1,494
Views
29
CrossRef citations to date
0
Altmetric
Review Articles

Path Planning for Multiple Targets Interception by the Swarm of UAVs based on Swarm Intelligence Algorithms: A Review

, ORCID Icon, ORCID Icon &

REFERENCES

  • G. Şerban, I. Rus, D. Vele, P. Breţcan, M. Alexe, and D. Petrea, “Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: Case study in the north-east of Apuseni Mountains, Transylvania,” Nat. Hazards, Vol. 82, no. 3, pp. 1817–32, 2016.
  • D. Kingston, S. Rasmussen, and L. Humphrey, “Automated UAV tasks for search and surveillance,” in Control Applications (CCA), IEEE Conference. 2016. IEEE.
  • N. Ernest, A. Sathyan, and K. Cohen, “Genetic fuzzy single and collaborative tasking for UAV operations,” in Multi-Rotor Platform-based UAV Systems, 2020, Elsevier. pp. 217–42.
  • M. M. Trujillo, M. Darrah, K. Speransky, B. DeRoos, and M. Wathen, “Optimized flight path for 3D mapping of an area with structures using a multirotor in Unmanned Aircraft Systems (ICUAS),” in International Conference. 2016. IEEE.
  • E. Zamora, and W. Yu, “Recent advances on simultaneous localization and mapping for mobile robots,” IETE Tech. Rev., Vol. 30, no. 6, pp. 490–6, 2013.
  • G. S. Avellar, G. A. Pereira, L. C. Pimenta, and P. Iscold, “Multi-UAV routing for area coverage and remote sensing with minimum time,” Sensors, Vol. 15, no. 11, pp. 27783–803, 2015.
  • Available: https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
  • Available: https://www.thenational.ae/business/japan-uavs-take-the-back-breaking-labour-out-of-farming-1.221693
  • Available: https://www.casa.gov.au/standard-page/flying-drones-australia
  • A. Bürkle, F. Segor, and M. Kollmann, “Towards autonomous micro UAV swarms,” J. Intell. Robot. Syst., Vol. 61, no. 4, pp. 339–53, 2011.
  • P. O. Pettersson, and P. Doherty, “Probabilistic roadmap based path planning for an autonomous unmanned helicopter,” J. Intell. Fuzzy Syst., Vol. 17, no. 4, pp. 395–405, 2006.
  • L. De Filippis, G. Guglieri, and F. Quagliotti, “Path planning strategies for UAVS in 3D environments,” J. Intell. Robot. Syst., Vol. 65, no. 1, pp. 247–64, 2012.
  • O. Cetin, I. Zagli, and G. Yilmaz, “Establishing obstacle and collision free communication relay for UAVs with artificial potential fields,” J. Intell. Robot. Syst., Vol. 69, no. 1, pp. 1–12, 2013.
  • S. Hacohen, S. Shoval, and N. Shvalb, “"Applying probability navigation function in dynamic uncertain environments,” Rob. Auton. Syst., Vol. 87, pp. 237–46, 2017.
  • K. S. Camilus, and V. Govindan, “A review on graph based segmentation,” Int. J. image Graph. Signal Process., Vol. 4, no. 5, pp. 1–13, 2012.
  • S. M. Persson, and I. Sharf, “Sampling-based A* algorithm for robot path-planning,” Int. J. Rob. Res., Vol. 33, no. 13, pp. 1683–1708, 2014.
  • M. Khosravi, and A. G. Aghdam, “Cooperative receding horizon control for multi-target interception in uncertain environments,” in Decision and Control (CDC), 53rd Annual Conference, 2014. IEEE.
  • R. W. Beard, T. W. McLain, M. A. Goodrich, and E. P. Anderson, “Coordinated target assignment and intercept for unmanned air vehicles,” IEEE Trans. Robot. Autom., Vol. 18, no. 6, pp. 911–22, 2012.
  • L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, “Survey of robot 3d path planning algorithms,” J. Control Sci. Eng., Vol. 2016, pp. 5, 2016.
  • P. Sujit, S. Saripalli, and J. B. Sousa, “Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless,” IEEE Control Systems, Vol. 34, no. 1, pp. 42–59, 2014.
  • L. Yang, J. Qi, J. Xiao, and X. Yong, “A literature review of UAV 3D path planning,” in Intelligent Control and Automation (WCICA), 11th World Congress, 2014. IEEE.
  • Y. Zhao, Z. Zheng, and Y. Liu, “Survey on computational-intelligence-based UAV path planning,” Knowl. Based. Syst., Vol. 158, pp. 54–64, 2018.
  • T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr, “Survey on coverage path planning with unmanned aerial vehicles,” Drones, Vol. 3, no. 1, p. 4, 2019.
  • S. Aggarwal, and N. Kumar, “Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges,” Comput. Commun., Vol. 149, pp. 270–99, 2020.
  • D. Li, P. Wang, and L. Du, “Path planning technologies for autonomous underwater vehicles – A review,” IEEE. Access., Vol. 7, pp. 9745–68, 2018.
  • H. Yu, K. Meier, M. Argyle, and R. W. Beard, “Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles,” IEEE/ASME Trans. Mechatron., Vol. 20, no. 2, pp. 541–52, 2015.
  • J. Ren, W. Du, and F. Du, “A UAV 3-D space dynamic path planning in complex battlefield environment in information Science and Technology (ICIST),” in International Conference. IEEE, 2013.
  • J. Hu, L. Xie, K. Y. Lum, and J. Xu, “Multiagent information fusion and cooperative control in target search,” IEEE Trans. Control Syst. Technol., Vol. 21, no. 4, pp. 1223–35, 2013.
  • H. H. Triharminto, A. S. Prabuwono, T. B. Adji, and N. A. Setiawan, “Adaptive dynamic path planning algorithm for interception of a moving target,” International J. Mob. Comput. Multimed. Commun. (IJMCMC), Vol. 5, no. 3, pp. 19–33, 2013.
  • F. Andert, and F. Adolf, “Online world modeling and path planning for an unmanned helicopter,” Auton. Robots., Vol. 27, no. 3, pp. 147–64, 2009.
  • M. Sanfourche, J. Delaune, G. Le Besnerais, H. De Plinval, J. Israel, P. Cornic, A. Treil, Y. Watanabe, and A. Plyer, “Perception for UAV: Vision-based navigation and environment modeling,” AerospaceLab, Vol. 4, pp. 1–19, 2012.
  • Y. V. Pehlivanoglu, “A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV,” Aerosp. Sci. Technol., Vol. 6, no. 1, pp. 47–55, 2012.
  • X. Zhao, Y. Zhang, and B. Zhao, “Robust path planning for avoiding obstacles using time-environment dynamic map,” Meas. Control, Vol. 53, no. 2, pp. 214–21, 2020.
  • S. Arora, S. Choudhury, and S. Scherer. “ Hindsight is only 50/50: Unsuitability of MDP based Approximate POMDP Solvers for Multi-resolution Information Gathering”. arXiv preprint arXiv:1804.02573, 2018.
  • T. Gorecki, H. Piet-Lahanier, J. Marzat, and M. Balesdent, “Cooperative guidance of UAVs for area exploration with final target allocation,” IFAC Proceedings, Vol. 46, no. 19, pp. 260–5, 2013.
  • J. Cruz, G. Chen, D. Li, and X. Wang, “Particle swarm optimization for resource allocation in UAV cooperative control,” in AIAA guidance, Navigation, and Control Conference and Exhibit. 2004. Providence.
  • P. Sujit, A. Sinha, and D. Ghose, “Multiple UAV task allocation using negotiation,” in Proceedings of the fifth International Joint Conference on Autonomous Agents and Multiagent Systems, 2006. ACM.
  • B. Liu, Z. Qin, R. Wang, Y. B. Gao, and L. P. Shao, “A hybrid heuristic ant colony system for coordinated multi-target assignment,” Inf. Technol. J., Vol. 8, no. 2, pp. 156–64, 2009.
  • Y. Zhang, W. Feng, G. Shi, F. Jiang, M. Chowdhury, and S. H. Ling, “UAV swarm mission planning in dynamic environment using consensus-based bundle algorithm,” Sensors, Vol. 20, no. 8, p. 2307, 2020.
  • Y. Chen, D. Yang, and J. Yu, “Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified Two-part wolf pack search algorithm,” IEEE Trans. Aerosp. Electron. Syst., Vol. 54, no. 6, pp. 2853–72, 2018.
  • G. Wang, Q. Li, and L. Guo, “Multiple UAVs routes planning based on particle swarm optimization algorithm,” in Information Engineering and Electronic Commerce (IEEC), 2nd International Symposium, 2010. IEEE.
  • V. Roberge, M. Tarbouchi, and G. Labonté, “Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning,” IEEE Trans. Ind. Inf., Vol. 9, no. 1, pp. 132–41, 2013.
  • N. Özalp, and O. K. Sahingoz, “Optimal UAV path planning in a 3D threat environment by using parallel evolutionary algorithms,” in Unmanned Aircraft Systems (ICUAS), International Conference, 2013. IEEE.
  • E. Besada-Portas, L. de la Torre, M. Jesus, and B. de Andrés-Toro, “Evolutionary trajectory planner for multiple UAVs in realistic scenarios,” IEEE Trans. Robot., Vol. 26, no. 4, pp. 619–34, 2010.
  • W. Zhu, and H. Duan, “Chaotic predator–prey biogeography-based optimization approach for UCAV path planning,” Aerosp. Sci. Technol., Vol. 32, no. 1, pp. 153–61, 2014.
  • Y. Fu, M. Ding, and C. Zhou, “Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV,” IEEE Trans. Syst., Man, Cybern.-A: Syst. Hum., Vol. 42, no. 2, pp. 511–26, 2012.
  • R. Zhu, D. Sun, and Z. Zhou, “Cooperation strategy of unmanned air vehicles for multitarget interception,” J. Guid. Control Dyn., Vol. 28, no. 5, p. 1068, 2005.
  • T. Y. Sun, C. L. Huo, S. J. Tsai, Y. H. Yu, and C. C. Liu, “Intelligent flight task algorithm for unmanned aerial vehicle,” Expert. Syst. Appl., Vol. 38, no. 8, pp. 10036–48, 2011.
  • T. Y. Sun, C. L. Huo, S. J. Tsai, and C. C. Liu, “Optimal UAV flight path planning using skeletonization and particle swarm optimizer,” in Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress, 2008. IEEE.
  • Y. Liu, X. Zhang, X. Guan, and D. Delahaye, “Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization,” Aerosp. Sci. Technol., Vol. 58, pp. 92–102, 2016.
  • L. Freda, and G. Oriolo, “Vision-based interception of a moving target with a nonholonomic mobile robot,” Rob. Auton. Syst., Vol. 55, no. 6, pp. 419–32, 2007.
  • A. Popescu, and D. Popescu. “ Moving target interception for a walking robot by fuzzy observer and fuzzy controller”. Climbing and Walking Robots: From Biology to Industrial Applications (CLAWAR 2001), p. 363, 2001.
  • X. Yi, A. Zhu, S. X. Yang, and C. Luo, “A bio-inspired approach to task assignment of swarm robots in 3-D dynamic environments,” IEEE Transactions on Cybernetics 2016.
  • L. Zhong, Q. Luo, D. Wen, S. D. Qiao, J. M. Shi, and W. M. Zhang, “A task assignment algorithm for multiple aerial vehicles to attack targets with dynamic values,” IEEE Trans. Intell. Transp. Syst., Vol. 14, no. 1, pp. 236–48, 2013.
  • J. Ni, and S. X. Yang, “Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments,” IEEE Trans. Neural Netw., Vol. 22, no. 12, pp. 2062–77, 2011.
  • X. Fu, J. LI, and X. Gao, “Target allocation in multi-UAV cooperative search with communication constraints,” Acta Aeronautica et Astronautica Sinica, Vol. 35, no. 5, pp. 1347–56, 2014.
  • M. Khosravi, and A. G. Aghdam, “Stability analysis of dynamic decision-making for vehicle heading control,” in American Control Conference (ACC), 2015 IEEE.
  • A. Pierson, Z. Wang, and M. Schwager, “Intercepting rogue robots: An algorithm for capturing multiple evaders with multiple pursuers,” IEEE Robot. Autom. Lett., Vol. 2, no. 2, pp. 530–7, 2017.
  • Y. Lan, “Multiple mobile robot cooperative target intercept with local coordination,” in Control and Decision Conference (CCDC), 24th Chinese, 2012. IEEE.
  • P. K. Sheridan, P. Kosicki, C. Liu, G. Nejat, and B. Benhabib, “On-line task allocation for the robotic interception of multiple targets in dynamic settings,” in Advanced Intelligent Mechatronics (AIM), IEEE/ASME International Conference, 2010. IEEE.
  • X. Fu, H. Feng, and X. Gao, “UAV mobile ground target pursuit algorithm,” J. Intell. Robot. Syst., Vol. 68, no. 3, pp. 1–13, 2012.
  • S. Manzoor, S. Lee, and Y. Choi, “A coordinated navigation strategy for multi-robots to capture a target moving with Unknown speed,” J. Intell. Robot. Syst., Vol. 87, no. 3, pp. 1–15, 2016.
  • M. Kothari, R. Sharma, I. Postlethwaite, R. W. Beard, and D. Pack, “Cooperative target-capturing with incomplete target information,” J. Intell. Robot. Syst., Vol. 72, no. 3, p. 373, 2013.
  • A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. Autom. Control, Vol. 48, no. 6, pp. 988–1001, 2003.
  • Z. Ming, Z. Lingling, S. Xiaohong, M. Peijun, and Z. Yanhang, “Improved discrete mapping differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model,” Int. J. Mach. Learn. Cybern., Vol. 8, no. 3, pp. 765–780, 2017.
  • R. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory. in micro Machine and human science, 1995,” in MHS’95., Proceedings of the Sixth International Symposium, Italy, 1995.
  • J. Kennedy, and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in Systems, Man, and Cybernetics, Computational Cybernetics and Simulation., IEEE International Conference, 1997. IEEE.
  • Y. Shi, “Particle swarm optimization: developments, applications and resources,” in Evolutionary computation, Proceedings of the Congress, 2001. IEEE.
  • Y. Shi, and R. Eberhart, “A modified particle swarm optimizer,” in Evolutionary Computation proceedings, IEEE World Congress on Computational Intelligence., The IEEE International Conference, 1998. IEEE.
  • G. Oh, Y. Kim, J. Ahn, and H. L. Choi, “PSO-based optimal task allocation for cooperative timing missions,” IFAC-PapersOnLine, Vol. 49, no. 17, pp. 314–9, 2016.
  • T. Flanagan, C. Thornton, and J. Denzinger, “Testing harbour patrol and interception policies using particle-swarm-based learning of cooperative behavior,” in Computational Intelligence for Security and Defense Applications, CISDA. IEEE Symposium, 2009. IEEE.
  • X. Xing, D. Fan, Y. Zhao, and L. Huang, “PSO-based multi UCAVs cooperative attack tasks allocation and its simulation,” in Natural computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 12th International Conference, 2016. IEEE.
  • S. Shao, Y. Peng, C. He, and Y. Du, “Efficient path planning for UAV formation via comprehensively improved particle swarm optimization,” ISA Trans., Vol. 97, pp. 415–30, 2020.
  • S. Girija, and A. Joshi, “Fast hybrid PSO-APF algorithm for path planning in obstacle rich environment,” IFAC-PapersOnLine, Vol. 52, no. 29, pp. 25–30, 2019.
  • M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artif. Life, Vol. 5, no. 2, pp. 137–72, 1999.
  • D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, New ideas in optimization. London: McGraw-Hill Ltd., 1999.
  • H. B. Duan, “Ant colony algorithms: Theory and applications,” Chin. Sci., Vol. 31, no. 4, pp. 167–178, 2005.
  • T. Zaza, and A. Richards, “Ant colony optimization for routing and tasking problems for teams of UAVs,” in Control (CONTROL), UKACC International Conference, 2014. IEEE.
  • C. Gao, Z. Zhen, and H. Gong, “A self-organized search and attack algorithm for multiple unmanned aerial vehicles,” Aerosp. Sci. Technol., Vol. 54, pp. 229–40, 2016.
  • H. Huang, Y. Wang, H. Zhou, K. Dong, and H. Liu, “Multi-UCAV cooperative autonomous attack path planning method under uncertain environment,” in Advanced information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2016. IEEE.
  • Z. Zhen, C. Yan, W. Liangdong, and H. Bing, “An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment,” Aerosp. Sci. Technol., Vol. 100, pp. 105826, 2020.
  • Z. Ma, H. Gong, and X. Wang, “An UAV path planning method in Complex Mountainous Area based on a new improved Ant Colony Algorithm,” in 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), 2019. IEEE.
  • X. Yang. “ Nature-inspired metaheuristic algorithms Firefly algorithm”, pp. 79–90, 2011.
  • X. S. Yang, “"Firefly algorithm, stochastic test functions and design optimisation,” Int. J. Bio-Inspired Comput., Vol. 2, no. 2, pp. 78–84, 2010.
  • C. Liu, Z. Gao, and W. Zhao, “A new path planning method based on firefly algorithm,” in Computational Sciences and Optimization (CSO), Fifth International Joint Conference, 2012. IEEE.
  • G. Wang, L. Guo, H. Duan, L. Liu, and H. Wang, “A modified firefly algorithm for UCAV path planning,” Int. J. Hybrid Inf. Technol., Vol. 5, no. 3, pp. 123–44, 2012.
  • X. S. Yang. “A new metaheuristic bat-inspired algorithm”. Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74.
  • X. S. Yang, and X. He, “Bat algorithm: literature review and applications,” Int. J. Bio-Inspired Comput., Vol. 5, no. 3, pp. 141–9, 2013.
  • J. Guo, Y. Gao, and G. Cui, “The path planning for mobile robot based on bat algorithm,” Int. J. Autom. Control, Vol. 9, no. 1, pp. 50–60, 2015.
  • G. Wang, L. Guo, H. Duan, L. Liu, and H. Wang, “A bat algorithm with mutation for UCAV path planning,” Scientific World J., Vol. 2012, pp. 1–16, 2012.
  • K. Li, Y. Han, F. Ge, W. Xu, and L. Liu, “Tracking a dynamic invading target by UAV in oilfield inspection via an improved bat algorithm,” Appl. Soft. Comput., Vol. 90, p. 106150, 2020.
  • D. Karaboga. “An idea based on honey bee swarm for numerical optimization”, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • D. Karaboga, “Artificial bee colony algorithm,” Scholarpedia, Vol. 5, no. 3, pp. 6915, 2010.
  • B. Li, L. Gong, and C. Zhao, “Unmanned combat aerial vehicles path planning using a novel probability density model based on artificial bee colony algorithm,” in Intelligent Control and Information Processing (ICICIP), Fourth International Conference, 2013. IEEE.
  • T. S. Pan, T. K. Dao, and J. S. Pan, “An unmanned aerial vehicle optimal route planning based on compact artificial Bee colony,” in Advances in Intelligent Information Hiding and Multimedia Signal Processing: Proceeding of the twelfth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2016, Kaohsiung, Taiwan, Vol. 2, 2017, pp. 21–3.
  • B. Li, L.-G. Gong, and W.-L. Yang, “An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning,” Scientific World J., Vol. 2014, pp. 1–11, 2014.
  • K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Syst., Vol. 22, no. 3, pp. 52–67, 2002.
  • S. Das, A. Biswas, S. Dasgupta, and A. Abraham, “Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and applications,” Found. Comput. Intell., Vol. 3, pp. 23–55, 2009.
  • S. J. Yang, S. W. Wang, J. Tao, P. Wen, and W. Zhou, “Multi-ucav cooperative task allocation in dynamic environment,” Electron. Opt. Cont., Vol. 19, no. 7, pp. 32–6, 2012.
  • B. Yang, Y. Ding, Y. Jin, and K. Hao, “Self-organized swarm robot for target search and trapping inspired by bacterial chemotaxis,” Rob. Auton. Syst., Vol. 72, pp. 83–92, 2015.
  • Y. Long, Z. Zuo, Y. Su, J. Li, and H. Zhang, “An A*-based bacterial foraging optimisation algorithm for global path planning of unmanned surface vehicles,” J. Navig., Vol. 0, pp. 1–16, 2020.
  • H. Duan, and P. Qiao, “Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning,” Int. J. Intell. Comput. Cybern., Vol. 7, no. 1, pp. 24–37, 2014.
  • B. Zhang, and H. Duan, “Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment,” IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB), Vol. 14, no. 1, pp. 97–107, 2017.
  • C. Li, and H. Duan, “Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function,” Aerosp. Sci. Technol., Vol. 39, pp. 352–60, 2014.
  • M. S. Dao, F. G. De Natale, and A. Massa, “Edge potential functions (EPF) and genetic algorithms (GA) for edge-based matching of visual objects,” IEEE Trans. Multimed., Vol. 9, no. 1, pp. 120–35, 2007.
  • R. Hao, D. Luo, and H. Duan, “Multiple UAVs mission assignment based on modified pigeon-inspired optimization algorithm,” in Guidance, Navigation and Control Conference (CGNCC), 2014. IEEE.
  • B. H. Wang, D. B. Wang, and Z. A. Ali, “A Cauchy mutant pigeon-inspired optimization–based multi-unmanned aerial vehicle path planning method,” Meas. Control, Vol. 53, pp. 20–34, 2020.
  • C. Hu, Y. Xia, and J. Zhang, “Adaptive operator quantum-behaved pigeon-inspired optimization algorithm with application to UAV path planning,” Algorithms, Vol. 12, no. 1, p. 3, 2019.
  • K. Krishnanand, and D. Ghose, “Detection of multiple source locations using a glowworm metaphor with applications to collective robotics,” in Swarm intelligence symposium, Proceedings 2005 IEEE.
  • K. N. Krishnanand, P. Amruth, M. H. Guruprasad, S. V. Bidargaddi, and D. Ghose, “Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources,” in Robotics and Automation, ICRA, Proceedings IEEE International Conference on, 2006. IEEE.
  • Z. Tang, and Y. Zhou, “A glowworm swarm optimization algorithm for uninhabited combat air vehicle path planning,” J. Intell. Syst., Vol. 24, no. 1, pp. 69–83, 2015.
  • M. S. Couceiro, P. A. Vargas, R. P. Rocha, and N. M. Ferreira, “Benchmark of swarm robotics distributed techniques in a search task,” Rob. Auton. Syst., Vol. 62, no. 2, pp. 200–13, 2014.
  • X. S. Yang, “Swarm intelligence based algorithms: A critical analysis.” Evol. Intell., Vol. 7, no. 1, pp. 17–28, 2014.
  • L. Bayindir, and E. Şahin, “A review of studies in swarm robotics,” Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 15, no. 2, pp. 115–47, 2007.
  • D. P. Rini, S. M. Shamsuddin, and S. S. Yuhaniz, “Particle swarm optimization: technique, system and challenges,” Int. J. Comput. Appl., Vol. 14, no. 1, pp. 19–26, 2011.
  • L. Guangshun, and S. Hongbo, “Path planning for mobile robot based on particle swarm optimization,” Robot, Vol. 26, no. 3, pp. 222–5, 2008.
  • D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive survey: Artificial bee colony (ABC) algorithm and applications,” Artif. Intell. Rev., Vol. 42, no. 1, pp. 21–57, 2014.
  • Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle swarm optimization algorithm and its applications,” Math. Probl. Eng., Vol. 2015, pp. 1–38, 2015.
  • L. N. De Castro, Fundamentals of natural computing: Basic concepts, algorithms, and applications. Brazil: CRC Press, 2006.
  • G. G. Wang, H. E. Chu, and S. Mirjalili, “Three-dimensional path planning for UCAV using an improved bat algorithm,” Aerosp. Sci. Technol., Vol. 49, pp. 231–8, 2016.
  • C. Zhang, Z. Zhen, D. Wang, and M. Li, “UAV path planning method based on ant colony optimization,” in Control and Decision Conference (CCDC), 2010. IEEE.
  • H. B. Duan, X. Y. Zhang, J. Wu, and G. J. Ma, “Max-min adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments,” J. Bionic Eng., Vol. 6, no. 2, pp. 161–73, 2009.
  • X. S. Yang, and X. He, “Firefly algorithm: Recent advances and applications,” Int. J.arm Intell., Vol. 1, no. 1, pp. 36–50, 2013.
  • B. Zhang, and H. Duan, “Predator-prey pigeon-inspired optimization for UAV three-dimensional path planning,” in International Conference in Swarm Intelligence, 2014. Springer.
  • L. Huang, H. Qu, P. Ji, X. Liu, and Z. Fan, “A novel coordinated path planning method using k-degree smoothing for multi-UAVs,” Appl. Soft. Comput., Vol. 48, pp. 182–92, 2016.
  • N. Palmieri, X. S. Yang, F. De Rango, and S. Marano, “Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption,” Neural Comput. Appl., Vol. 31, no. 1, pp. 1–24, 2017.
  • A. H. Gandomi, X. S. Yang, S. Talatahari, and A. H. Alavi. “Metaheuristic Applications in Structures and Infrastructures: 1”. Metaheuristic Algorithms in Modeling and Optimization 2013: Elsevier Inc. Chapters.
  • P. Sujit, J. George, and R. Beard. “Multiple UAV task allocation using particle swarm optimization”. AIAA Paper, pp. 2008–6837, 2008.
  • J. Pugh, and A. Martinoli, “Inspiring and modeling multi-robot search with particle swarm optimization,” in Swarm Intelligence Symposium, 2007. IEEE.
  • K. Chang, Y. Xia, and K. Huang, “UAV formation control design with obstacle avoidance in dynamic three-dimensional environment,” Springerplus., Vol. 5, no. 1, pp. 1–16, 2016.
  • M. Turduev, M. Kirtay, P. Sousa, V. Gazi, and L. Marques, “Chemical concentration map building through bacterial foraging optimization based search algorithm by mobile robots,” in Systems man and Cybernetics (SMC), IEEE International Conference on, 2010. IEEE.
  • D. Parrott, and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using speciation,” IEEE Trans. Evol. Comput., Vol. 10, no. 4, pp. 440–58, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.