378
Views
24
CrossRef citations to date
0
Altmetric
Articles

Reduced Order Modelling of Linear Time Invariant Systems Using the Factor Division Method to Allow Retention of Dominant Modes

ORCID Icon &

References

  • E. R. Samuel, L. Knockaert, and T. Dhaene, “Matrix-interpolation-based parametric model order reduction for multiconductor transmission lines with delays,” IEEE Trans. Circuits Systems II Express Briefs, Vol. 62, no. 3, pp. 276–80, Mar. 2015.
  • L. Feng, J. G. Korvink, and P. Benner, “A fully adaptive scheme for model order reduction based on moment matching,” IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 5, no. 12, pp. 1872–84, Dec. 2015.
  • T.-S. Nguyen, T. Le Duc, T.-S. Tran, J.-M. Guichon, O. Chadebec, and G. Meunier, “Adaptive multipoint model order reduction scheme for large-scale inductive PEEC circuits,” IEEE Trans. Electromagn. Compat., Vol. 59, no. 4, pp. 1143–51, Aug. 2017.
  • Y. Ni, C. Li, Z. Du, and G. Zhang, “Model order reduction based dynamic equivalence of a wind farm,” Int. J. Electr. Power Energ. Syst., Vol. 83, pp. 96–103, Dec. 2016.
  • G. Scarciotti, and A. Astolfi, “Data-driven model reduction by moment matching for linear and nonlinear systems,” Automatica, Vol. 79, pp. 340–51, May 2017.
  • C. Y. Jin, K. H. Ryu, S. W. Sung, J. Lee, and I.-B. Lee, “PID auto-tuning using new model reduction method and explicit PID tuning rule for a fractional order plus time delay model,” J. Process Contr., Vol. 24, no. 1, pp. 113–28, Jan. 2014.
  • L. C. Hibbeler, M. M. Chin See, J. Iwasaki, K. E. Swartz, R. J. O’Malley, and B. G. Thomas, “A reduced-order model of mould heat transfer in the continuous casting of steel,” Appl. Math. Modell., Vol. 40, no. 19–20, pp. 8530–51, Oct. 2016.
  • Z.-H. Xiao, and Y.-L. Jiang, “Multi-order Arnoldi-based model order reduction of second-order time-delay systems,” Int. J. Syst. Sci., Vol. 47, no. 12, pp. 2925–34, Oct. 2016.
  • H. F. Vanlandingham, and B. Z. Yang, “Model order reduction using a nonlinear model strategy,” Int. J. Modell. Simulat., Vol. 12, no. 2, pp. 34–8, Sep. 2016.
  • A. Birouche, B. Mourllion, and M. Basset, “Model order-reduction for discrete-time switched linear systems,” Int. J. Syst. Sci., Vol. 43, no. 9, pp. 1753–63, Feb. 2012.
  • G. Vasu, M. Sivakumar, and M Ramalinga Raju, “A novel method for optimal model simplification of large scale linear discrete-time systems,” Int. J. Autom. Contr., Vol. 10, no. 2, pp. 120–41, Jan. 2016.
  • E. J. Davison, “A method for simplifying linear dynamic systems,” IEEE Trans. Autom. Contr., Vol. 11, no. 1, pp. 93–101, Jan. 1966.
  • M. Avoki, “Control of large dynamic system by aggregation,” IEEE Trans. Automat. Contr., Vol. 13, pp. 246–56, Jun. 1968.
  • R. Nagarajan, “Optimum reduction of large dynamic system,” Int. J. Contr., Vol. 14, no. 6, pp. 1169–74, Apr. 1971.
  • T. C. Chen, and C. Y. Chang, “Reduction of transfer functions by the stability-equation method,” J. Franklin Inst., Vol. 308, no. 4, pp. 389–04, Oct. 1979.
  • B. C. Moore, “Principal component analysis in control system: controllability, observability, and model reduction,” IEEE Trans. Autom. Contr., Vol. 26, no. 1, pp. 17–36, Feb. 1981.
  • Y. Shamash, “Linear system reduction using Padé approximation to allow retention of dominant modes,” Int. J. Contr., Vol. 21, no. 2, pp. 257–72, Mar. 1975.
  • O. Ismail, B. Bandyopadhyay, and R. Gorez, “Discrete interval system reduction using Padé approximation to allow retention of dominant poles,” IEEE Trans. Circ. Syst. I Fund. Theory Appl., Vol. 44, no. 11, pp. 1075–78, Nov. 1997.
  • O. Ismail, and B. Bandyopadhyay, “Interval system reduction using Padé approximation to allow retention of dominant poles,” Int. J. Modell. Simul., Vol. 18, no. 4, 341–45, Sep. 1998.
  • M. Saadvandi, K. Meerbergen, and E. Jarlebring, “On dominant poles and model reduction of second order time-delay systems,” Appl. Numer. Math., Vol. 62, pp. 21–34, Jan. 2012.
  • M. Saadvandi, K. Meerbergen, and W. Desmet, “Parametric dominant pole algorithm for parametric model order reduction,” J. Comput. Appl. Math., Vol. 259, pp. 259–80, Mar. 2014.
  • L. Pernebo, and L. M. Silverman, “Model reduction via balanced state space representations,” IEEE Trans. Autom. Contr., Vol. 27, no. 2, pp. 382–87, Apr. 1982.
  • U. M. Al Saggaf, “Approximate balanced-truncation model reduction for large scale systems,” Int. J. Contr., Vol. 56, no. 6, pp. 1263–73, Dec. 1992.
  • V. Sreeram, S. Sahlan, W. Mariam, W. Muda, T. Fernando, and H. H. C. Iu, “A generalised partial-fraction-expansion based frequency weighted balanced truncation technique,” Int. J. Contr., Vol. 86, no. 5, pp. 833–43, Mar. 2013.
  • H. Sandberg, and A. Rantzer, “Balanced truncation of linear time-varying systems,” IEEE Trans. Autom. Contr., Vol. 49, Vol. 2, pp. 217–29, Feb. 2004.
  • H. S. Abbas, and H. Werner, “Frequency-weighted discrete-time LPV model reduction using structurally balanced truncation,” IEEE Trans. Contr. Syst. Technol., Vol. 19, no. 1, pp. 140–47, Jan. 2011.
  • P. Wittmuess, C. Tarin, A. Keck, E. Arnold, and O. Sawodny, “Parametric model order reduction via balanced truncation with Taylor series representation,” IEEE Trans. Autom. Contr., Vol. 61, no. 11, pp. 3438–51, Nov. 2016.
  • B. Besselink, N. Van De Wouw, J. M. A. Scherpen, H. Nijmeijer, “Model reduction for nonlinear systems by incremental balanced truncation,” IEEE Trans. Autom. Contr., Vol. 59, no. 10, pp. 2739–53, Oct. 2014.
  • J. Qi, J. Wang, H. Liu, and A. D. Dimitrovski, “Nonlinear model reduction in power systems by balancing of empirical controllability and observability covariances,” IEEE Trans. Power Syst., Vol. 32, no. 1, pp. 114–26, Jan. 2017.
  • K. Perev, and B. Shafai, “Balanced realization and model reduction of singular systems,” Int. J. Syst. Sci., Vol. 25, no. 6, pp. 1039–52, May 1994.
  • G. Kotsalis, and A. Rantzer, “Balanced truncation for discrete time Markov jump linear systems,” IEEE Trans. Autom. Contr., Vol. 55, no. 11, pp. 2606–11, Nov. 2010.
  • M. Farhood, and C. L. Beck, “On the balanced truncation and coprime factors reduction of Markovian jump linear systems,” Syst. Contr. Lett., Vol. 96, pp. 96–106, Feb. 2014.
  • Y. Zhu, L. Zhang, V. Sreeram, W. Shammakh, and B. Ahmad, “Resilient model approximation for Markov jump time-delay systems via reduced model with hierarchical Markov chains,” Int. J. Syst. Sci., Vol. 47, no. 14, pp. 3496–07, Oct. 2015.
  • M. J. Bosley, H. W. Kropholler, F. P. Lees, and R. M. Neale, “The determination of transfer function from state variable models,” Automatica, Vol. 8, no. 2, pp. 213–16, Mar. 1972.
  • V. Zakian, “Simplification of linear time invariant systems by moment approximations,” Int. J. Contr., Vol. 18, pp. 455–60, Apr. 1973.
  • Y. Shamash, “Stable reduced-order models using Padé-type approximations,” IEEE Trans. Automat. Contr., Vol. 19, pp. 615–16, Oct. 1974.
  • T. N. Lucas, “Factor division: a useful algorithm in model reduction,” IEE Proc. D – Contr. Theor. Appl., Vol. 130, no. 6, pp. 362–64, Nov. 1983.
  • E. J. Grimme, “Krylov projection methods for model reduction,” Ph.D. Thesis, ECE Dept., University of Illinois, Urbana-Champaign, 1997.
  • N. Ashoor, and V. Singh, “A note on lower order modeling,” IEEE Trans. Autom. Contr., Vol. 27, no. 5, pp. 1124–26, Oct. 1982.
  • F.J. Alexandro Jr., “Stable partial Padé approximations for reduced-order transfer functions,” IEEE Trans. Automat. Contr., Vol. 29 pp. 159–62, Feb. 1984.
  • L. Fortuna, G. Nunnari, and A. Gallo, Model Order Reduction Techniques with Applications in Electrical Engineering. London: Springer, 1992.
  • M. Jamshidi, Large-Scale Systems: Modeling, Control, and Fuzzy Logic. Upper Saddle River, NJ: Prentice Hall, 1996, pp. 72–4.
  • Y. Shamash, “Model reduction using the Routh stability criterion and the Padé approximation technique,” Int. J. Contr., Vol. 21, no. 3, pp. 475–84, Mar. 1975.
  • J. Pal, “Stable reduced-order Padé approximants using the Routh-Hurwitz array,” Electron. Lett., Vol. 15, no. 8, pp. 225–26, Apr. 1979.
  • T. C. Chen, C. Y. Chang, and K. W. Han, “Stable reduced-order Padé approximants using stability-equation method,” Electron. Lett., Vol. 16, no. 9, pp. 345–46, Apr. 1980.
  • T. C. Chen, C. Y. Chang, and K. W. Han, “Model reduction using the stability-equation method and the Padé approximation method,” J. Franklin Inst., Vol. 309, no. 6, pp. 473–90, Jun. 1980.
  • B.-W.u Wan, “Linear model reduction using Mihailov criterion and Padé approximation technique,” Int. J. Contr., Vol. 33, no. 6, pp. 1073–89, Apr. 1981.
  • T. N. Lucas, “New results on relationships between multipoint Padé approximation and stability preserving methods in model reduction,” Int. J. Syst. Sci., Vol. 20, no. 7, pp. 1267–74, Feb. 1989.
  • R. Prasad, “Padé type model order reduction for multivariable systems using Routh approximation,” Comput. Electr. Eng., Vol. 26, no. 6, pp. 445–59, Aug. 2000.
  • M. F. Hutton, and B. Friedland, “Routh approximations for reducing order of linear, time-invariant systems,” IEEE Trans. Autom. Contr., Vol. 20, no. 3, pp. 329–37, Jun. 1975.
  • P. V. Kokotovik, R. E. O’Malley, and P. Sannuti, “Singular perturbation and order reduction in control theory-an overview,” Automatica, Vol. 12, pp. 123–32, Mar. 1976.
  • V. Krishnamurthy, and V. Seshadri, “Model reduction using the Routh stability criterion,” IEEE Trans. Autom. Contr., Vol. 23, no. 3, pp. 729–31, Aug. 1978.
  • Y. Shamash, “Truncation method of reduction: A viable alternative,” Electron. Lett., Vol. 17, no. 2, pp. 97–8, Jan. 1981.
  • P. Gutman, C. Mannerfelt, and P. Molander, “Contributions to the model reduction problem,” IEEE Trans. Autom. Contr., Vol. 27, no. 2, pp. 454–55, Apr. 1982.
  • K. Kodra, N. Zhong, and Z. Gajic, “Model order reduction of an islanded micro grid using singular perturbations,” in American Control Conference (ACC), Boston, MA, Jul. 2016, pp. 3650–55.
  • A. Sikander, and R. Prasad, “Reduced order modelling based control of two wheeled mobile robot,” J. Intell. Manuf., Feb. 2017. DOI:10.1007/s10845-017-1309-3
  • S. Timme, K. J. Badcock, and A. Da Ronch, “Gust analysis using computational fluid dynamics derived reduced order models,” J. Fluids Struct., Vol. 71, pp. 116–25, May 2017.
  • S. S. Sazhin, E. Shchepakina, and V. Sobolev, “Order reduction in models of spray ignition and combustion,” Combust. Flame, Vol. 187, pp. 122–28, Jan. 2018.
  • S. Ghosh, and N. Senroy, “Balanced truncation approach to power system model order reduction,” Elec. Power Compon. Syst., Vol. 41, no. 8, pp. 747–64, Apr. 2013.
  • D. Kumar, and S. K. Nagar, “Reducing power system models by Hankel Norm approximation technique,” Int. J. Modell. Simul., Vol. 33, no. 3, pp. 139–43, Jul. 2013.
  • N. Singh, R. Prasad, and H. O. Gupta, “Reduction of power system model using balanced realization, routh and padé approximation methods,” Int. J. Modell. Simul., Vol. 28, no. 1, pp. 57–63, Jul. 2008.
  • A. Ramirez, et al., “Application of balanced realizations for model-order reduction of dynamic power system equivalents,” IEEE Trans. Power Delivery, Vol. 31, no. 5, pp. 2304–12, Oct. 2016.
  • F. Donida, F. Casella, and G. Ferretti, “Model order reduction for object-oriented models: a control systems perspective,” Math. Comput. Modell. Dyn. Syst., Vol. 16, no. 3, 269–84, Oct. 2010.
  • H. Jardón-Kojakhmetov, and J. M. A. Scherpen, “Model order reduction and composite control for a class of slow-fast systems around a non-hyperbolic point,” IEEE Contr. Syst. Lett., Vol. 1, no. 1, pp. 68–73, Jul. 2017.
  • W. Chen, and X. Li, “Model predictive control based on reduced order models applied to belt conveyor system,” ISA Trans., Vol. 65, pp. 350–60, Nov. 2016.
  • S. Riverso, S. Mancini, F. Sarzo, and G. Ferrari-Trecate, “Model predictive controllers for reduction of mechanical fatigue in wind farms,” IEEE Trans. Contr. Syst. Technol., Vol. 25, no. 2, pp. 535–49, Mar. 2017.
  • M. Lal, and R. Mitra, “Simplification of large system dynamics using a moment evaluation algorithm,” IEEE Trans. Autom. Contr., Vol. 19, pp. 602–03, Oct. 1974.
  • G. Parmar, S. Mukherjee, and R. Prasad, “System reduction using factor division algorithm and Eigen spectrum analysis,” Appl. Math. Modell., Vol. 31, pp. 2542–52, Nov. 2007.
  • A. Sikander, and R. Prasad, “Linear time-invariant system reduction using a mixed methods approach,” Appl. Math. Model., Vol. 39, pp. 4848–58, Aug. 2015.
  • A. Narwal, and R. Prasad, “A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation,” IETE J. Res., Vol. 62, no. 2, pp. 154–63, Aug. 2015.
  • W. Tan, “Unified tuning of PID load frequency controller for power systems via IMC,” IEEE Trans. Power Syst., Vol. 25, no. 1, pp. 341–50, Feb. 2010.
  • A. Lepschy, and U. Viaro, “An improvement in the Routh-Padé approximation techniques,” Int. J. Contr., Vol. 36, no. 4, pp. 643–61, Mar. 1982.
  • N. Singh, R. Prasad, and H. O. Gupta, “Reduction of Linear Dynamic Systems using Routh Hurwitz Array and Factor Division Method,” IETE J. Educ., Vol. 47, no. 1, pp. 25–9, Mar. 2006.
  • D. Kranthi Kumar, S.K. Nagar, and J.P. Tiwari, “A new algorithm for model order reduction of interval systems,” Bonfring Int. J. Data Min., Vol. 3, no. 1, pp. 6–11, Mar. 2013.
  • A. K. Prajapati, and R. Prasad, “Order Reduction of Linear Dynamic Systems by Improved Routh approximation Method,” IETE J. Res., Apr. 2018. doi.org/10.1080/03772063.2018.1452645
  • K. V. Fernando, and H. Nicholson, “Singular perturbation model reduction in frequency domain,” IEEE Trans. Autom. Contr., Vol. 27, no. 4, pp. 969–70, Aug. 1982.
  • S. Saxena, and Y. V. Hote, “Load frequency control in power systems via internal model control scheme and model order reduction,” IEEE Trans. Autom. Contr., Vol. 28, no. 3, pp. 2749–57, Aug. 2013.
  • C. B. Vishwakarma, and R. Prasad, “Clustering Method for Reducing Order of Linear System using Padé Approximation,” IETE J. Res., Vol. 54, no. 5, pp. 326–30, Sep. 2008.
  • C. B. Vishwakarma, “Order reduction using modified pole clustering and Padé approximations,” Int. J. Elec. Comput. Ener. Electron. Commun. Eng., Vol. 5, no. 8, pp. 998–1002, Nov. 2011.
  • A. Sikander, and R. Prasad, “A new technique for reduced-order modelling of linear time-invariant system,” IETE J. Res., Vol. 63, no. 3, pp. 316–24, Jan. 2017.
  • V. Kumar, and J. P. Tiwari, “Order reducing of linear system using clustering method factor division algorithm,” Int. J. Appl. Inform. Syst., Vol. 3, no. 5, pp. 1–4, Jul. 2012.
  • J. Singh, C. B. Vishwakarma, and K. Chatterjee, “Biased reduction method by combining improved modified pole clustering and improved Padé approximations,” Appl. Math. Modell., Vol. 40, pp. 1418–26, Jan. 2016.
  • A. K. Sinha, and J. Pal, “Simulation based reduced order modelling using a clustering technique,” Comput. Elec. Eng., Vol. 16, no. 3, pp. 159–69, May 1990.
  • Y. Bistritz, and U. Shaked, “Minimal Padé model reduction for multivariable systems,” J. Dyn. Syst. Meas. Contr., Vol. 106, no. 4, pp. 293–99, Dec. 1984.
  • A. Narwal, and R. Prasad, “Optimization of LTI systems using modified clustering algorithm,” IETE Tech. Rev., Vol. 34, no. 2, pp. 201–13, Apr. 2016.
  • G. Parmar, R. Prasad, and S. Mukherjee, “Order reduction of linear dynamic systems using stability equation method and GA,” Int. J. Elec. Comput. Eng., Vol.1, no. 2, pp. 236–42, Jan. 2007.
  • G. Parmar, S. Mukherjee, and R. Prasad, System reduction using factor division algorithm and eigen spectrum analysis, Appl. Math. Model. vol. 31, no. 11, pp. 2542–52, Nov. 2007.
  • C. B. Vishwakarma, and R. Prasad, “MIMO system reduction using modified pole clustering and genetic algorithm,” Modell. Simul. Eng., Vol. 2009, no. 1, pp. 1–5, Jan. 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.