82
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Genetic interrelationship of sweet stem sorghum genotypes assessed with simple sequence repeat markers

, ORCID Icon, ORCID Icon &
Pages 351-358 | Received 30 Oct 2017, Accepted 18 Feb 2018, Published online: 07 Jun 2018

References

  • Agrama HA, Tuinstra MR. 2003. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African Journal of Biotechnology 2: 334–340. doi: 10.5897/AJB2003.000-1069
  • Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, Dweikat AE. 2008. Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Molecular Breeding 21: 497–509. doi: 10.1007/s11032-007-9149-z
  • Almanza-Pinzón MI, Khairullah M, Fox PN, Warburton ML. 2003. Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130: 77–86. doi: 10.1023/A:1022310014075
  • Amelework B, Shimelis H, Tongoona P, Laing M, Mengistu F. 2015. Genetic variation in lowland sorghum (Sorghum bicolor (L.) Moench) landraces assessed by simple sequence repeats. Plant Genetic Resources 13: 131–141. doi: 10.1017/S1479262114000744
  • Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC. 2015. Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food and Energy Security 4: 159–177. doi: 10.1002/fes3.63
  • Atokple IDK, Oppong GK, Chikpah SK. 2014. Evaluation of grain and sugar yields of improved sweet sorghum (Sorghum bicolor) varieties in the Guinea Savanna Zone of Ghana. Pinnacle Agricultural Research and Management 2: 2–5.
  • Becelaere GV, Edward LL, Paterson AH, Chee P.W. 2005. Pedigree-vs. DNA marker-based genetic similarity estimates in cotton. Crop Science 45: 2281–2287. doi: 10.2135/cropsci2004.0715
  • Billot C, Rivallan R, Sall MN, Fonceka D, Deu M, Glaszmann JC, Noyer JL, Rami JF, Risterucci AM, Wincker P, Ramu P, Hash CT. 2012. A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae). American Journal of Botany 99: 245–250. doi: 10.3732/ajb.1100548
  • Bohn M, Utz HF, Melchinger AE. 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs and SSRs and their use for predicting progeny variance. Crop Science 39: 228–237. doi: 10.2135/cropsci1999.0011183X003900010035x
  • Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez-Candelas F, Kresovich S. 1996. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolor (L.) Monech). Theoretical and Applied Genetics 93: 190–198. doi: 10.1007/BF00225745
  • Bruford MW, Beaumont MA. 1998. Binary data analysis. In: Karp A, Isaac PG, Ingram DS (eds), Molecular tools for screening biodiversity. London: Chapman and Hall. pp 329–331.
  • Burr B. 1994. Some concepts and new methods for molecular mapping in plants. In: Philips RL, Vasil IK (eds), DNA-based markers in plants. Dordrecht: Kluwer Academic Publishers. pp 1–7.
  • Cox TS, Murphy JP, Rodgers DM. 1986. Changes in genetic diversity in the red winter wheat regions of the United States. Proceedings of the National Academy of Sciences of the USA 83: 5583–5586. doi: 10.1073/pnas.83.15.5583
  • Daystar J, Gonzalez R, Reeb C, Venditti R, Treasure T, Abt R, Kelley S. 2014. Economics, environmental impacts, and supply chain analysis of cellulosic biomass for biofuels in the southern US: pine, eucalyptus, unmanaged hardwood, forest residues, switchgrass, and sweet sorghum. BioResources 9: 393–444.
  • Eggleston G, Cole M, Andrzejewski B. 2013. New commercially viable processing technologies for the production of sugar feedstocks from sweet sorghum (Sorghum bicolor L. Moench) for manufacture of biofuels and bioproducts. Sugar Technology 15: 232–249. doi: 10.1007/s12355-013-0229-6
  • FAO (Food and Agriculture Organization of the United Nations). 2016. FAOSTAT Crop Production Statistics. World sorghum production and utilization. Rome: FAO.
  • Fufa H, Baenziger PS, Beecher BS, Dweikat I, Graybosch L, Eskridge KM. 2005. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica 145: 133–146. doi: 10.1007/s10681-005-0626-3
  • Iqbal A, Sadia B, Khan AI, Awan FS, Kainth RA, Sadaqat HA. 2010. Biodiversity in the sorghum (Sorghum bicolor L. Moench) germplasm of Pakistan. Genetics and Molecular Research 9: 756–764. doi: 10.4238/vol9-2gmr741
  • Jain HK, Kharkwal MC. 2004. Plant breeding: Mendelian to molecular approaches. New Delhi: Narosa Publishing House.
  • Ji GS, Song YF, Liu GQ, Du RH, Hao FW. 2011. Genetic analysis of sorghum resources from China using SSRs. Journal of SAT Agricultural Research 9: 1–7.
  • Lekgari A, Dweikat I. 2014. Assessment of genetic variability of 142 sweet sorghum germplasm of diverse origin with molecular and morphological markers. Open Journal of Ecology 4: 371–393. doi: 10.4236/oje.2014.47034
  • Li D. 1997. Developing sweet sorghum to accept the challenge problems on food energy and environment in 21st century. In: Li D. (ed.), Proceedings of the First International Sweet Sorghum Conference. Beijing: Institute of Botany, Chinese Academy of Sciences. pp 19–34.
  • Li G, Ra WH, Park JW, Kwon SW, Lee JH, Park CB, Park YJ. 2011. Developing EST-SSR markers to study molecular diversity in Liriope and Ophiopogon. Biochemical Systematics and Ecology 39: 241–252. doi: 10.1016/j.bse.2011.08.012
  • Lipinsky E, Kresovich S. 1980. Sorghums as energy crops. In: Proceedings, Bio-Energy ‘80, World Congress and Exposition, April 21–24, 1980, Atlanta, Georgia, USA. Washington, DC: Bio-energy Council. pp 91–93.
  • Mace ES, Hutokshi K, Buhariwalla HK, Crouch JH. 2003. A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Molecular Biology Reporter 21: 459–460. doi: 10.1007/BF02772596
  • Mashilo J, Shimelis H, Odindo A. 2016. Genetic diversity of bottle gourd (Lagenaria siceraria (Molina) Standl.) landraces of South Africa assessed by morphological traits and simple sequence repeat markers. South African Journal of Plant and Soil 33: 1–12. doi: 10.1080/02571862.2015.1090024
  • McCormick FC, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, Kennedy M, Amirebrahimi M, Weers B, McKinley B, Mattison A, Morishige D, Grimwood J, Schmutz J, Mullet J. 2018. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. The Plant Journal 93: 338–354. doi: 10.1111/tpj.13781
  • McIntyre CL, Tao DR, Jordan DR, Henzell RG. 2001. Current status of molecular marker research in sorghum. In: Borrell AK, Henzell RG (eds), Proceedings of the Fourth Australian Sorghum Conference, 5–8 February, 2001 Queensland, Australia. Brisbane: Queensland Government, Department of Primary Industries. pp 560–562.
  • Menz MA, Klein RR, Unruh NC, Rooney WL, Klein PE, Mullet JE. 2004. Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Science 44: 1236–1244. doi: 10.2135/cropsci2004.1236
  • Missiaggia A, Grattapaglia D. 2006. Plant microsatellite genotyping with 4-color fluorescent detection using multiple-tailed primers. Genetics and Molecular Research 5: 72–78.
  • Morrissey K. 2017. Life cycle assessment of sweet sorghum as feedstock for second-generation biofuel production. Chemical Engineering Undergraduate Honors thesis, University of Arkansas, Fayetteville, USA.
  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE. 2008. Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Science 48: 2180–2193. doi: 10.2135/cropsci2008.01.0068
  • Muui CW, Muasya RM, Kirubi DT, Runo SM, Karugu A. 2016. Genetic variability of sorghum landraces from lower Eastern Kenya based on simple sequence repeats (SSRs) markers. African Journal of Biotechnology 15: 264–271. doi: 10.5897/AJB2015.14680
  • Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA 76: 5269–5273. doi: 10.1073/pnas.76.10.5269
  • Ngailo S, Shimelis H, Sibiya J, Amelework B, Mtunda K. 2016. Genetic diversity assessment of Tanzanian sweetpotato genotypes using simple sequence repeat markers. South African Journal of Botany 102: 40–45. doi: 10.1016/j.sajb.2015.08.001
  • Olweny C, Jamoza J, Dida MM, Kimani W, Njuguna J, Githae D, Kiawa B, Yao N, Kosambo LC, Sally C, Okori P. 2014. High genetic diversity for improvement of sweet sorghum (Sorghum bicolor (L.) Moench) genotypes for sugar and allied products. Molecular Plant Breeding 5: 29–35
  • Peakall R, Smouse PE. 2012. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295. doi: 10.1111/j.1471-8286.2005.01155.x
  • Pei Z, Gao J, Chen Q, Wei J, Li Z, Luo F, Shi L, Ding B, Sun S. Genetic diversity of elite sweet sorghum genotypes assessed by SSR markers. 2010. Biologia Plantarum 54: 653–658. doi: 10.1007/s10535-010-0116-x
  • Perrier X, Jacquemoud-Collet JP. 2006. DARwin software. Dissimilarity analysis and representation for Windows. Available at http://www.darwin.cirad.fr/darwin.html.
  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 3: 225–238. doi: 10.1007/BF00564200
  • Prakash SPJ, Biji KR, Gomez SM, Murthy KG, Babu RC. 2008. Genetic diversity analysis of sorghum (Sorghum bicolor L. Moench) accessions using RAPD markers. Indian Journal of Crop Science 1: 109–112.
  • Ragab RA, Dronavalli S, Maroof MA, Yu YG. 1994. Construction of a sorghum RFLP linkage map using sorghum and maize DNA probes. Genome 37: 590–594. doi: 10.1139/g94-084
  • Rajput CB, Mehtre SP, Dames DN, Kadam BP. 2012. Assessment of genetic diversity of sorghum [Sorghum bicolor (L.) Moench] using SSR. Advances in Plant Sciences 25: 95–102.
  • Ratnavathi C, Chakravarthy S, Komala V, Chavan U, Patil J. 2011. Sweet sorghum as feedstock for biofuel production: a review. Sugar Technology 13: 399–407. doi: 10.1007/s12355-011-0112-2
  • Reddy DC, Audilakshmi S, Madhusudhana R, Seetharama N. 2012. Comparative analysis of genetic similarity among sorghum (Sorghum bicolor (L.) Moench) lines as revealed by morphological and molecular markers. Plant Genetic Resoucres 10: 49–58. doi: 10.1017/S1479262111000967
  • Rosenow D, Clark L. 1995. Drought and lodging resistance for a quality sorghum crop. In: Proceedings of the 50th Annual Corn and Sorghum Industry Research Conference, Chicago, IL, USA, 6–7 December 1995. Washington, DC: American Seed Trade Association. p 16.
  • Saballos A. 2008. Development and utilization of sorghum as a bioenergy crop. Genetic Improvement of Bioenergy Crops 32: 211–248. doi: 10.1007/978-0-387-70805-8_8
  • Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S. 2002. Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theoretical and Applied Genetics 105: 912–920. doi: 10.1007/s00122-002-0991-4
  • Shehaz T, Okuizumi H, Kawase M, Okuno K. 2009. Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genetics Resources and Crop Evolution 56: 809–827. doi: 10.1007/s10722-008-9403-1
  • Shivjee S, Khanna VK. 2010. Detection of diversity in germplasm of sorghum (Sorghum bicolor) using RAPD analysis. Pantnagar Journal of Research 8: 170–174.
  • Subudhi PK, Nguyen HT, Gilbert ML, Rosenow DT. 2002. Sorghum improvement: past achievements and future prospects. In: Kang MS (ed.), Crop improvement: challenges in the twenty-first century. New York: The Haworth Press. pp 109–159.
  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW. 1989. RFLP mapping in plant breeding: new tool for an old science. Biotechnology 7: 257–264.
  • Tew TL, Cobill RM, Richard EP Jr. 2008. Evaluation of sweet sorghum and sorghum × sudangrass hybrids as feedstocks for ethanol production. Bioenergy Research 1: 147–152. doi: 10.1007/s12155-008-9013-y
  • van Beuningen LT, Busch RH. 1997. Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Science 37: 981–988. doi: 10.2135/cropsci1997.0011183X003700030046x
  • Varshney RK. 2011. Application of next generation sequencing and genotyping technologies to develop large-scale genomic resources in SAT legume crops. In: Muralidharan K, Siddiq EA (eds), Genomics and crop improvement: revelance and reservations. Hyderabad: Institute of Biotechnology, Acharya NG Ranga Agricultural University. pp 1–10.
  • Vermerris W, Saballos A. 2013. Genetic enhancement of sorghum for biomass utilization. In: Paterson A (ed.), Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models vol. 11. New York: Springer. pp 391–425.
  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR. 2007. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Science 47: 142–153. doi: 10.2135/cropsci2007.04.0013IPBS
  • Wang L, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T, Pederson GA, Yu J. 2009. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theoretical and Applied Genetics 120: 13–23. doi: 10.1007/s00122-009-1155-6
  • Wang L, Jiao S, Jiang Y, Yan H, Su D, Sun G, Yan X, Sun L. 2013. Genetic diversity in parent lines of sweet sorghum based on agronomical traits and SSR markers. Field Crops Research 149: 11–19. doi: 10.1016/j.fcr.2013.04.013
  • Wu YQ, Huang Y, Tauer CG, Porter DR. 2006. Genetic diversity of sorghum accessions resistant to greenbugs as assessed with AFLP markers. Genome 49: 143–149. doi: 10.1139/g05-095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.