Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 38, 2018 - Issue 5
421
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Metal-Organic Frameworks-Based Electrocatalysis: Insight and Future Perspectives

, & ORCID Icon

References

  • Kaur, R.; Kim, K.-H.; Paul, A.; Deep, A. Recent Advances in the Photovoltaic Applications of Coordination Polymers and Metal-Organic Frameworks. J. Mater. Chem. A. 2016, 4(11), 3991–4002. DOI: 10.1039/C5TA09668E.
  • Lee, D. Y.; Shin, C. Y.; Yoon, S. J.; Lee, H. Y.; Lee, W.; Shrestha, N. K.; Lee, J. K.; Han, S.-H. Enhanced Photovoltaic Performance of Cu-Based Metal-Organic Frameworks Sensitized Solar Cell by Addition of Carbon Nanotubes. Sci. Rep. 2014, 4, 3930. DOI: 10.1038/srep03930.
  • Yao, Z.-Q.; Li, G.-Y.; Xu, J.; Hu, T.-L.; Bu, X.-H. A Water-Stable Luminescent ZnII Metal-Organic Framework as Chemosensor for High-Efficiency Detection of CrVI-Anions (Cr2O72- and CrO42-) in Aqueous Solution. Chem. Eur. J. 2018, 24(13), 3192–3198. DOI: 10.1002/chem.201705328.
  • Xia, T.; Zhu, F.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. A Luminescent Ratiometric pH Sensor Based on A Nanoscale and Biocompatible Eu/Tb-mixed MOF. Dalton. Trans. 2017, 46(23), 7549–7555. DOI: 10.1039/c7dt01604b.
  • Wu, S.; Lin, Y.; Liu, J.; Shi, W.; Yang, G.; Cheng, P. Rapid Detection of the Biomarkers for Carcinoid Tumors by a Water Stable Luminescent Lanthanide Metal-Organic Framework Sensor. Adv. Funct. Mater. 2018, 28(17), 1707169. DOI: 10.1002/adfm.v28.17.
  • Tao, C.-L.; Chen, B.; Liu, X.-G.; Zhou, L.-J.; Zhu, X.-L.; Cao, J.; Gu, Z.-G.; Zhao, Z.; Shen, L.; Tang, B. Z. A Highly Luminescent Entangled Metal-Organic Framework Based on Pyridine-Substituted Tetraphenylethene for Efficient Pesticide Detection. Chem. Commun. 2017, 53(72), 9975–9978. DOI: 10.1039/C7CC05031C.
  • Lu, X.-F.; Liao, P.-Q.; Wang, J.-W.; Wu, J.-X.; Chen, X.-W.; He, C.-T.; Zhang, J.-P.; Li, G.-R.; Chen, X.-M.; An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution. J. Am. Chem. Soc. 2016, 138(27), 8336–8339. DOI: 10.1021/jacs.6b03125.
  • Johnson, B. A.; Bhunia, A.; Ott, S.; Fei, H.; Cohen, S. M. Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. J. Am. Chem. Soc. 2018, 140(8), 2985–2994. DOI: 10.1021/jacs.7b13077.
  • Yang, L.; Kinoshita, S.; Yamada, T.; Kanda, S.; Kitagawa, H.; Tokunaga, M.; Ishimoto, T.; Ogura, T.; Nagumo, R.; Miyamoto, A.; et. al. A Metal-Organic Framework as an Electrocatalyst for Ethanol Oxidation. Angew. Chem., Int. Ed. 2010, 49(31), 5348–5351. DOI: 10.1002/anie.201000863.
  • Kung, C.-W.; Chang, T.-H.; Chou, L.-Y.; Hupp, J. T.; Farha, O. K.; Ho, K.-C. Porphyrin-Based Metal-Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. Comm. 2015, 58, 51–56. DOI: 10.1016/j.elecom.2015.06.003.
  • Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dinca, M. Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nat. Mater. 2017, 16(2), 220–224. DOI: 10.1038/nmat4766.
  • Yang, J.; Xiong, P.; Zheng, C.; Qiu, H.; Wei, M. Metal-Organic Frameworks: A New Promising Class of Materials for A High Performance Supercapacitor Electrode. J. Mater. Chem. A. 2014, 2(39), 16640–16644. DOI: 10.1039/C4TA04140B.
  • Liu, X.; Shi, C.; Zhai, C.; Cheng, M.; Liu, Q.; Wang, G. Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. ACS Appl. Mater. Interfaces. 2016, 8(7), 4585–4591. DOI: 10.1021/acsami.5b10781.
  • Wang, Z.; Cohen, S. M. Postsynthetic Modification of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1315–1329. DOI: 10.1039/b802258p.
  • Karagiaridi, O.; Lalonde, M. B.; Bury, W.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T. Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. J. Am. Chem. Soc. 2012, 134(45), 18790–18796. DOI: 10.1021/ja308786r.
  • Shultz, A. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Post-Synthesis Modification of a Metal-Organic Framework to Form Metallosalen-Containing MOF Materials. J. Am. Chem. Soc. 2011, 133(34), 13252–13255. DOI: 10.1021/ja204820d.
  • Gadzikwa, T.; Lu, G.; Stern, C. L.; Wilson, S. R.; Hupp, J. T.; Nguyen, S. T. Covalent Surface Modification of a Metal-Organic Framework: Selective Surface Engineering via CuI -Catalyzed Huisgen Cycloaddition. Chem. Commun. 2008, 5493–5495. DOI: 10.1039/b805101a.
  • McDonald, T. M.; D’Alessandro, D. M.; Krishna, R.; Long, J. R. Enhanced Carbon Dioxide Capture upon Incorporation of N,N’-Dimethylethylenediamine in the Metal-Organic Framework CuBTTri. Chem. Sci. 2011, 2, 2022–2028. DOI: 10.1039/c1sc00354b.
  • Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; et al. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework. J. Am. Chem. Soc. 2013, 135(28), 10294–10297. DOI: 10.1021/ja4050828.
  • Mulfort, K. L.; Hupp, J. T. Alkali Metal Cation Effects on Hydrogen Uptake and Binding in Metal-Organic Frameworks. Inorg. Chem. 2008, 47(18), 7936–7938. DOI: 10.1021/ic800700h.
  • Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks. J. Am. Chem. Soc. 2012, 134(43), 18082–18088. DOI: 10.1021/ja3079219.
  • Deria, P.; Bury, W.; Hupp, J. T.; Farha, O. K. Versatile Functionalization of the NU-1000 Platform by Solvent-Assisted Ligand Incorporation. Chem. Commun. 2014, 50, 1965–1968. DOI: 10.1039/c3cc48562e.
  • Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Beyond Post-Synthesis Modification: Evolution of Metal-Organic Frameworks via Building Block Replacement. Chem. Soc. Rev. 2014, 43, 5896–5912. DOI: 10.1039/c4cs00067f.
  • Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies. J. Am. Chem. Soc. 2013, 135, 16801–16804. DOI: 10.1021/ja408959g.
  • Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z. Fe-Based MOFs for Photocatalytic CO2 Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways. ACS Catal. 2014, 4(12), 4254–4260. DOI: 10.1021/cs501169t.
  • Hinogami, R.; Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hashiba, H.; Yamada, Y. Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal-Organic Framework. ECS Electrochem. Lett. 2012, 1(4), H17–H19. DOI: 10.1149/2.001204eel.
  • Senthil Kumar, R.; Senthil Kumar, S.; Anbu Kulandainathan, M. Highly Selective Electrochemical Reduction of Carbon Dioxide Using Cu Based Metal-Organic Framework as an Electrocatalyst. Electrochem. Commun. 2012, 25, 70–73. DOI: 10.1016/j.elecom.2012.09.018.
  • Nohra, B.; El Moll, H.; Rodriguez Albelo, L. M.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Ngo Biboum, R.; Lemaire, J.; Keita, B.; et al. Polyoxometalate-Based Metal-Organic Frameworks (POMOFs): Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133(34), 13363–13374. DOI: 10.1021/ja201165c.
  • Qin, J.-S.; Du, D.-Y.; Guan, W.; Bo, X.-J.; Li, Y.-F.; Guo, L.-P.; Su, Z.-M.; Wang, -Y.-Y.; Lan, Y.-Q.; Zhou, H.-C. Ultrastable Polymolybdate-Based Metal-Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. J. Am. Chem. Soc. 2015, 137(22), 7169–7177. DOI: 10.1021/jacs.5b02688.
  • Li, F.-L.; Shao, Q.; Huang, X.; Lang, J.-P.; Lang, J.-P. Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angew. Chem., Int. Ed. 2018, 57(7), 1888–1892. DOI: 10.1002/anie.201711376.
  • Surendranath, Y.; Kanan, M.W.; Nocera, D.G. Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral PH. J. Am. Chem. Soc. 2010, 132(46), 16501–16509. DOI:10.1021/ja106102b.
  • Yan, D.; Dong, C.-L.; Huang, Y.-C.; Zou, Y.; Xie, C.; Wang, Y.; Zhang, Y.; Liu, D.; Shen, S.; Wang, S. Engineering the Coordination Geometry of Metal-Organic Complex Electrocatalysts for Highly Enhanced Oxygen Evolution Reaction. J. Mater. Chem. A. 2018, 6(3), 805–810. DOI: 10.1039/C7TA09092G.
  • Mao, J.; Yang, L.; Yu, P.; Wei, X.; Mao, L. Electrocatalytic Four-Electron Reduction of Oxygen with Copper (II)-Based Metal-Organic Frameworks. Electrochem. Commun. 2012, 19, 29–31. DOI: 10.1016/j.elecom.2012.02.025.
  • Lions, M.; Tommasino, J. B.; Chattot, R.; Abeykoon, B.; Guillou, N.; Devic, T.; Demessence, A.; Cardenas, L.; Maillard, F.; Fateeva, A. Insights into the Mechanism of Electrocatalysis of the Oxygen Reduction Reaction by a Porphyrinic Metal-Organic Framework. Chem. Commun. 2017, 53(48), 6496–6499. DOI: 10.1039/C7CC02113E.
  • Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castano, P.; Irabien, A. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols. ChemSusChem. 2017, 10(6), 1100–1109. DOI: 10.1002/cssc.201600693.
  • Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yaghi, O. M.; Yang, P. Metal-Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2015, 137(44), 14129–14135. DOI: 10.1021/jacs.5b08212.
  • Miner, E. M.; Gul, S.; Ricke, N. D.; Pastor, E.; Yano, J.; Yachandra, V. K.; Van Voorhis, T.; Dinca, M. Mechanistic Evidence for Ligand-Centered Electrocatalytic Oxygen Reduction with the Conductive MOF Ni3(Hexaiminotriphenylene)2. ACS Catal. 2017, 7(11), 7726–7731. DOI: 10.1021/acscatal.7b02647.
  • Marcus, R. A.;. Chemical and Electrochemical Electron-Transfer Theory. Annu. Rev. Phys. Chem. 1964, 15(1), 155–196. DOI: 10.1146/annurev.pc.15.100164.001103.
  • Marcus, R. A.; Sutin, N. Electron Transfers in Chemistry and Biology. Biochim. Biophys. Acta Bioenerg. 1985, 811(3), 265–322. DOI: 10.1016/0304-4173(85)90014-X.
  • Marcus, R. A.;. Electron Transfer Reactions in Chemistry. Theory Exp. Rev. Mod. Phys. 1993, 65(3), 599. DOI: 10.1103/RevModPhys.65.599.
  • Patwardhan, S.; Schatz, G. C. Theoretical Investigation of Charge Transfer in Metal-Organic Frameworks for Electrochemical Device Applications. J. Phys. Chem. C. 2015, 119(43), 24238–24247. DOI: 10.1021/acs.jpcc.5b06065.
  • Wasielewski, M. R.;. Photoinduced Electron Transfer in Supramolecular Systems for Artificial Photosynthesis. Chem. Rev. 1992, 92(3), 435–461. DOI: 10.1021/cr00011a005.
  • Larsson, S.; Volosov, A. Distance Dependence in Photo‐Induced Intramolecular Electron Transfer. J. Chem. Phys. 1986, 85(5), 2548–2554. DOI: 10.1063/1.451062.
  • Larsson, S.;. Electron Transfer in Chemical and Biological Systems. Orbital Rules for Nonadiabatic Transfer. J. Am. Chem. Soc. 1981, 103(14), 4034–4040. DOI: 10.1021/ja00404a010.
  • Beratan, D. N.; Hopfield, J. Calculation of Tunneling Matrix Elements in Rigid Systems: Mixed-Valence Dithiaspirocyclobutane Molecules. J. Am. Chem. Soc. 1984, 106(6), 1584–1594. DOI: 10.1021/ja00318a008.
  • Van Wyk, A.; Smith, T.; Park, J.; Deria, P. Charge-Transfer within Zr-Based Metal-Organic Framework: The Role of Polar Node. J. Am. Chem. Soc. 2018, 140(8), 2756–2760. DOI: 10.1021/jacs.7b13211.
  • Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chem. – Eur. J. 2011, 17(41), 11372–11388. DOI: 10.1002/chem.v17.41.
  • Hod, I.; Bury, W.; Karlin, D. M.; Deria, P.; Kung, C.-W.; Katz, M. J.; So, M.; Klahr, B.; Jin, D.; Chung, Y.-W.; et al. Directed Growth of Electroactive Metal-Organic Framework Thin Films Using Electrophoretic Deposition. Adv. Mater. 2014, 26(36), 6295–6300. DOI: 10.1002/adma.201401940.
  • Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P.; et al. Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science. 2013, 343(6166), 66–69.
  • Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science. 1992, 258(5087), 1474–1476. DOI: 10.1126/science.258.5087.1474.
  • Huo, P.; Chen, T.; Hou, J.-L.; Yu, L.; Zhu, Q.-Y.; Dai, J. Ligand-to-Ligand Charge Transfer within Metal-Organic Frameworks Based on Manganese Coordination Polymers with Tetrathiafulvalene-Bicarboxylate and Bipyridine Ligands. Inorg. Chem. 2016, 55(13), 6496–6503. DOI: 10.1021/acs.inorgchem.6b00571.
  • Tachikawa, T.; Choi, J. R.; Fujitsuka, M.; Majima, T. Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. J. Phys. Chem. C. 2008, 112(36), 14090–14101. DOI: 10.1021/jp803620v.
  • Hanna, L.; Kucheryavy, P.; Liu, C.; Zhang, X.; Lockard, J. V. Long-Lived Photoinduced Charge Separation in a Trinuclear Iron-μ3-oxo-based Metal-Organic Framework. J. Phys. Chem. C. 2017, 121(25), 13570–13576. DOI: 10.1021/acs.jpcc.7b03936.
  • Santiago Portillo, A.; Baldovi, H. G.; Garcia Fernandez, M. T.; Navalon, S.; Atienzar, P.; Ferrer, B.; Alvaro, M.; Garcia, H.; Li, Z. Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH2-UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. J. Phys. Chem. C. 2017, 121(12), 7015–7024. DOI: 10.1021/acs.jpcc.6b13068.
  • Leong, C. F.; Chan, B.; Faust, T. B.; D’Alessandro, D. M. Controlling Charge Separation in a Novel Donor-Acceptor Metal-Organic Framework via Redox Modulation. Chem. Sci. 2014, 5(12), 4724–4728. DOI: 10.1039/C4SC01551G.
  • D’Alessandro, D. M.; Keene, F. R. Intervalence Charge Transfer (IVCT) in Trinuclear and Tetranuclear Complexes of Iron, Ruthenium, and Osmium. Chem. Rev. 2006, 106(6), 2270–2298. DOI: 10.1021/cr050010o.
  • Hush, N. S. Intervalence-Transfer Absorption. Part 2. Theoretical Considerations and Spectroscopic Data. In Progress in Inorganic Chemistry, Cottn, F. A., Eds.; Wiley, 1967; Vol. 8; pp 391–444.
  • Robin, M. B.; Day, P. Mixed Valence Chemistry–A Survey and Classification. In Molecules into Materials: Case Studies in Materials Chemistry—Mixed Valency, Magnetism and Superconductivity; Day, P., Eds.; World Scientific, 2007; pp 142–317.
  • Itaya, K.; Uchida, I. Nature of Intervalence Charge-Transfer Bands in Prussian Blues. Inorg. Chem. 1986, 25(3), 389–392.
  • Stavila, V.; Talin, A. A.; Allendorf, M. MOF-Based Electronic and Opto-Electronic Devices. Chem. Soc. Rev. 2014, 43(16), 5994–6010. DOI: 10.1039/c4cs00096j.
  • Park, J. G.; Aubrey, M. L.; Oktawiec, J.; Chakarawet, K.; Darago, L. E.; Grandjean, F.; Long, G. J.; Long, J. R. Charge Delocalization and Bulk Electronic Conductivity in the Mixed-Valence Metal-Organic Framework Fe(1,2,3-triazolate)2(BF4)x. J. Am. Chem. Soc. 2018, 140(27), 8526–8534. DOI: 10.1021/jacs.8b03696.
  • Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R. Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137(50), 15703–15711. DOI: 10.1021/jacs.5b10385.
  • DeGayner, J. A.; Jeon, I.-R.; Sun, L.; Dincă, M.; Harris, T. D. 2D Conductive Iron-Quinoid Magnets Ordering up to Tc = 105 K via Heterogenous Redox Chemistry. J. Am. Chem. Soc. 2017, 139(11), 4175–4184. DOI: 10.1021/jacs.7b00705.
  • Reimers, J. R.; Hush, N. S. A Unified Description of the Electrochemical, Charge Distribution, and Spectroscopic Properties of the Special-Pair Radical Cation in Bacterial Photosynthesis. J. Am. Chem. Soc. 2004, 126(13), 4132–4144. DOI: 10.1021/ja036883m.
  • Leiger, K.; Freiberg, A.; Dahlbom, M. G.; Hush, N. S.; Reimers, J. R. Pressure-Induced Spectral Changes for the Special-Pair Radical Cation of the Bacterial Photosynthetic Reaction Center. J. Chem. Phys. 2007, 126(21), 06B602. DOI: 10.1063/1.2739513.
  • Dinolfo, P. H.; Hupp, J. T. Tetra-Rhenium Molecular Rectangles as Organizational Motifs for the Investigation of Ligand-Centered Mixed Valency: Three Examples of Full Delocalization. J. Am. Chem. Soc. 2004, 126(51), 16814–16819. DOI: 10.1021/ja045457d.
  • Dinolfo, P. H.; Lee, S. J.; Coropceanu, V.; Brédas, J.-L.; Hupp, J. T. Borderline Class II/III Ligand-Centered Mixed Valency in a Porphyrinic Molecular Rectangle. Inorg. Chem. 2005, 44(16), 5789–5797. DOI: 10.1021/ic050834o.
  • Dinolfo, P. H.; Williams, M. E.; Stern, C. L.; Hupp, J. T. Rhenium-Based Molecular Rectangles as Frameworks for Ligand-Centered Mixed Valency and Optical Electron Transfer. J. Am. Chem. Soc. 2004, 126(40), 12989–13001. DOI: 10.1021/ja0473182.
  • Hua, C.; Doheny, P. W.; Ding, B.; Chan, B.; Yu, M.; Kepert, C. J.; D’Alessandro, D. M. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalization in Metal-Organic Frameworks. J. Am. Chem. Soc. 2018, 140(21), 6622–6630. DOI: 10.1021/jacs.8b02638.
  • Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A Microporous Metal-Organic Framework for Gas‐Chromatographic Separation of Alkanes. Angew. Chem. Int. Ed. 2006, 45(9), 1390–1393. DOI:10.1002/ange.200502844.
  • Hamon, L.; Llewellyn, P. L.; Devic, T.; Ghoufi, A.; Clet, G.; Guillerm, V.; Pirngruber, G. D.; Maurin, G.; Serre, C.; Driver, G. Co-Adsorption and Separation of CO2− CH4 Mixtures in the Highly Flexible MIL-53 (Cr) MOF. J. Am. Chem. Soc. 2009, 131(47), 17490–17499. DOI: 10.1021/ja907556q.
  • Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M. Highly Efficient Separation of Carbon Dioxide by a Metal-Organic Framework Replete with Open Metal Sites. Proc. Natl. Acad. Sci. U.S.A. 2009, 106(49), 20637–20640. DOI: 10.1073/pnas.0909718106.
  • Yi, F.-Y.; Gu, M.; Wang, S.-C.; Zheng, J.-Q.; Pan, L.; Han, L. A Dual-Functional Luminescent MOF Sensor for Phenylmethanol Molecule and Tb3+ Cation. Inorg. Chem. 2018, 57(5), 2654–2662. DOI: 10.1021/acs.inorgchem.7b03053.
  • Zhang, J.; Biradar, A. V.; Pramanik, S.; Emge, T. J.; Asefa, T.; Li, J. A New Layered Metal-Organic Framework as A Promising Heterogeneous Catalyst for Olefin Epoxidation Reactions. Chem. Commun. 2012, 48(52), 6541–6543. DOI: 10.1039/c2cc18127d.
  • Kim, J.; Kim, S.-N.; Jang, H.-G.; Seo, G.; Ahn, W.-S. CO2 Cycloaddition of Styrene Oxide over MOF Catalysts. Appl. Catal. A: Gen. 2013, 453, 175–180. DOI: 10.1016/j.apcata.2012.12.018.
  • Kung, C.-W.; Otake, K.; Buru, C. T.; Goswami, S.; Cui, Y.; Hupp, J. T.; Spokoyny, A. M.; Farha, O. K. Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests. J. Am. Chem. Soc. 2018, 140(11), 3871–3875. DOI: 10.1021/jacs.8b00605.
  • Goswami, S.; Ray, D.; Otake, K.-I.; Kung, C.-W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K.; et al. A Porous, Electrically Conductive Hexa-Zirconium(IV) Metal-Organic Framework. Chem. Sci. 2018, 9(19), 4477–4482. DOI: 10.1039/c8sc00961a.
  • Wang, T. C.; Hod, I.; Audu, C. O.; Vermeulen, N. A.; Nguyen, S. T.; Farha, O. K.; Hupp, J. T. Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive. ACS Appl. Mater. Interfaces. 2017, 9(14), 12584–12591. DOI: 10.1021/acsami.6b16834.
  • Zeng, Y.; Fu, Z.; Chen, H.; Liu, C.; Liao, S.; Dai, J. Photo- and Thermally Induced Coloration of a Crystalline MOF Accompanying Electron Transfer and Long-Lived Charge Separation in a Stable Host-Guest System. Chem. Commun. 2012, 48(65), 8114–8116. DOI: 10.1039/c2cc33823h.
  • Yamamoto, S.; Hijikata, Y.; Zhang, Z.; Awaga, K.; Pirillo, J.; Hijikata, Y.; Awaga, K. Nanopore-Induced Host-Guest Charge Transfer Phenomena in a Metal-Organic Framework. Chem Sci. 2018, 9(13), 3282–3289. DOI: 10.1039/c7sc05390h.
  • Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C. Construction of Ultrastable Porphyrin Zr Metal-Organic Frameworks through Linker Elimination. J. Am. Chem. Soc. 2013, 135(45), 17105–17110. DOI: 10.1021/ja408084j.
  • Jiang, H.-L.; Feng, D.; Wang, K.; Gu, Z.-Y.; Wei, Z.; Chen, Y.-P.; Zhou, H.-C. An Exceptionally Stable, Porphyrinic Zr Metal-Organic Framework Exhibiting pH-Dependent Fluorescence. J. Am. Chem. Soc. 2013, 135(37), 13934–13938. DOI: 10.1021/ja406844r.
  • Johnson, B. A.; Bhunia, A.; Fei, H.; Cohen, S. M.; Ott, S. Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. J. Am. Chem. Soc. 2018, 140(8), 2985–2994. DOI: 10.1021/jacs.7b13077.
  • Usov, P. M.; Huffman, B.; Epley, C. C.; Kessinger, M. C.; Zhu, J.; Maza, W. A.; Morris, A. J. Study of Electrocatalytic Properties of Metal-Organic Framework PCN-223 for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces. 2017, 9(39), 33539–33543. DOI: 10.1021/acsami.7b01547.
  • Celis-Salazar, P. J.; Epley, C. C.; Ahrenholtz, S. R.; Maza, W. A.; Usov, P. M.; Morris, A. J. Proton-Coupled Electron Transport in Anthraquinone-Based Zirconium Metal-Organic Frameworks. Inorg Chem. 2017, 56(22), 13741–13747. DOI: 10.1021/acs.inorgchem.7b01656.
  • Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-Porphyrin-Based Metal-Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. ACS Catal. 2015, 5(11), 6302–6309. DOI: 10.1021/acscatal.5b01767.
  • Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. A Local Proton Source Enhances CO2 Electroreduction to CO by A Molecular Fe Catalyst. Science. 2012, 338(6103), 90–94. DOI: 10.1126/science.1224581.
  • Morgan Chan, Z.; Kitchaev, D. A.; Nelson Weker, J.; Schnedermann, C.; Lim, K.; Ceder, G.; Tumas, W.; Toney, M. F.; Nocera, D. G. Electrochemical Trapping of Metastable Mn3+ Ions for Activation of MnO2 Oxygen Evolution Catalysts. Proc. Natl. Acad. Sci. U.S.A. 2018, 115(23), E5261–E5268. DOI: 10.1073/pnas.1722235115.
  • Grätzel, M. Photoelectrochemical Cells. Nature. 2001, 414(6861), 338. DOI: 10.1038/35104607.
  • Turner, J. A. Sustainable Hydrogen Production. Science. 2004, 305(5686), 972–974. DOI: 10.1126/science.1103197.
  • Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. 2006, 103(43), 15729–15735. DOI: 10.1073/pnas.0603395103.
  • Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A. Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays. J. Am. Chem. Soc. 2011, 133(5), 1216–1219. DOI: 10.1021/ja108801m.
  • Patel, A.; Narkhede, N. 12-Tungstophosphoric Acid Anchored to Zeolite Hβ: Synthesis, Characterization, and Biodiesel Production by Esterification of Oleic Acid with Methanol. Energy & Fuels. 2012, 26(9), 6025–6032. DOI: 10.1021/ef301126e.
  • Brahmkhatri, V.; Patel, A. Esterification of Lauric Acid with Butanol-1 over H3PW12O40 Supported on MCM-41. Fuel. 2012, 102, 72–77. DOI: 10.1016/j.fuel.2012.05.053.
  • Gong, Y.; Wu, T.; Jiang, P. G.; Lin, J. H.; Yang, Y. X. Octamolybdate-Based Metal-Organic Framework with Unsaturated Coordinated Metal Center as Electrocatalyst for Generating Hydrogen from Water. Inorg. Chem. 2013, 52(2), 777–784. DOI: 10.1021/ic3018858.
  • Hod, I.; Deria, P.; Bury, W.; Mondloch, J. E.; Kung, C.-W.; So, M.; Sampson, M. D.; Peters, A. W.; Kubiak, C. P.; Farha, O. K.; et al. A Porous Proton-Relaying Metal-Organic Framework Material that Accelerates Electrochemical Hydrogen Evolution. Nat. Commun. 2015, 6, 8304. DOI: 10.1038/ncomms9304.
  • Seabold, J. A.; Choi, K.-S. Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode. Chem. Mater. 2011, 23(5), 1105–1112. DOI: 10.1021/cm1019469.
  • McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135(45), 16977–16987. DOI: 10.1021/ja407115p.
  • Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catal. 2012, 2(8), 1765–1772. DOI: 10.1021/cs3003098.
  • Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction. Angew Chem., Int. Ed. 2014, 126(29), 7714–7718. DOI: 10.1002/ange.201402822.
  • Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y.-L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution. Nat. Commun. 2013, 4, 2439. DOI: 10.1038/ncomms3439.
  • Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution. Nat. Energy. 2016, 1(12), 16184. DOI: 10.1038/nenergy.2016.184.
  • Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Metal-Organic Framework Nanosheets as Building Blocks for Molecular Sieving Membranes. Science. 2014, 346(6215), 1356–1359. DOI: 10.1126/science.1254227.
  • Yang, L.; Kinoshita, S.; Yamada, T.; Kanda, S.; Kitagawa, H.; Tokunaga, M.; Ishimoto, T.; Ogura, T.; Nagumo, R.; Miyamoto, A.; et al. A Metal-Organic Framework as an Electrocatalyst for Ethanol Oxidation. Angew. Chem. Int. Ed. 2010, 49(31), 5348–5351. DOI:10.1002/anie.201000863.
  • Ishimoto, T.; Ogura, T.; Koyama, M.; Yang, L.; Kinoshita, S.; Yamada, T.; Tokunaga, M.; Kitagawa, H. A Key Mechanism of Ethanol Electrooxidation Reaction in A Noble-Metal-Free Metal-Organic Framework. J. Phys. Chem. C. 2013, 117(20), 10607–10614. DOI: 10.1021/jp4031046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.