–23, Feb. 2014.
  • Y. Feng, C. A. Rabbath, M. Deng, and C. Y. Sun, “Robust adaptive control for flap positioning system with SMA actuators–inverse Duhem model-based approach,” Int. J. Adv. Mech. Syst., Vol. 3, no. 5, pp. 375–83, Jan. 2011.
  • M. A. Janaideh, and P. Krejci, “Inverse rate-dependent Prandtl-Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator,” IEEE/ASME Trans. Mechatron., Vol. 18, no. 5, pp. 1498–1507, Oct. 2013.
  • J. Zhang, E. Merced, N. Sepulveda, and X. Tan, “Modeling and inverse compensation of nonmonotonic hysteresis in VO 2-coated microactuators,” IEEE/ASME Trans. Mechatron., Vol. 19, no. 2, pp. 579–88, Apr. 2014.
  • Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatron., Vol. 18, no. 3, pp. 981–9, Jun. 2013.
  • M. L. Zhou, W. Gao, and Y. T. Tian, “Hybrid control based on inverse Prandtl-Ishlinskii model for magnetic shape memory alloy actuator,” J. Cent. South Univ., Vol. 20, no. 5, pp. 1214–20, Jun. 2013.
  • M. L. Zhou, Y. T. Tian, W. Gao, and Z. Yang, “High precise control method for a new type of piezoelectric electro-hydraulic servo valve,” J. Cent. South Univ., Vol. 14, no. 6, pp. 832–7, Mar. 2007.
  • R. Okeya, M. Aoyagi, T. Takano, and H. Tamura, “Development of electromagnetic and piezoelectric hybrid actuator system,” Sens. Actuators A Phys., Vol. 200, no. 4, pp. 155–61, Oct. 2013.
  • L. Lei, K. K. Tan, S. L. Chen, and S. Huang, “SVD-based Preisach hysteresis identification and composite control of piezo actuators,” ISA Trans., Vol. 51, no. 3, pp. 430–8, May 2012.
  • P. Ge, and M. Jouaneh, “Tracking control of a piezoceramic actuator,” IEEE Trans. Control Syst. Technol., Vol. 4, no. 3, pp. 209–16, May 1996.
  • G. Tao, and P. V. Kokotovic, “Adaptive control of plants with unknown hysteresis,” IEEE Trans. Autom. Control, Vol. 40, no. 2, pp. 200–12, Feb. 1995.
  • Z. Q. Chi, M. P. Jia, and Q. S. Xu, “Fuzzy PID feedback control of piezoelectric actuator with feedforward compensation,” Math. Probl. Eng., Vol. 2014, 107184, Nov. 2014.
  • S. Saxena, and Y. V. Hote, “Advances in internal model control technique: A review and future prospects,” IETE Tech. Rev., Vol. 29, no. 6, pp. 461–72, Sep. 2012.
  • A. A. Eielsen, J. T. Gravdahl, and K. Y. Pettersen, “Adaptive feedforward hysteresis compensation for piezoelectric actuators,” Rev. Sci. Technol., Vol. 83, no. 8, pp. 1–8, Aug. 2012.
  • Q. S. Xu, “Digital sliding-mode control of piezoelectric micro-positioning system based on input-output model,” IEEE Trans. Ind. Electron., Vol. 61, no. 10, pp. 5517–26, Oct. 2014.
  • Y. M. Li, and Q. S. Xu, “Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator,” IEEE Trans. Control Syst. Technol., Vol. 18, no. 4, pp. 798–810, Jul. 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.