Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 38, 2018 - Issue 6
582
Views
8
CrossRef citations to date
0
Altmetric
Comments

Mechanisms of Bisphosphine Iron-Catalyzed C(SP2)-C(SP3) Cross-Coupling Reactions: Inner-Sphere or Outer-Sphere Arylation?

, , &

References

  • de Meijere, A.; BräSe, S.; Oestreich, M.; Eds.; Metal‐Catalyzed Cross‐Coupling Reactions and More, 1, 2 and 3; Wiley-VCH Verlag GmbH: Weinheim, 2014.
  • Briffis, A.; Centomo, P.; Zotto, A. D.; Zecca, M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem. Rev. 2018, 118, 2249–2295. DOI: 10.1021/acs.chemrev.7b00443.
  • Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085. DOI: 10.1002/anie.201107017.
  • Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44, 4442–4489. DOI: 10.1002/anie.200500368.
  • Kharasch, M. S.; Fields, E. K. Factors Determining the Course and Mechanisms of Grignard Reactions. IV. The Effect of Metallic Halides on the Reaction of Aryl Grignard Reagents and Organic Halides. J. Am. Chem. Soc. 1941, 63, 2316–2320. DOI: 10.1021/ja01854a006.
  • Tamura, M.; Kochi, J. Vinylation of Grignard Reagents. Catalysis by Iron. J. Am. Chem. Soc. 1971, 93, 1487–1489. DOI: 10.1021/ja00735a030.
  • Tamura, M.; Kochi, J. Coupling of Grignard Reagents with Organic Halides. Synthesis. 1971, 303–305. DOI: 10.1055/s-1971-35043.
  • Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. DOI: 10.1021/cr00039a007.
  • Stille, J. K. The Palladium‐Catalyzed Cross‐Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]. Angew. Chem. Int. Ed. 1986, 25, 508–524. DOI: 10.1002/anie.198605081.
  • Negishi, E. Palladium- or Nickel-Catalyzed Cross Coupling. A New Selective Method for Carbon-Carbon Bond Formation. Acc. Chem. Res. 1982, 15, 340–348. DOI: 10.1021/ar00083a001.
  • Martin, R.; Buchwald, S. L. Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461–1473. DOI: 10.1021/ar800036s.
  • For Recent Reviews on Nickel-Catalyzed Cross-Coupling Reactions, See: (A) Tasker, S. Z.; Stanley, E. A.; Jamison, T. F. Recent Advances in Homogeneous Nickel Catalysis. Nature. 2014, 509, 299–309. DOI: 10.1038/nature13274. (b) Weix, D. J. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2Halides with Alkyl Electrophiles. Acc. Chem. Res. 2015, 48, 1767–1775. DOI: 10.1021/acs.accounts.5b00057. (c) Klein, A.; Sandleben, A.; Vogt, N. Synthesis, Structure and Reactivity of Cyclometalated Nickel(II) Complexes: A Review and Perspective. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 2016, 86, 533–549. DOI: 10.1007/s40010-016-0289-6. (d) Budnikova, Y. H.; Vicic, D. A.; Klein, A. Exploring Mechanisms in Ni Terpyridine Catalyzed C–C Cross-Coupling Reactions—A Review. Inorganics. 2018, 6, 18. DOI:10.3390/inorganics6010018.
  • Han, F. Transition-Metal-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions: A Remarkable Advance from Palladium to Nickel Catalysts. Chem. Soc. Rev. 2013, 42, 5270–5298. DOI: 10.1039/C3CS35521G.
  • The cost of Iron and palladium comes from Sigma-Aldrich, Inc., United States, 2018.
  • Barbalace, K. Periodic Table of Elements. EnvironmentalChemistry.com (accessed April 14, 2007).
  • U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Q3D Elemental Impurities Guidance for Industry. September, 2015.
  • Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Functionalization of Organic Molecules by Transition‐Metal‐Catalyzed C(sp3)-H Activation. Chem. Eur. J. 2010, 16, 2654–2672. DOI: 10.1002/chem.200902374. For reviews using alkyl halides in cross-coupling reactions, see: (a) Rudolph, A.; Lautens, M. Secondary Alkyl Halides in Transition-Metal-Catalyzed Cross-Coupling Reactions. Angew. Chem. Int. Ed. 2009, 48, 2656–2670. DOI: 10.1002/anie.200803611. (b) Sherry, B. D.; Fürstner, A. The Promise and Challenge of Iron-Catalyzed Cross Coupling. Acc. Chem. Res. 2008, 41, 1500–1511. DOI: 10.1021/ar800039x. (c) Bauer, I.; Knölker, H.-J. Iron Catalysis in Organic Synthesis. Chem. Rev. 2015, 115, 3170–3387. DOI: 10.1021/cr500425u. (d) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. Chem. Rev. 2011, 111, 1417–1492. DOI: 10.1021/cr100327p.
  • (A) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. Iron-Catalyzed Cross-Coupling of Primary and Secondary Alkyl Halides with Aryl Grignard Reagents. J. Am. Chem. Soc. 2004, 126, 3686–3687. DOI: 10.1021/ja049744t. (b) Hatakeyama, T.; Kondo, Y.; Fujiwara, Y.; Takaya, H.; Ito, S.; Nakamura, E.; Nakamura, M. Iron-Catalysed Fluoroaromatic Coupling Reactions Under Catalytic Modulation With 1,2-Bis(diphenylphosphino)Benzene. Chem. Commun. 2009, 0, 1216–1218. DOI: 10.1039/B820879D. (c) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. Iron-Catalyzed Suzuki-Miyaura coupling of Alkyl Halides. J. Am. Chem. Soc. 2010, 132, 10674–10676. DOI: 10.1021/ja103973a. (d) Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Tuning Chemoselectivity in Iron‐Catalyzed Sonogashira‐Type Reactions Using a Bisphosphine Ligand with Peripheral Steric Bulk: Selective Alkynylation of Nonactivated Alkyl Halides. Angew. Chem. Int. Ed. 2011, 50, 10973–10976. DOI: 10.1002/anie.201104125. (e) Hatakeyama, T.; Fujiwara, Y.; Okada, Y.; Itoh, T.; Hashimoto, T.; Kawamura, S.; Ogata, K.; Takaya, H.; Nakamura, M. Kumada–Tamao–Corriu Coupling of Alkyl Halides Catalyzed by an Iron–Bisphosphine Complex. Chem. Lett. 2011, 40, 1030–1032. DOI: 10.1246/cl.2011.1030. (f) Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Iron-catalyzed alkyl-alkyl Suzuki-Miyaura coupling. Angew. Chem. Int. Ed. 2012, 51, 8834–8837. DOI: 10.1002/anie.201202797. (g) Kawamura, S.; Nakamura, M. Ligand-controlled Iron-catalyzed Cross Coupling of Benzylic Chlorides with Aryl Grignard Reagents. Chem. Lett. 2013, 42, 183–185. DOI: 10.1246/cl.2013.183. (h) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Iron-catalyzed Suzuki–Miyaura Coupling Reaction of Unactivated Alkyl Halides with Lithium Alkynylborates. Chem. Lett. 2015, 44, 486–488. DOI: 10.1246/cl.141167. (i) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. Synthesis of Aryl C-Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals. J. Am. Chem. Soc. 2017, 139, 10693–10701. DOI: 10.1021/jacs.7b03867.
  • Dongol, K. G.; Koh, H.; Sau, M.; Chai, C. L. L. Iron‐Catalysed Sp3–Sp3 Cross‐Coupling Reactions of Unactivated Alkyl Halides with Alkyl Grignard Reagents. Adv. Synth. Catal. 2007, 349, 1015–1018. DOI: 10.1002/adsc.200600383.
  • (A) Bedford, R. B.; Huwe, M.; Wilkinson, M. C. Iron-Catalysed Negishi Coupling of Benzylhalides and Phosphates. Chem. Commun. 2009, 600–602. DOI: 10.1039/B818961G. (b) Adams, C. J.; Bedford, R. B.; Carter, E.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Huwe, M.; Cartes, M. A.; Mansell, S. M.; Mendoza, C.; Murphy, D. M.; Neeve, E. C.; Nunn, J. Iron(I) in Negishi Cross-Coupling Reactions. J. Am. Chem. Soc. 2012, 134, 10333–10336. DOI: 10.1021/ja303250t. (c) Bedford, R. B.; Carter, E.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Neeve, E. C.; Nunn, J. Simplifying Iron–Phosphine Catalysts for Cross‐Coupling Reactions. Angew. Chem. Int. Ed. 2013, 52, 1285–1288. DOI: 10.1002/anie.201207868. (d) Bedford, R. B.; Brenner, P. B.; Carter, E.; Carvell, T. W.; Cogswell, P. M.; Gallagher, T.; Harvey, J. N.; Murphy, D. M.; Neeve, E. C.; Nunn, J.; Pye, D. R. Expedient Iron‐Catalyzed Coupling of Alkyl, Benzyl and Allyl Halides with Arylboronic Esters. Chem. Eur. J. 2014, 20, 7935–7938. DOI: 10.1002/chem.201402174.
  • Sun, C.-L.; Krause, H.; Fürstner, A. A Practical Procedure for Iron‐Catalyzed Cross‐Coupling Reactions of Sterically Hindered Aryl‐Grignard Reagents with Primary Alkyl Halides. Adv. Synth. Catal. 2014, 356, 1281–1291. DOI: 10.1002/adsc.201301089.
  • (A) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T. G.; Dixon, D. D.; Creech, G.; Baran, P. S. Redox-Active Esters in Fe-Catalyzed C–C Coupling. J. Am. Chem. Soc. 2016, 138, 11132–11135. DOI: 10.1021/jacs.6b07172. (b) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; We, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Decarboxylative Alkenylation. Nature. 2017, 545, 213–218. DOI: 10.1038/nature22307. (c) Sandfort, F.; O’Neill, M. J.; Cornella, J.; Wimmer, L.; Baran, P. S. Alkyl−(Hetero)Aryl Bond Formation via Decarboxylative Cross‐Coupling: A Systematic Analysis. Angew. Chem. Int. Ed. 2017, 56, 3319–3323. DOI: 10.1002/anie.201612314.
  • (A) Tellis, J. C.; Primer, D. N.; Molander, G. A. Single-Electron Transmetalation in Organoboron Cross-Coupling by Photoredox/Nickel Dual Catalysis. Science. 2014, 345, 433–436. DOI: 10.1126/science.1253647. (b) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science; Sausalito, CA, 2010.
  • Daifuku, S. L.; Kneebone, J. L.; Snyder, B. E. R.; Neidig, M. L. Iron(II) Active Species in Iron–Bisphosphine Catalyzed Kumada and Suzuki–Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides. J. Am. Chem. Soc. 2015, 137, 11432–11444. DOI: 10.1021/jacs.5b06648.
  • Daifuku, S. L.; Al-Afyouni, M. H.; Snyder, B. E. R.; Kneebone, J. L.; Neidig, M. L. A Combined Mössbauer, Magnetic Circular Dichroism, and Density Functional Theory Approach for Iron Cross-Coupling Catalysis: Electronic Structure, in Situ Formation, and Reactivity of Iron-Mesityl-Bisphosphines. J. Am. Chem. Soc. 2014, 136, 9132–9143. DOI: 10.1021/ja503596m.
  • Kneebone, J. L.; Brennessel, W. W.; Neidig, M. L. Intermediates and Reactivity in Iron-Catalyzed Cross-Couplings of Alkynyl Grignards with Alkyl Halides. J. Am. Chem. Soc. 2017, 139, 6988–7003. DOI: 10.1021/jacs.7b02363.
  • Jin, M.; Adak, L.; Nakamura, M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2015, 137, 7128–7134. DOI: 10.1021/jacs.5b02277.
  • For a Review on Transition-Metal-Catalyzed Asymmetric Cross-Coupling Reactions, See: Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents to Construct C–C Bonds. Chem. Rev. 2015, 115, 9587–9652. DOI: 10.1021/acs.chemrev.5b00162.
  • Choi, J.; Fu, G. C. Transition Metal–Catalyzed Alkyl-Alkyl Bond Formation: Another Dimension in Cross-Coupling Chemistry. Science. 2017, 356, 152–160. DOI: 10.1126/science.aaf7230.
  • Mao, J.; Liu, F.; Wang, M.; Wu, L.; Zheng, B.; Liu, S.; Zhong, J.; Bian, Q.; Walsh, P. J. Cobalt–Bisoxazoline-Catalyzed Asymmetric Kumada Cross-Coupling of Racemic α-Bromo Esters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2014, 136, 17662–17668. DOI: 10.1021/ja5109084.
  • For Reviews on Exploration of Mechanism of Iron-Catalyzed Cross-Coupling Reactions, See: (A) Parchomyk, T.; Koszinowski, K. Iron-Catalyzed Cross-Coupling: Mechanistic Insight for Rational Applications in Synthesis. Synthesis. 2017, 49, 3269–3280. DOI: 10.1055/s-0036-1588428. (b) Bedford, R. B. How Low Does Iron Go? Chasing the Active Species in Fe-Catalyzed Cross-Coupling Reactions. Acc. Chem. Res. 2015, 48, 1485–1493. DOI: 10.1021/acs.accounts.5b00042. (c) Mako, T. L.; Byers, J. A. Recent advances in iron-catalysed cross coupling reactions and their mechanistic underpinning. Inorg. Chem. Front. 2016, 3, 766–790. DOI: 10.1039/C5QI00295H. (d) Hedström, A.; Izakian, Z.; Vreto, I.; Wallentin, C.; Norrby, P. On the Radical Nature of Iron‐Catalyzed Cross‐Coupling Reactions. Chem. Eur. J. 2015, 21, 5946–5953. DOI: 10.1002/chem.201406096. (e) Cassani, C.; Bergonzini, G.; Wallentin, C. Active Species and Mechanistic Pathways in Iron-Catalyzed C–C Bond-Forming Cross-Coupling Reactions. ACS Catal. 2016, 6, 1640–1648. DOI: 10.1021/acscatal.5b02441.
  • Lee, W.; Zhou, J.; Gutierrez, O. Mechanism of Nakamura’s Bisphosphine-Iron-Catalyzed Asymmetric C(sp2)–C(sp3) Cross-Coupling Reaction: The Role of Spin in Controlling Arylation Pathways. J. Am. Chem. Soc. 2017, 139, 16126–16133. DOI: 10.1021/jacs.7b06377.
  • Sharma, A. K.; Sameera, W. M. C.; Jin, M.; Adak, L.; Okuzono, C.; Iwamoto, T.; Kato, M.; Nakamura, M.; Morokuma, K. DFT and AFIR Study on the Mechanism and the Origin of Enantioselectivity in Iron-Catalyzed Cross-Coupling Reactions. J. Am. Chem. Soc. 2017, 139, 16117–16125. DOI: 10.1021/jacs.7b05917.
  • Czaplik, W. M.; Mayer, M.; Cvengroš, J.; von Wangelin, A. Coming of Age: Sustainable Iron‐Catalyzed Cross‐Coupling Reactions. J. ChemSusChem. 2009, 2, 396–417. DOI: 10.1002/cssc.200900055.
  • Hedström, A.; Lindstedt, E.; Norrby, P. On the Oxidation State of Iron in Iron-Mediated C–C Couplings. J. Organomet. Chem. 2013, 748, 51–55. DOI: 10.1016/j.jorganchem.2013.04.024.
  • Bedford, R. B.; Brenner, P. B.; Carter, E.; Clifton, J.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Kehl, J. A.; Murphy, D. M.; et al. Iron Phosphine Catalyzed Cross-Coupling of Tetraorganoborates and Related Group 13 Nucleophiles with Alkyl Halides. Organometallics. 2014, 33, 5767–5780. DOI: 10.1021/om500518r.
  • Huang, Z.; Jin, L.; Feng, Y.; Peng, P.; Yi, H.; Lei, A. Iron‐Catalyzed Oxidative Radical Cross‐Coupling/Cyclization between Phenols and Olefins. Angew. Chem. Int. Ed. 2013, 52, 7151–7155. DOI: 10.1002/ange.201210023.
  • Ma, Y.; Zhang, D.; Yan, Z.; Wang, M.; Bian, C.; Gao, X.; Bunel, E. E.; Lei, A. Iron-Catalyzed Oxidative C–H/C–H Cross-Coupling between Electron-Rich Arenes and Alkenes. Org. Lett. 2015, 17, 2174–2177. DOI: 10.1021/acs.orglett.5b00775.
  • Muñoz, S. B., III; Daifuku, S. L.; Brennessel, W. W.; Neidig, M. L. Isolation, Characterization, and Reactivity of Fe8Me12 –: Kochi’S S = 1/2 Species in Iron-Catalyzed Cross-Couplings with MeMgBr and Ferric Salts. J. Am. Chem. Soc. 2016, 138, 7492–7495. DOI: 10.1021/jacs.6b03760.
  • Carpenter, S. H.; Neidig, M. L. A Physical‐Inorganic Approach for the Elucidation of Active Iron Species and Mechanism in Iron‐Catalyzed Cross‐Coupling. Isr. J. Chem. 2017, 57, 1106–1116. DOI: 10.1002/ijch.201700036.
  • Wunderlich, S. H.; Knochel, P. Preparation of Functionalized Aryl Iron(II) Compounds and a Nickel‐Catalyzed Cross‐Coupling with Alkyl Halides. Angew. Chem. Int. Ed. 2009, 48, 9717–9720. DOI: 10.1002/anie.200905196.
  • Meyer, S.; Orben, C. M.; Demeshko, S.; Dechert, S.; Meyer, F. Synthesis and Characterization of Di- and Tetracarbene Iron(II) Complexes with Chelating N-Heterocyclic Carbene Ligands and Their Application in Aryl Grignard–Alkyl Halide Cross-Coupling. Organometallics. 2011, 30, 6692–6702. DOI: 10.1021/om200870w.
  • Trage, C.; Schröder, D.; Schwarz, H. Coordination of Iron(III) Cations to β‐Keto Esters as Studied by Electrospray Mass Spectrometry: Implications for Iron‐Catalyzed Michael Addition Reactions. Chem. Eur. J. 2005, 11, 619–627. DOI: 10.1002/chem.200400715.
  • Parchomyk, T.; Koszinowski, K. Ate Complexes in Iron‐Catalyzed Cross‐Coupling Reactions. Chem. Eur. J. 2016, 22, 15609–15613. DOI: 10.1002/chem.201603574.
  • Bedford, R. B.; Brenner, P. B.; Elorriaga, D.; Harvey, J. N.; Nunn, J. The Influence of the Ligand Chelate Effect on Iron-Amine-Catalysed Kumada Cross-Coupling. Dalton Trans. 2016, 45, 15811–15817. DOI: 10.1039/c6dt01823h.
  • Bedford, R. B.; Brenner, P. B.; Carter, E.; Cogswell, P. M.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Nunn, J.; Woodall, C. H. TMEDA in Iron‐Catalyzed Kumada Coupling: Amine Adduct versus Homoleptic “Ate” Complex Formation. Angew. Chem. Int. Ed. 2014, 53, 1804–1808. DOI: 10.1002/anie.201308395.
  • Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.; Nagashima, H. Effect of TMEDA on Iron-Catalyzed Coupling Reactions of ArMgX with Alkyl Halides. J. Am. Chem. Soc. 2009, 131, 6078–6079. DOI: 10.1021/ja901262g.
  • Fürstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. Preparation, Structure, and Reactivity of Nonstabilized Organoiron Compounds. Implications for Iron-Catalyzed Cross Coupling Reactions. J. Am. Chem. Soc. 2008, 130, 8773–8787. DOI: 10.1021/ja801466t.
  • Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. DOI: 10.1103/PhysRev.136.B864.
  • Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. DOI: 10.1103/PhysRev.140.A1133.
  • Parr, R. G. Density Functional Theory. Annu. Rev. Phys. Chem. 1983, 34, 631–656. DOI: 10.1146/annurev.pc.34.100183.003215. (b) Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1873. DOI: 10.1021/cr990029p. (c) Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. General Performance of Density Functionals. J. Phys. Chem. A 2007, 111, 10439–10452. DOI: 10.1021/jp0734474. (d) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. DOI: 10.1021/cr200107z. (e) Jones, R. O. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897–923. DOI: 10.1103/RevModPhys.87.897. (f) Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017, 115, 2315–2372. DOI: 10.1080/00268976.2017.1333644. (g) Cramer, C. J.; Truhlar, D. G. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757–10816. DOI: 10.1039/b907148b. (h) Neese, F. A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry. J. Biol. Inorg. Chem. 2006, 11, 702–711. DOI: 10.1007/s00775-006-0138-1. (i) Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coord. Chem. Rev. 2009, 253, 526–563. DOI: 10.1016/j.ccr.2008.05.014.
  • Alberto, M. E.; Marino, T.; Russo, N.; Sicilia, E.; Toscano, M. The Performance of Density Functional Based Methods in the Description of Selected Biological Systems and Processes. Phys. Chem. Chem. Phys. 2012, 14, 14943–14953. DOI: 10.1039/c2cp41836c.
  • Peverati, R.; Truhlar, D. G. Quest for a Universal Density Functional: The Accuracy of Density Functionals across a Broad Spectrum of Databases in Chemistry and Physics. Philos. Trans. R. Soc. A. 2014, 372, 20120476. DOI: 10.1098/rsta.2012.0476.
  • Sun, J.; Remsing, R. C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Accurate First-Principles Structures and Energies of Diversely Bonded Systems from an Efficient Density Functional. Nat. Chem. 2016, 8, 831–836. DOI: 10.1038/NCHEM.2535.
  • Bowman, D. N.; Jakubikova, E. Low-Spin versus High-Spin Ground State in Pseudo-Octahedral Iron Complexes. Inorg. Chem. 2012, 51, 6011–6019. DOI: 10.1021/ic202344w.
  • Pinter, B.; Chankisjijev, A.; Geerlings, P.; Harvey, J. N.; De Proft, F., Conceptual Insights into DFT Spin‐State Energetics of Octahedral Transition‐Metal Complexes through a Density Difference Analysis. Chem. Eur. J. 2018, 24, 5281–5292. DOI: 10.1002/chem.201704657.
  • Roemelt, M.; Maganas, D.; DeBeer, S.; Neese, F. A Combined DFT and Restricted Open-Shell Configuration Interaction Method Including Spin-Orbit Coupling: Application to Transition Metal L-Edge X-Ray Absorption Spectroscopy. J. Chem. Phys. 2013, 138, 204101. DOI: 10.1063/1.4804607.
  • Reiher, M.; Salomon, O.; Hess, B. A. Reparameterization of Hybrid Functionals Based on Energy Differences of States of Different Multiplicity. Theor. Chem. Acc. 2001, 107, 48–55. DOI: 10.1007/s00214-001-0300-3.
  • Salomon, O.; Reiher, M.; Hess, B. A. Assertion and Validation of the Performance of the B3LYP* Functional for the First Transition Metal Row and the G2 Test Set. J. Chem. Phys. 2002, 117, 4729–4737. DOI: 10.1063/1.1493179.
  • Reiher, M. Theoretical Study of the Fe(phen)2(NCS)2 Spin-Crossover Complex with Reparametrized Density Functionals. Inorg. Chem. 2002, 41, 6928–6935. DOI: 10.1021/ic025891l.
  • Görling, A. Orbital- and State-Dependent Functionals in Density-Functional Theory. J. Chem. Phys. 2005, 123, 062203. DOI: 10.1063/1.1904583.
  • Swart, M. Metal–Ligand Bonding in Metallocenes: Differentiation between Spin State, Electrostatic and Covalent Bonding. Inorg. Chim. Acta. 2007, 360, 179–189. DOI: 10.1016/j.ica.2006.07.073.
  • Swart, M. Accurate Spin-State Energies for Iron Complexes. J. Chem. Theory Comput. 2008, 4, 2057–2066. DOI: 10.1021/ct800277a.
  • Swart, M.; Groenhof, A. R.; Ehlers, A. W.; Lammertsma, K. Validation of Exchange−Correlation Functionals for Spin States of Iron Complexes. J. Phys. Chem. A. 2004, 108, 5479–5483. DOI: 10.1021/jp049043i.
  • Fouqueau, A.; Casida, M. E.; Daku, L. M. L.; Hauser, A.; Neese, F. Comparison of Density Functionals for Energy and Structural Differences between the High- [5t2g:(T2g)4(Eg)2][5t2g:(T2g)4(Eg)2] and Low- [1a1g:(T2g)6(Eg)0][1a1g:(T2g)6(Eg)0] Spin States of iron(II) Coordination Compounds. II. More Functionals and the Hexaminoferrous Cation, [Fe(Nh3)6]2+. J. Chem. Phys. 2005, 122, 044110. DOI: 10.1063/1.1839854.
  • Fouqueau, A.; Mer, S.; Casida, M. E.; Daku, L. M. L.; Hauser, A.; Mineva, T.; Neese, F. Comparison of Density Functionals for Energy and Structural Differences between the High- [5t2g:(T2g)4(Eg)2][5t2g: (T2g)4(Eg)2] and Low- [1a1g:(T2g)6(Eg)0][1a1g: (T2g)6(Eg)0] Spin States of the Hexaquoferrous Cation [Fe(H2o)6]2+. J. Chem. Phys. 2004, 120, 9473–9486. DOI: 10.1063/1.1710046.
  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. DOI: 10.1021/j100096a001.
  • (A) Purvis, G. D., III; Bartlett, R. J. A Full Coupled‐Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. DOI: 10.1063/1.443164. (b) Klopper, W.; Noga, J.; Koch, H.; Helgaker, T. Multiple Basis Sets in Calculations of Triples Corrections in Coupled-Cluster Theory. Theor. Chem. Acc. 1997, 97, 164–176. DOI: 10.1007/s002140050250. (c) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479–483. DOI: 10.1016/S0009-2614(89)87395-6.
  • (A) Andersson, K.; Malmqvist, P.-Å.; Roos, B. O.; Sadlej, A. J.; Wolinski, K. Second-Order Perturbation Theory with a CASSCF Reference Function. J. Phys. Chem. 1990, 94, 5483–5488. DOI: 10.1021/j100377a012. (b) Andersson, K.; Malmqvist, P.-Å.; Roos, B. O. Second‐Order Perturbation Theory with a Complete Active Space Self‐Consistent Field Reference Function. J. Chem. Phys. 1992, 96, 1218–1226. DOI: 10.1063/1.462209. (c) Andersson, K. Different Forms of the Zeroth-Order Hamiltonian in Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function. Theor. Chim. Acta. 1995, 91, 31–46. DOI: 10.1063/1.462209.
  • Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310. DOI: 10.1063/1.448975.
  • (A) Weeks, J. D.; Hazi, A.; Rice, S. A. On the Use of Pseudopotentials in the Quantum Theory of Atoms and Molecules. Adv. Chem. Phys. 1969, 16, 283–342. (b) Bardsley, J. N. Pseudopotentials in Atomic and Molecular Physics. Case Stud. At. Phys. 1974, 4, 299–368. DOI: 10.1016/b978-0-7204-0331-2.50009-3. (c) Krauss, M.; Stevens, W. J. Effective Potentials in Molecular Quantum Chemistry. Ann. Rev. Phys. Chem. 1984, 35, 357–385. DOI: 10.1146/annurev.pc.35.100184.002041. (d) von Szentpaly, L.; Fuentealba, P.; Preuss, H.; Stoll, H. Pseudopotential Calculations on Rb+2, Cs+2, RbH+, CsH+ and the Mixed Alkali Dimer Ions. Chem. Phys. Lett. 1982, 93, 555–559. DOI: 10.1016/0009-2614(82)83728-7. (e) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-Adjusted Ab Initio Pseudopotentials for the First Row Transition Elements. J. Chem. Phys. 1987, 86, 866–872. DOI: 10.1063/1.452288.
  • Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913. (b) Hertwig, R. H.; Koch, W. On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem. Phys. Lett. 1997, 268, 345–351. DOI: 10.1016/S0009-2614(97)00207-8. (c) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • (A) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167. DOI: 10.1021/ar700111a. (b) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. DOI: 10.1007/s00214-007-0310-x.
  • Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125, 194101. DOI: 10.1063/1.2370993.
  • (A) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. DOI: 10.1103/PhysRevLett.78.1396. (b) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396–1396.DOI: 10.1103/PhysRevLett.78.1396.
  • (A) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. DOI: 10.1063/1.1674902. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. DOI: 10.1063/1.1677527. (c) Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chem. Acc. 1973, 28, 213–222. DOI: 10.1007/BF00533485. (d) Hariharan, P. C.; Pople, J. A. Accuracy of AH n Equilibrium Geometries by Single Determinant Molecular Orbital Theory. Mol. Phys. 1974, 27, 209–214. DOI: 10.1080/00268977400100171. (e) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.; Gordan, M. S. Self‐Consistent Molecular Orbital Methods. XXIII. A Polarization‐Type Basis Set for Second‐Row Elements. J. Chem. Phys. 1982, 77, 3654–3665. DOI: 10.1063/1.444267. (f) Binning Jr., R. C.; Curtiss, L. A. Compact Contracted Basis Sets for Third‐Row Atoms: Ga–Kr. J. Comp. Chem. 1990, 11, 1206–1216.DOI: 10.1002/jcc.54111013.
  • (A) McLean, A. D.; Chandler, G. S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639–5648. DOI: 10.1063/1.438980. (b) Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. DOI: 10.1063/1.438955. (c) Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L. Extension of Gaussian-2 (G2) Theory to Molecules Containing Third-Row Atoms K and Ca. J. Chem. Phys. 1997, 107, 5016–5021. DOI: 10.1063/1.474865. (d) Wachters, A. J. H. Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms. J. Chem. Phys. 1970, 52, 1033–1036. DOI: 10.1063/1.1673095. (e) Hay, P. J. Gaussian Basis Sets for Molecular Calculations. The Representation of 3d Orbitals in Transition‐Metal Atoms. J. Chem. Phys. 1977, 66, 4377–4384. DOI: 10.1063/1.433731. (f) McGrath, M. P.; Radom, L. Extension of Gaussian‐1 (G1) Theory to Bromine‐Containing Molecules. J. Chem. Phys. 1991, 94, 511–516. DOI: 10.1063/1.460367.
  • Grimme, S. Accurate Description of Van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463–1473. DOI: 10.1002/jcc.20078. (b) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. DOI: 10.1063/1.3382344. (c) Grimme, S. Density functional theory with London dispersion corrections. WIRES Comput. Mol. Sci. 2011, 1, 211–228. DOI: 10.1002/wcms.30. (d) Ehrlich, S.; Moellmann, J.; Grimme, S. Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. Acc. Chem. Res. 2012, 46, 916–926. DOI: 10.1021/ar3000844.
  • (A) Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 799–805. DOI: 10.1039/P29930000799. (b) Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. DOI: 10.1021/cr00031a013. (c) Andzelm, J.; Kölmel, C.; Klamt, A. Incorporation of Solvent Effects into Density Functional Calculations of Molecular Energies and Geometries. J. Chem. Phys. 1995, 103, 9312–9320. DOI: 10.1063/1.469990. (d) Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. DOI: 10.1021/jp9716997. (e) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C‐PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. DOI: 10.1002/jcc.10189.
  • Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009, 113, 6378–6396. DOI: 10.1021/jp810292n.
  • (A) Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. DOI: 10.1103/PhysRevLett.52.997. (b) Gross, E. K. U.; Kohn, W. Time-Dependent Density-Functional Theory. Adv. Quantum Chem. 1990, 21, 255–291. DOI:10.1016/S0065-3276(08)60600-0. (c) van Leeuwen, R. Key Concepts in Time-Dependent Density-Functional Theory. Int. J. Mod. Phys. B 2001, 15, 1969–2023. DOI: 10.1142/S021797920100499X. (d) Onida, G.; Reining, L.; Rubio, A. Electronic Excitations: Density-Functional Versus Many-Body Green’s-Function Approaches. Rev. Mod. Phys. 2002, 74, 601–659. DOI: 10.1103/RevModPhys.74.601.
  • Fleischauer, V. E.; Muñoz, S. B., III; Neate, P. G. N.; Brennessel, W. W.; Neidig, M. L. NHC and Nucleophile Chelation Effects on Reactive iron(II) Species in Alkyl–Alkyl Cross-Coupling. Chem. Sci. 2018, 9, 1878–1891. DOI: 10.1039/c7sc04750a.
  • Muñoz, S. B., III; Daifuku, S. L.; Sears, J. D.; Baker, T. M.; Carpenter, S. H.; Brennessel, W. W.; Neidig, M. L. The N‐Methylpyrrolidone (NMP) Effect in Iron‐Catalyzed Cross‐Coupling with Simple Ferric Salts and MeMgBr. Angew. Chem. Int. Ed. 2018, 57, 6496–6500. DOI: 10.1002/ANIE.201802087.
  • Al-Afyouni, M. H.; Fillman, K. L.; Brennessel, W. W.; Neidig, M. L. Isolation and Characterization of a Tetramethyliron(III) Ferrate: An Intermediate in the Reduction Pathway of Ferric Salts with MeMgBr. J. Am. Chem. Soc. 2014, 136, 15457–15460. DOI: 10.1021/ja5080757.
  • Kneebone, J. L.; Fleischauer, V. E.; Daifuku, S. L.; Shaps, A. A.; Bailey, J. M.; Iannuzzi, T. E.; Neidig, M. L. Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C–C Cross-Coupling. Inorg. Chem. 2016, 55, 272–282. DOI: 10.1021/acs.inorgchem.5b02263.
  • Fillman, K. L.; Przyojski, J. A.; Al-Afyouni, M. H.; Tonzetich, Z. J.; Neidig, M. L. A Combined Magnetic Circular Dichroism and Density Functional Theory Approach for the Elucidation of Electronic Structure and Bonding in Three- and Four-Coordinate iron(II)–N-heterocyclic Carbene Complexes. Chem. Sci. 2015, 6, 1178–1188. DOI: 10.1039/c4sc02791d.
  • Iannuzzi, T. E.; Gao, Y.; Baker, T. M.; Deng, L.; Neidig, M. L. Magnetic Circular Dichroism and Density Functional Theory Studies of Electronic Structure and Bonding in cobalt(II)–N-heterocyclic Carbene Complexes. Dalton Trans. 2017, 46, 13290–13299. DOI: 10.1039/c7dt01748k.
  • Hoyt, J. M.; Shevlin, M.; Margulieux, G. W.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Synthesis and Hydrogenation Activity of Iron Dialkyl Complexes with Chiral Bidentate Phosphines. Organometallics. 2014, 33, 5781–5790. DOI: 10.1021/om500329q.
  • Rousseau, L.; Brémond, E.; Lefèvre, G. Assessment of the Ground Spin State of iron(I) Complexes: Insights from DFT Predictive Models. New J. Chem. 2018, 42, 7612–7616. DOI: 10.1039/c7nj04816e.
  • Ehrlich, N.; Kreye, M.; Baabe, D.; Schweyen, P.; Freytag, M.; Jones, P. G.; Walter, M. D. Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited. Inorg. Chem. 2017, 56, 8415–8422. DOI: 10.1021/acs.inorgchem.7b01078.
  • Holloway, L. R.; Clough, A. J.; Li, J. Y.; Tao, E. L.; Tao, F.; Li, L. A Combined Experimental and Theoretical Study of Dinitrosyl Iron Complexes Containing Chelating bis(diphenyl)phosphinoX (X = Benzene, Propane and Ethylene): X-Ray Crystal Structures and Properties Influenced by the Presence or Absence of π-bonds in Chelating Ligands. Polyhedron. 2014, 70, 29–38. DOI: 10.1016/j.poly.2013.12.019.
  • Roy, S.; Mazinani, S. K. S.; Groy, T. L.; Gan, L.; Tarakeshwar, P.; Mujica, V.; Jones, A. K. Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine. Inorg. Chem. 2014, 53, 8919–8929. DOI: 10.1021/ic5012988.
  • Pascualini, M. E.; Stoian, S. A.; Ozarowski, A.; Abboud, K. A.; Veige, A. S. Solid State Collapse of a High-Spin Square-Planar Fe(II) Complex, Solution Phase Dynamics, and Electronic Structure Characterization of an Fe(II)2 Dimer. Inorg. Chem. 2016, 55, 5191–5200. DOI: 10.1021/acs.inorgchem.6b00075.
  • Pascualini, M. E.; Di Russo, N. V.; Thujis, A. E.; Ozarowski, A.; Stoian, S. A.; Abboud, K. A.; Christou, G.; Veige, A. S. A High-Spin Square-Planar Fe(II) Complex Stabilized by A Trianionic Pincer-Type Ligand and Conclusive Evidence for Retention of Geometry and Spin State in Solution. Chem. Sci. 2015, 6, 608–612. DOI: 10.1039/c4sc02634a.
  • Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Seraglia, R.; Tabacchi, G. An iron(II) Diamine Diketonate Molecular Complex: Synthesis, Characterization and Application in the CVD of Fe2O3 Thin Films. Inorg. Chim. Acta. 2012, 380, 161–166. DOI: 10.1016/j.ica.2011.10.036.
  • Schmidt, V. A.; Kennedy, C. R.; Bezdek, M. J.; Chirik, P. J. Selective [1,4]-Hydrovinylation of 1,3-Dienes with Unactivated Olefins Enabled by Iron Diimine Catalysts. J. Am. Chem. Soc. 2018, 140, 3443–3453. DOI: 10.1021/jacs.8b00245.
  • Baker, T. M.; Mako, T. L.; Vasilopoulos, A.; Li, B.; Byers, J. A.; Neidig, M. L. Magnetic Circular Dichroism and Density Functional Theory Studies of Iron(II)-Pincer Complexes: Insight into Electronic Structure and Bonding Effects of Pincer N-Heterocyclic Carbene Moieties. Organometallics. 2016, 35, 3692–3700. DOI: 10.1021/acs.organomet.6b00651.
  • (A) Hedstrom, A.; Lidstedt, E.; Norrby, P.-O. On the Oxidation State of Iron in Iron-Mediated C–C Couplings. J. Organomet. Chem. 2013, 748, 51–55. DOI: 10.1016/j.jorganchem.2013.04.024. (b) Ren, Q.; An, S.; Huang, Z.; Wu, N.; Shen, X. New Insights into the Mechanism of Iron-Catalyzed Cross-Coupling Reactions. J. Organomet. Chem. 2017, 844, 8–15. DOI: 10.1039/c4dt03491k. (c) Clémancey, M.; Cantat, T.; Blondin, G.; Latour, J.; Dorlet, P.; Lefèvre, G. Halogen Atom Transfer Mechanism of Iron-Catalyzed Direct Arylation to Form Biaryl Using Density Functional Theory calculations. Inorg. Chem. 2017, 56, 3834–3848. DOI: 10.1016/j.jorganchem.2017.05.035. (d) Structural Insights into the Nature of Fe0 and FeI Low-Valent Species Obtained upon the Reduction of Iron Salts by Aryl Grignard Reagents. DOI: 10.1021/acs.inorgchem.6b02616.
  • Chen, Z.; Zhang, D.; Jin, Y.; Yang, Y.; Su, N. Q.; Yang, W. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States. J. Phys. Chem. Lett. 2017, 8, 4479–4485. DOI: 10.1021/acs.jpclett.7b01864.
  • Schröder, D.; Shaik, S.; Schwarz, H. Two-State Reactivity as a New Concept in Organometallic Chemistry. Acc. Chem. Res. 2000, 33, 139–145. DOI: 10.1021/ar990028j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.