147
Views
13
CrossRef citations to date
0
Altmetric
Research Papers

Influences of the arbuscular mycorrhizal fungus Glomus mosseae on morphophysiological traits and biochemical compounds of common bean (Phaseolus vulgaris) under drought stress

, , &
Pages 121-127 | Received 14 Jun 2015, Accepted 07 Jun 2017, Published online: 10 Nov 2017

References

  • Agarwal S, Pandey V. 2003. Stimulation of stress-related antioxidant enzymes in combating oxidative stress in Cassia seed. Indian Journal of Plant Physiology 8: 264–269.
  • Ahmed S, Sakuratani T. 2002. Alterations in photosynthesis and some antioxidant enzymatic activity of Mung bean subjected to water logging. Plant Science 163: 117–123. doi: 10.1016/S0168-9452(02)00080-8
  • Aroca R, Porcel R, Ruiz-Lozano JM. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist 173: 808–816. doi: 10.1111/j.1469-8137.2006.01961.x
  • Asrar AA, Abdel-Fattah GM, Elhindi KM. 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50: 305–316. doi: 10.1007/s11099-012-0024-8
  • Augé RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 34–42.
  • Augé RM, Saxton AM, Moore JL, Cho K. 2004. Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Canadian Journal of Botany 82: 503–514. doi: 10.1139/b04-020
  • Bates LS, Waldern RP, Teare JD. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205–207. doi: 10.1007/BF00018060
  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. 2013. Phenotyping common beans for adaptation to drought. Frontiers in Physiology 4: 35. doi: 10.3389/fphys.2013.00035
  • Bian S, Jiang Y. 2008. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae 120: 264–270. doi: 10.1016/j.scienta.2008.10.014
  • Borowicz VA. 2010. The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia 53: 265–270. doi: 10.1016/j.pedobi.2010.01.001
  • Boyer JS. 1985. Water transport. Annual Review of Plant Physiology 36: 473–516. doi: 10.1146/annurev.pp.36.060185.002353
  • Bradford, MM. 1976. A rapid and sensitive method for the quantification of quantities of protein utilization the principal of protein dye binding. Analytical Biochemistry 72: 248–254. doi: 10.1016/0003-2697(76)90527-3
  • Chapman HD, Pratt PF. 1982. Methods of analysis for soil, plants, and waters. Riverside: Division of Agricultural Sciences, University of California.
  • Cozzolino V, DiMeo V, Piccolo A. 2013. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploring 129: 40–44. doi: 10.1016/j.gexplo.2013.02.006
  • Demmig-Adams B. 1990. Carotenoids and photoprotection in plants: a role for the xanthophylls and zeaxanthin. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1020: 1–24. doi: 10.1016/0005-2728(90)90088-L
  • Estill K, Delaney RR, Smith WK, Ditterline RL. 1991. Water relations and productivity of alfalfa leaf chlorophyll variants. Crop Science 31: 1229–1233. doi: 10.2135/cropsci1991.0011183X003100050030x
  • Fageria NK, Santos AB. 2008. Yield physiology of dry bean. Journal of Plant Nutrition 31: 983–1004. doi: 10.1080/01904160802096815
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology 59: 309–314. doi: 10.1104/pp.59.2.309
  • Gillham DJ, Dodge AD. 1987. Chloroplast superoxide and hydrogen peroxide scavenging systems from pea leaves: seasonal variations. Plant Science 50: 105–109. doi: 10.1016/0168-9452(87)90145-2
  • Habibzadeh Y. 2014. Response of mung bean plants to arbuscular mycorrhiza and phosphorus in drought stress. International Journal of Innovation and Applied Studies 6: 14–20.
  • Hoyle MC. 1972. Indole acetic acid oxidase: a dual catalytic enzyme? Plant Physiology 50: 15–18. doi: 10.1104/pp.50.1.15
  • Ibijbijen J, Urquiaga S, Ismaili M, Alves BJR, Boddey RM. 1996. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytologist 134: 353–360. doi: 10.1111/j.1469-8137.1996.tb04640.x
  • Ibrahim MA, Campbell WF, Rupp LA, Allen EB. 1990. Effects of mycorrhizae on sorghum growth, photosynthesis, and stomatal conductance under drought conditions. Arid Soil Research and Rehabilitation 4: 99–107. doi: 10.1080/15324989009381237
  • Jang J, Song KB. 2004. Purification of polyphenoloxidase from the purple-fleshed potato (Solanum tuberosum Jasim) and its secondary structure. Journal of Food Science 69: C648–C651. doi: 10.1111/j.1750-3841.2004.tb18012.x
  • Kormanik PP, McGraw AC. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed.), Methods and principles of mycorrhizal research. St Paul: APS Press. pp 37–45.
  • Lee BR, Muneer S. 2012. Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza 22: 525–534. doi: 10.1007/s00572-012-0430-6
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350–382. doi: 10.1016/0076-6879(87)48036-1
  • Lin JN, Kao CH. 1998. Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. Botanical Bulletin of Academia Sinica 39: 161–165.
  • Lowry OH, Rosebrough NJ, Farr AL, Randapp RJ. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 191: 265–275.
  • Mathur N, Vyas A. 1995. Influence of VA mycorrhizae on photosynthesis and transpiration of Ziziphus mauritiana. Journal of Plant Physiology 147: 328–330. doi: 10.1016/S0176-1617(11)82161-9
  • Monakhova O, Chernyad H. 2002. Protective role of kartolin-4 in wheat plants exposed to soil draught. Applied Biochemistry and Microbiology 38: 373–380. doi: 10.1023/A:1016243424428
  • Moucheshi A, Heidari B, Assad MT. 2012. Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis. International Journal of Agriculture Science 2: 35–47.
  • Nadian H. 2011. Effect of drought stress and mycorrhizal symbiosis on growth and phosphorus uptake by two sorghum cultivars different in root morphology. Journal of Water and Soil Science 57: 127–140 [in Persian with English abstract].
  • Neumann E, George E. 2009. The effect of arbuscular mycorrhizal root colonization on growth and nutrient uptake of two different cowpea (Vigna unguiculata [L.] Walp.) genotypes exposed to drought stress. Emirates Journal of Food and Agriculture 21(2): 1–17. doi: 10.9755/ejfa.v21i2.5160
  • Pandey HC, Baig MJ, Chandra A, Bhatt RK. 2010. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena. Journal of Environmental Biology 31: 435–440.
  • Panwar JD. 1992. Effect of VAM and Azospirillum inoculation on metabolic changes and grain yield of wheat under moisture stress condition. Indian Journal of Plant Physiology 35: 157–161.
  • Pawlowska TE, Taylor JW. 2004. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427: 733–737. doi: 10.1038/nature02290
  • Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55: 1743–1750. doi: 10.1093/jxb/erh188
  • Porra RJ, Pfündel EE, Engel N. 1997. Metabolism and function of photosynthetic pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds), Phytoplankton pigments in oceanography: guidelines to modern methods. Monographs on Oceanographic Methodology 10. Paris: UNESCO. pp 85–126.
  • Rapparini F, Peñuelas J. 2014. Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed.), Use of microbes for the alleviation of soil stresses, vol. 1. New York: Springer. pp 21–42.
  • Raymond J, Rakariyatham N, Azanza JL. 1993. Purification and some properties of polyphenol oxidase from sunflower seed. International Journal of Plant Biochemistry 34: 927–931.
  • Ruiz-Lozano JM, Azcon R, Gomez M. 1995. Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Applied Environmental Microbiology 61: 456–460.
  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology 167: 862–869. doi: 10.1016/j.jplph.2010.01.018
  • Sairam RK, Shukla DS, Saxena DC. 1997. Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plantarum 40: 357–364. doi: 10.1023/A:1001009812864
  • Salehi M, Kouchaki A. 2002. Amount of nitrogen and chlorophylls of leaves as an index of drought stress in wheat. Journal of Agricultural Research in Iran 1: 199–205 [in Persian with English abstract].
  • Salim BBM, El-Yazied AA. 2015. Effect of mycorrhiza on growth, biochemical constituents and yield of snap bean plants under water deficit conditions. Journal of Horticultural Science and Ornamental Plants 7(3): 131–140.
  • Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ. 2004. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology 161: 675–682. doi: 10.1078/0176-1617-01191
  • Sannazzaro AI, Ruiz OA, Albertó EO, Menéndez AB. 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and Soil 285: 279–287. doi: 10.1007/s11104-006-9015-5
  • Sardans J, Peñuelas J, Ogaya R. 2008. Drought’s impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plants and soil of a Mediterranean evergreen Quercus ilex forest. Biogeochemistry 87: 49–69. doi: 10.1007/s10533-007-9167-2
  • Schellenbaum L, Müller J, Boller T, Wiemken A, Schüepp H. 1998. Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytologist 138: 59–66. doi: 10.1046/j.1469-8137.1998.00892.x
  • Shaw B, Thomas TH, Cooke DT. 2002. Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regulation 37: 77–83. doi: 10.1023/A:1020381513976
  • Sikuku PA, Netondo GW, Onyango JC, Musyimi DM. 2010. Effects of water deficit on physiology and morphology of three varieties of NERICA rainfed rice (Oryza sativa L.). ARPN Journal of Agricultural and Biological Science 5: 23–28.
  • Subramanian KS, Charest C. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7: 25–32. doi: 10.1007/s005720050159
  • Subramanian KS, Santhanakrishnan P. 2006. Responses of field grown plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae 107: 245–253. doi: 10.1016/j.scienta.2005.07.006
  • Tajini F, Drevon J-J. 2012. Effects of arbuscular mycorrhizas on P use efficiency for growth and N2 fixation in common bean (Phaseolus vulgaris L.). Scientific Research and Essays 16: 1681–1689.
  • Tezara W, Mitchell V, Driscoll SP, Lowler DW. 2002. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. Journal of Experimental Botany 53: 1781–1791. doi: 10.1093/jxb/erf021
  • Thakur AK, Panwar JS. 1997. Response of Rhizobium-vesicular arbuscular mycorrhizal symbionts on photosynthesis, nitrogen metabolism and sucrose translocation in greengram (Phaseolus radiatus). Indian Journal of Agricultural Sciences 67: 245–248.
  • Trotel-Aziz P, Niogret MF, Larher F. 2000. Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress. Physiologia Plantarum 110: 376–383. doi: 10.1034/j.1399-3054.2000.1100312.x
  • Valentine AJ, Mortimer, PE, Lintnaar A, Borgo R. 2006. Drought responses of arbuscular mycorrhizal grapevines. Symbiosis 41: 127–133.
  • Williams A, Ridgway HJ, Norton DA. 2013. Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New Forests 44: 183–195. doi: 10.1007/s11056-012-9309-9
  • Wu QS, Zou YN. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought stressed citrus. Plant, Soil and Environment 55: 436–442.
  • Wu Y, Cosgrove DJ. 2000. Adaptation of roots to low water potentials by changes in cell water extensibility and cell wall proteins. Journal of Experimental Botany 51: 1543–1553. doi: 10.1093/jexbot/51.350.1543
  • Yang F, Miao LF. 2010. Adaptive responses to progressive drought stress in two Poplar species originating from different altitudes. Silva Fennica 44: 23–37.
  • Yooyongwech S, Phaukinsang N, Cha-um S, Supaibulwatana K. 2013. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation 69: 285–293. doi: 10.1007/s10725-012-9771-6
  • Younesi O, Morad A. 2013. The effects of arbuscular mycorrhizal fungi inoculation on reactive oxyradical scavenging system of soybean (Glycine max) nodules under salt stress condition. Agriculturae Conspectus Scientificus 78: 321–326.
  • Youpensuk S, Lordkaew S, Reskasem B. 2009. Genotypic variation in responses to Citrus spp. to arbuscular mycorrhizal fungi. Journal of Agricultural Science (Toronto) 1: 59–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.