69
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

Evaluation of phytoremediation effects of chicken manure, urea and lemongrass on remediating a lead contaminated soil in Kabwe, Zambia

, , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 351-360 | Received 01 Sep 2019, Accepted 18 May 2020, Published online: 27 Nov 2020

References

  • Adams FV, Awode MF, Agboola BO. 2018. Effectiveness of Sorghum Husk and Chicken Manure in Bioremediation of Crude Oil Contaminated Soil. Advances in Bioremediation and Phytoremediation. https://doi.org/10.5772/intechopen.71832
  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals- Concepts and applications. Chemosphere 91(7): 869–881. doi: 10.1016/j.chemosphere.2013.01.075
  • Ali SY, Banerjee SN, Chaudhury S. 2016. Phytoextraction of cadmium and lead by three vegetable-crop plants. Plant Science Today 3(3): 298. https://doi.org/10.14719/pst.2016.3.3.247
  • Arienzo M, Adamo P, Cozzolino V. 2004. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Science of the Total Environment 319(1–3): 13–25. 2 doi: 10.1016/S0048-9697(03)00435-2
  • Bani A, Echevarria G, Sulçe S, Morel JL. 2015. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study. International Journal of Phytoremediation 17(2): 117–127. doi: 10.1080/15226514.2013.862204
  • Barrutia O, Epelde L, García-Plazaola JI, Garbisu C, Becerril JM. 2009. Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization. Chemosphere 74(2): 259–264. doi: 10.1016/j.chemosphere.2008.09.036
  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N. 2011. Dissolved Organic Matter. Biogeochemistry, Dynamics, and Environmental Significance in Soils. Advances in Agronomy 110. https://doi.org/10.1016/ B978-0-12-385531-2.00001-3
  • Brennan MA, Shelley ML. 1999. A model of the uptake , translocation , and accumulation of lead ( Pb ) by maize for the purpose of phytoextraction. Ecological Engineering 12(3–4): 271–297. doi: 10.1016/S0925-8574(98)00073-1
  • Burges A, Alkorta I, Epelde L, Garbisu C. 2018. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation 20(4): 384–397. doi: 10.1080/15226514.2017.1365340
  • Clayton DB. 1968. Investigations into the nature and distribution of the sandveldt soils of the central province of Zambia with observations on their land use potential. Masters thesis. Durham University. Durham, UK.
  • Cunningham SD, Ow DW. 1996. Promises and Prospects of Phytoremediation. Plant Physiology 110(3): 715–719. doi: 10.1104/pp.110.3.715
  • Dawle N, Patil PV, Panhekar D. 2014. Screening of Plants for Phytoremediation of Lead (Pb) on soils contaminated with Fly Ash. International Journal of Advances Reserch 2(3): 692–700.
  • Deng L, Li Z, Wang J, Liu H, Li N, Wu L, Hu P, Luo Y, Christie P. 2016. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. International Journal of Phytoremediation 18(2): 134–140. doi: 10.1080/15226514.2015.1058328
  • Enviromental Protection Agency. 2000. Introduction to Phytoremediation. U.S. Environmental Protection Agency, February 1–72.
  • Gautam M, Pandey D, Agrawal M. 2016. Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes. International Journal of Phytoremediation 19(6): 555–562. doi: 10.1080/15226514.2016.1267701
  • Hadi F, Hussain F, Hussain M, Ahmad A, Ur Rahman S, Ali N. 2014. Phytoextraction of Pb and Cd; the effect of Urea and EDTA on Cannabis sativa growth under metals stress. International Journal of Agronomy and Agricultural Research 5(3): 30–39.
  • Hamzenejad Taghlidabad R, Sepehr E. 2018. Heavy metals immobilization in contaminated soil by grape-pruning-residue biochar. Archives of Agronomy and Soil Science 64(8): 1041–1052. doi: 10.1080/03650340.2017.1407872
  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R. 2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science and Technology 34(9): 1778–1783. doi: 10.1021/es990697s
  • Naidu R, Semple KT, Megharaj M, Juhasz AL, Bolan NS, Gupta SK, Clothier BE, Schulin R. 2008. Bioavailability: Definition, assessment and implications for risk assessment. Developments in Soil Science 32: 39–51. doi: 10.1016/S0166-2481(07)32003-5
  • Obiora SC, Chukwu A, Davies TC. 2016. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences 116: 182–189. doi: 10.1016/j.jafrearsci.2015.12.025
  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil 348(1–2): 439–451. doi: 10.1007/s11104-011-0948-y
  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 5(1): 65–75. doi: 10.5194/se-5-65-2014
  • Pilon-Smits E. 2005. Phytoremediation. Annual Review of Plant Biology 56(1): 15–39. doi: 10.1146/annurev.arplant.56.032604.144214
  • Raskin I, Kumar PN, Dushenkov S, Salt DE. 1994. Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology 5(3): 285–290. doi: 10.1016/0958-1669(94)90030-2
  • Raskin I, Smith RD, Salt DE. 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8(2): 221–226. doi: 10.1016/S0958-1669(97)80106-1
  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis,V. 1997. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. Journal of Geochemical Exploration 59(2): 75–86. doi: 10.1016/S0375-6742(97)00010-1
  • Salomon JA, Wang H, Freeman MK, Vos T, Flaxman AD, Lopez AD, Murray CJL. 2012. Healthy life expectancy for 187 countries, 1990-2010: A systematic analysis for the Global Burden Disease Study 2010. The Lancet 380(9859): 2144–2162. doi: 10.1016/S0140-6736(12)61690-0
  • Schwartz C, Echevarria G, Morel JL. 2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil 249(1): 27–35. doi: 10.1023/A:1022584220411
  • Tessier A, Campbell PGC, Bisson M. 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry 51(7): 844–851. doi: 10.1021/ac50043a017
  • Tordoff GM, Baker AJM, Willis AJ. 2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41(1–2): 219–228. doi: 10.1016/S0045-6535(99)00414-2
  • Uchimiya M, Bannon DI, Wartelle LH, Lima IM, Klasson KT. 2012. Lead retention by broiler litter biochars in small arms range soil: Impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry 60(20): 5035–5044. doi: 10.1021/jf300825n
  • van Beusichem ML, Neeteson JJ. 1982. Urea Nutrition of Young Maize and Sugar-Beet Plants with Emphasis on Ionic Balance and Vascular Transport of Nitrogenous Compounds. Netherlands Journal of Agricultural Science 30(4): 317–330. doi: 10.18174/njas.v30i4.16970
  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M. 2009. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research 16(7): 765–794. doi: 10.1007/s11356-009-0213-6
  • Walker DJ, Clemente R, Roig A, Bernal MP. 2003. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution 122(2) 303–312. doi: 10.1016/S0269-7491(02)00287-7
  • Yabe J, Ishizuka M, Umemura T. 2010. Current levels of heavy metal pollution in Africa. The Journal of Veterinary Medical Science / the Japanese Society of Veterinary Science 72(10) 1257–1263. doi: 10.1292/jvms.10-0058
  • Yabe J, Nakayama SMM, Ikenaka Y, Muzandu K, Choongo K, Mainda G, Kabeta M, Ishizuka M, Umemura T. 2013. Metal distribution in tissues of free-range chickens near a lead-zinc mine in Kabwe, Zambia. Environmental Toxicology and Chemistry 32(1): 189–192. doi: 10.1002/etc.2029
  • Yabe J, Nakayama SMM, Ikenaka Y, Muzandu K, Ishizuka M, Umemura T. 2011. Uptake of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe, Zambia. Environmental Toxicology and Chemistry 30(8): 1892–1897. doi: 10.1002/etc.580
  • Yabe J, Nakayama SMM, Ikenaka Y, Yohannes YB, Bortey-Sam N, Oroszlany B, Muzandu K, Choongo K, Kabalo AN, Ntapisha J, Mweene A, Umemura T, Ishizuka M. 2015. Lead poisoning in children from townships in the vicinity of a lead-zinc mine in Kabwe, Zambia. Chemosphere 119: 941–947. doi: 10.1016/j.chemosphere.2014.09.028
  • Yang X, Feng Y, He Z, Stoffella PJ. 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18(4): 339–353. doi: 10.1016/j.jtemb.2005.02.007
  • Yashim ZI. 2015. Phytoextraction of Heavy Metals by Vetivera zizanioides, Cymbopogon citrates and Helianthus annuus. American Journal of Applied Chemistry 3(1): 1.
  • Zhang C, Song Z, Zhuang D, Wang J, Xie S, Liu G. 2019. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biology and Fertility of Soils 55(3): 229–242. doi: 10.1007/s00374-019-01344-z
  • Zhao FJ, Lombi E, Breedon T, McGrath SP. 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment 23(5): 507–514. doi: 10.1046/j.1365-3040.2000.00569.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.