Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 40, 2020 - Issue 2
1,838
Views
39
CrossRef citations to date
0
Altmetric
Comments

Photocatalysis with Transition Metal Based Photosensitizers

ORCID Icon & ORCID Icon

References

  • Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2001, 123(18), 4304–4312. DOI: 10.1021/ja003693s.
  • Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The Triplet State of Organo-Transition Metal Compounds. Triplet Harvesting and Singlet Harvesting for Efficient OLEDs. Coord. Chem. Rev. 2011, 255(21–22), 2622–2652. DOI: 10.1016/j.ccr.2011.01.042.
  • You, Y.; Cho, S.; Nam, W. Cyclometalated Iridium(III) Complexes for Phosphorescence Sensing of Biological Metal Ions. Inorg. Chem. 2014, 53(4), 1804–1815. DOI: 10.1021/ic4013872.
  • Ma, D.-L.; Ma, V. P.-Y.; Chan, D. S.-H.; Leung, K.-H.; He, H.-Z.; Leung, C.-H. Recent Advances in Luminescent Heavy Metal Complexes for Sensing. Coord. Chem. Rev. 2012, 256(23–24), 3087–3113. DOI: 10.1016/j.ccr.2012.07.005.
  • Yi, X.; Yang, P.; Huang, D.; Zhao, J. Visible Light-Harvesting Cyclometalated Ir(III) Complexes With Pyreno[4,5-d]Imidazole C^N Ligands as Triplet Photosensitizers for Triplet–Triplet Annihilation Upconversion. Dyes Pigm. 2013, 96(1), 104–115. DOI: 10.1016/j.dyepig.2012.07.020.
  • Yuan, Y.-J.; Zhang, J.-Y.; Yu, Z.-T.; Feng, J.-Y.; Luo, W.-J.; Ye, J.-H.; Zou, Z.-G. Impact of Ligand Modification on Hydrogen Photogeneration and Light-Harvesting Applications Using Cyclometalated Iridium Complexes. Inorg. Chem. 2012, 51(7), 4123–4133. DOI: 10.1021/ic202423y.
  • Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110(11), 6474–6502. DOI: 10.1021/cr100246c.
  • Ahmad, S.; Guillén, E.; Kavan, L.; Grätzel, M.; Nazeeruddin, M. K. Metal Free Sensitizer and Catalyst for Dye Sensitized Solar Cells. Energy Environ. Sci. 2013, 6(12), 3439–3466. DOI: 10.1039/c3ee41888j.
  • Wang, D.; Wu, Y.; Dong, H.; Qin, Z.; Zhao, D.; Yu, Y.; Zhou, G.; Jiao, B.; Wu, Z.; Gao, M., et al. Iridium (III) Complexes with 5,5-Dimethyl-3-(Pyridin-2-yl)Cyclohex-2-Enone Ligands as Sensitizer for Dye-Sensitized Solar Cells. Org. Electron. 2013, 14(12), 3297–3305. DOI: 10.1016/j.orgel.2013.09.040.
  • Yin, J.-F.; Velayudham, M.; Bhattacharya, D.; Lin, H.-C.; Lu, K.-L. Structure Optimization of Ruthenium Photosensitizers for Efficient Dye-Sensitized Solar Cells – A Goal toward A “Bright” Future. Coord. Chem. Rev. 2012, 256(23–24), 3008–3035. DOI: 10.1016/j.ccr.2012.06.022.
  • Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113(7), 5322–5363. DOI: 10.1021/cr300503r.
  • Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Aryl Amination Using Ligand-Free Ni(II) Salts and Photoredox Catalysis. Science. 2016, 353(6296), 279–283. DOI: 10.1126/science.aag0209.
  • Cismesia, M. A.; Yoon, T. P. Characterizing Chain Processes in Visible Light Photoredox Catalysis. Chem. Sci. 2015, 6(10), 5426–5434. DOI: 10.1039/C5SC02185E.
  • Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. Radical Cation Diels–Alder Cycloadditions by Visible Light Photocatalysis. J. Am. Chem. Soc. 2011, 133(48), 19350–19353. DOI: 10.1021/ja2093579.
  • Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Visible-Light-Mediated Conversion of Alcohols to Halides. Nat. Chem. 2011, 3(2), 140–145. DOI: 10.1038/nchem.949.
  • Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Zelewsky, A. V. Ru(II) Polypyridine Complexes: Photophysics, Photochemistry, Electrochemistry, and Chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. DOI: 10.1016/0010-8545(88)80032-8.
  • Haga, M.; Dodsworth, E. S.; Eryavec, G.; Seymour, P.; Lever, A. B. P. Luminescence Quenching of the Tris(2,2ʹ-Bipyrazine)Ruthenium(II) Cation and Its Monoprotonated Complex. Inorg. Chem. 1985, 24(12), 1901–1906. DOI: 10.1021/ic00206a041.
  • Marcus, R. A.;. Chemical and Electrochemical Electron-Transfer Theory. Annu. Rev. Phys. Chem. 1964, 15(1), 155–196. DOI: 10.1146/annurev.pc.15.100164.001103.
  • Marcus, R. A.;. On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I. J. Chem. Phys. 1956, 24(5), 966–978. DOI: 10.1063/1.1742723.
  • Shon, J.-H.; Teets, T. S. Potent Bis-Cyclometalated Iridium Photoreductants with β-Diketiminate Ancillary Ligands. Inorg. Chem. 2017, 56(24), 15295–15303. DOI: 10.1021/acs.inorgchem.7b02859.
  • Shon, J.-H.; Sittel, S.; Teets, T. S. Synthesis and Characterization of Strong Cyclometalated Iridium Photoreductants for Application in Photocatalytic Aryl Bromide Hydrodebromination. ACS Catal. 2019, 9(9), 8646–8658. DOI: 10.1021/acscatal.9b02759.
  • Murakami, M.; Ohkubo, K.; Fukuzumi, S. Inter- and Intramolecular Photoinduced Electron Transfer of Flavin Derivatives with Extremely Small Reorganization Energies. Chem. - Eur. J. 2010, 16(26), 7820–7832. DOI: 10.1002/chem.200903236.
  • Albani, J. R.;. Chapter 4 - Fluorescence Quenching. In Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies; Albani, J. R., Ed.; Elsevier Science: Amsterdam, 2004; pp 141–192. DOI: 10.1016/B978-044451449-3/50004-6.
  • Arias-Rotondo, D. M.; McCusker, J. K. The Photophysics of Photoredox Catalysis: A Roadmap for Catalyst Design. Chem. Soc. Rev. 2016, 45(21), 5803–5820. DOI: 10.1039/C6CS00526H.
  • Kleinschmidt, M.; van Wüllen, C.; Marian, C. M. Intersystem-Crossing and Phosphorescence Rates in Fac-IrIII(Ppy)3 : A Theoretical Study Involving Multi-Reference Configuration Interaction Wavefunctions. J. Chem. Phys. 2015, 142(9), 094301. DOI: 10.1063/1.4913513.
  • Ghosh, I.; Shaikh, R. S.; König, B. Sensitization-Initiated Electron Transfer for Photoredox Catalysis. Angew. Chem. Int. Ed. 2017, 56(29), 8544–8549. DOI: 10.1002/anie.201703004.
  • Marchini, M.; Bergamini, G.; Cozzi, P. G.; Ceroni, P.; Balzani, V. Photoredox Catalysis: The Need to Elucidate the Photochemical Mechanism. Angew. Chem. Int. Ed. 2017, 56(42), 12820–12821. DOI: 10.1002/anie.201706217.
  • Zhao, W.; Castellano, F. N. Upconverted Emission from Pyrene and Di- Tert -butylpyrene Using Ir(Ppy) 3 as Triplet Sensitizer. J. Phys. Chem. A. 2006, 110(40), 11440–11445. DOI: 10.1021/jp064261s.
  • Montalti, M.; Murov, S. L., Eds.. Handbook of Photochemistry. 3rded.; CRC/Taylor & Francis: Boca Raton, 2006.
  • Rillema, D. P.; Allen, G.; Meyer, T. J.; Conrad, D. Redox Properties of Ruthenium(II) Tris Chelate Complexes Containing the Ligands 2,2ʹ-bipyrazine, 2,2ʹ-bipyridine, and 2,2ʹ-bipyrimidine. Inorg. Chem. 1983, 22(11), 1617–1622. DOI: 10.1021/ic00153a012.
  • Pham, P. V.; Nagib, D. A.; MacMillan, D. W. C. Photoredox Catalysis: A Mild, Operationally Simple Approach to the Synthesis of α-Trifluoromethyl Carbonyl Compounds. Angew. Chem. Int. Ed. 2011, 50(27), 6119–6122. DOI: 10.1002/anie.201101861.
  • Bock, C. R.; Connor, J. A.; Gutierrez, A. R.; Meyer, T. J.; Whitten, D. G.; Sullivan, B. P.; Nagle, J. K. Estimation of Excited-State Redox Potentials by Electron-Transfer Quenching. Application of Electron-Transfer Theory to Excited-State Redox Processes. J. Am. Chem. Soc. 1979, 101(17), 4815–4824. DOI: 10.1021/ja00511a007.
  • Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. Visible Light-Mediated Atom Transfer Radical Addition via Oxidative and Reductive Quenching of Photocatalysts. J. Am. Chem. Soc. 2012, 134(21), 8875–8884. DOI: 10.1021/ja300798k.
  • Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Visible-Light Photoredox Catalysis in Flow. Angew. Chem. Int. Ed. 2012, 51(17), 4144–4147. DOI: 10.1002/anie.201200961.
  • Kalyanasundaram, K.;. Photophysics, Photochemistry and Solar Energy Conversion with Tris(Bipyridyl)Ruthenium(II) and Its Analogues. Coord. Chem. Rev. 1982, 46, 159–244. DOI: 10.1016/0010-8545(82)85003-0.
  • Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96(2), 877–910. DOI: 10.1021/cr940053x.
  • Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. Redox Mediators in Visible Light Photocatalysis: Photocatalytic Radical Thiol–Ene Additions. J. Org. Chem. 2014, 79(3), 1427–1436. DOI: 10.1021/jo500031g.
  • Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Intermolecular [3+2] Cycloaddition of Cyclopropylamines with Olefins by Visible-Light Photocatalysis. Angew. Chem. Int. Ed. 2012, 51(1), 222–226. DOI: 10.1002/anie.201106162.
  • Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Controlled Trifluoromethylation Reactions of Alkynes through Visible-Light Photoredox Catalysis. Angew. Chem. 2014, 126(2), 549–552. DOI: 10.1002/ange.201308735.
  • Oh, S. H.; Malpani, Y. R.; Ha, N.; Jung, Y.-S.; Han, S. B. Vicinal Difunctionalization of Alkenes: Chlorotrifluoromethylation with CF3SO2Cl by Photoredox Catalysis. Org. Lett. 2014, 16(5), 1310–1313. DOI: 10.1021/ol403716t.
  • Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R. J. A New Synthetic Route to the Preparation of A Series of Strong Photoreducing Agents: Fac-Tris-Ortho-Metalated Complexes of Iridium(III) with Substituted 2-phenylpyridines. Inorg. Chem. 1991, 30(8), 1685–1687. DOI: 10.1021/ic00008a003.
  • Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Nitrogen-Centered Radical-Mediated C–H Imidation of Arenes and Heteroarenes via Visible Light Induced Photocatalysis. Chem. Commun. 2014, 50(66), 9273–9276. DOI: 10.1039/C4CC03905J.
  • Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Engaging Unactivated Alkyl, Alkenyl and Aryl Iodides in Visible-Light-Mediated Free Radical Reactions. Nat. Chem. 2012, 4(10), 854–859. DOI: 10.1038/nchem.1452.
  • Teegardin, K.; Day, J. I.; Chan, J.; Weaver, J. Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations. Org. Process Res. Dev. 2016, 20(7), 1156–1163. DOI: 10.1021/acs.oprd.6b00101.
  • Senaweera, S.; Weaver, J. D. Dual C–F, C–H Functionalization via Photocatalysis: Access to Multifluorinated Biaryls. J. Am. Chem. Soc. 2016, 138(8), 2520–2523. DOI: 10.1021/jacs.5b13450.
  • Nacsa, E. D.; MacMillan, D. W. C. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols. J. Am. Chem. Soc. 2018, 140(9), 3322–3330. DOI: 10.1021/jacs.7b12768.
  • Guo, X.; Okamoto, Y.; Schreier, M. R.; Ward, T. R.; Wenger, O. S. Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network. Chem. Sci. 2018, 9(22), 5052–5056. DOI: 10.1039/C8SC01561A.
  • Kerzig, C.; Guo, X.; Wenger, O. S. Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis. J. Am. Chem. Soc. 2019, 141(5), 2122–2127. DOI: 10.1021/jacs.8b12223.
  • Le, C.; MacMillan, D. W. C. A Radical Approach to the Copper Oxidative Addition Problem: Trifluoromethylation of Bromoarenes. Science. 2018, 360(6392), 1010–1014. DOI: 10.1126/science.aat4133.
  • Zhang, P.; Le, C. C.; MacMillan, D. W. C. Silyl Radical Activation of Alkyl Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electrophile Coupling. J. Am. Chem. Soc. 2016, 138(26), 8084–8087. DOI: 10.1021/jacs.6b04818.
  • Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids. J. Am. Chem. Soc. 2018, 140(21), 6522–6526. DOI: 10.1021/jacs.8b02650.
  • Beatty, J. W.; Stephenson, C. R. J. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis. Acc. Chem. Res. 2015, 48(5), 1474–1484. DOI: 10.1021/acs.accounts.5b00068.
  • Nguyen, J. D.; Reiß, B.; Dai, C.; Stephenson, C. R. J. Batch to Flow Deoxygenation Using Visible Light Photoredox Catalysis. Chem. Commun. 2013, 49(39), 4352–4354. DOI: 10.1039/C2CC37206A.
  • Devery, J. J.; Nguyen, J. D.; Dai, C.; Stephenson, C. R. J. Light-Mediated Reductive Debromination of Unactivated Alkyl and Aryl Bromides. ACS Catal. 2016, 6(9), 5962–5967. DOI: 10.1021/acscatal.6b01914.
  • Finkenzeller, W. J.; Yersin, H. Emission of Ir(Ppy)3. Temperature Dependence, Decay Dynamics, and Magnetic Field Properties. Chem. Phys. Lett. 2003, 377(3–4), 299–305. DOI: 10.1016/S0009-2614(03)01142-4.
  • Hofbeck, T.; Yersin, H. The Triplet State of Fac -Ir(ppy) 3. Inorg. Chem. 2010, 49(20), 9290–9299. DOI: 10.1021/ic100872w.
  • Cheng, Y.; Gu, X.; Li, P. Visible-Light Photoredox in Homolytic Aromatic Substitution: Direct Arylation of Arenes with Aryl Halides. Org. Lett. 2013, 15(11), 2664–2667. DOI: 10.1021/ol400946k.
  • Khaled, M. B.; El Mokadem, R. K.; Weaver, J. D. Hydrogen Bond Directed Photocatalytic Hydrodefluorination: Overcoming Electronic Control. J. Am. Chem. Soc. 2017, 139(37), 13092–13101. DOI: 10.1021/jacs.7b06847.
  • Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex. J. Am. Chem. Soc. 2004, 126(9), 2763–2767. DOI: 10.1021/ja0345221.
  • Goldsmith, J. I.; Hudson, W. R.; Lowry, M. S.; Anderson, T. H.; Bernhard, S. Discovery and High-Throughput Screening of Heteroleptic Iridium Complexes for Photoinduced Hydrogen Production. J. Am. Chem. Soc. 2005, 127(20), 7502–7510. DOI: 10.1021/ja0427101.
  • Nguyen, J. D.; Matsuura, B. S.; Stephenson, C. R. J. A Photochemical Strategy for Lignin Degradation at Room Temperature. J. Am. Chem. Soc. 2014, 136(4), 1218–1221. DOI: 10.1021/ja4113462.
  • Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. Chem. Mater. 2005, 17, 5712–5719.
  • Kim, H.; Lee, C. Visible-Light-Induced Photocatalytic Reductive Transformations of Organohalides. Angew. Chem. Int. Ed. 2012, 51(49), 12303–12306. DOI: 10.1002/anie.201203599.
  • Erdmann, E.; Villinger, A.; König, B.; Seidel, W. W. 1,10-phenanthroline-dithiine Iridium and Ruthenium Complexes: Synthesis, Characterization and Photocatalytic Dihydrogen Evolution. Photochem. Photobiol. Sci. 2018, 17(8), 1056–1067. DOI: 10.1039/C8PP00068A.
  • Whang, D. R.; Sakai, K.; Park, S. Y. Highly Efficient Photocatalytic Water Reduction with Robust Iridium(III) Photosensitizers Containing Arylsilyl Substituents. Angew. Chem. Int. Ed. 2013, 52(44), 11612–11615. DOI: 10.1002/anie.201305684.
  • Takizawa, S.; Ikuta, N.; Zeng, F.; Komaru, S.; Sebata, S.; Murata, S. Impact of Substituents on Excited-State and Photosensitizing Properties in Cationic Iridium(III) Complexes with Ligands of Coumarin 6. Inorg. Chem. 2016, 55(17), 8723–8735. DOI: 10.1021/acs.inorgchem.6b01279.
  • Yu, Z.-T.; Yuan, Y.-J.; Cai, J.-G.; Zou, Z.-G. Charge-Neutral Amidinate-Containing Iridium Complexes Capable of Efficient Photocatalytic Water Reduction. Chem. - Eur. J. 2013, 19(4), 1303–1310. DOI: 10.1002/chem.201203029.
  • Tinker, L. L.; Bernhard, S. Photon-Driven Catalytic Proton Reduction with a Robust Homoleptic Iridium(III) 6-phenyl-2,2′-bipyridine Complex ([ir(c/\n/\n) 2] +). Inorg. Chem. 2009, 48(22), 10507–10511. DOI: 10.1021/ic900777g.
  • Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. A Highly Efficient Mononuclear Iridium Complex Photocatalyst for CO 2 Reduction under Visible Light. Angew. Chem. Int. Ed. 2013, 52(3), 988–992. DOI: 10.1002/anie.201206137.
  • DiSalle, B. F.; Bernhard, S. Orchestrated Photocatalytic Water Reduction Using Surface-Adsorbing Iridium Photosensitizers. J. Am. Chem. Soc. 2011, 133(31), 11819–11821. DOI: 10.1021/ja201514e.
  • Shon, J.-H.; Teets, T. S. Molecular Photosensitizers in Energy Research and Catalysis: Design Principles and Recent Developments. ACS Energy Lett. 2019, 4(2), 558–566. DOI: 10.1021/acsenergylett.8b02388.
  • Lim, B. S.; Rahtu, A.; Gordon, R. G. Atomic Layer Deposition of Transition Metals. Nat. Mater. 2003, 2(11), 749–754. DOI: 10.1038/nmat1000.
  • Liu, Y.; Ye, K.; Fan, Y.; Song, W.; Wang, Y.; Hou, Z. Amidinate-Ligated Iridium(III) Bis(2-Pyridyl)Phenyl Complex as an Excellent Phosphorescent Material for Electroluminescence Devices. Chem. Commun. 2009, 25, 3699–3701. DOI: 10.1039/b902807b.
  • Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev. 2011, 111(3), 1761–1779. DOI: 10.1021/cr1003503.
  • Polson, M.; Fracasso, S.; Bertolasi, V.; Ravaglia, M.; Scandola, F. Iridium Cyclometalated Complexes with Axial Symmetry. Synthesis and Photophysical Properties of a Trans -biscyclometalated Complex Containing the Terdentate Ligand 2,6-diphenylpyridine. Inorg. Chem. 2004, 43(6), 1950–1956. DOI: 10.1021/ic0351848.
  • Whittle, V. L.; Williams, J. A. G. A New Class of Iridium Complexes Suitable for Stepwise Incorporation into Linear Assemblies: Synthesis, Electrochemistry, and Luminescence. Inorg. Chem. 2008, 47(15), 6596–6607. DOI: 10.1021/ic701788d.
  • Du, P.; Schneider, J.; Jarosz, P.; Eisenberg, R. Photocatalytic Generation of Hydrogen from Water Using a Platinum(II) Terpyridyl Acetylide Chromophore. J. Am. Chem. Soc. 2006, 128(24), 7726–7727. DOI: 10.1021/ja0610683.
  • Du, P.; Schneider, J.; Jarosz, P.; Zhang, J.; Brennessel, W. W.; Eisenberg, R. Photoinduced Electron Transfer in Platinum(II) Terpyridyl Acetylide Chromophores: Reductive and Oxidative Quenching and Hydrogen Production †. J. Phys. Chem. B. 2007, 111(24), 6887–6894. DOI: 10.1021/jp072187n.
  • Hua, F.; Kinayyigit, S.; Cable, J. R.; Castellano, F. N. Platinum(II) Diimine Diacetylides: Metallacyclization Enhances Photophysical Properties. Inorg. Chem. 2006, 45(11), 4304–4306. DOI: 10.1021/ic060102b.
  • Choi, W. J.; Choi, S.; Ohkubo, K.; Fukuzumi, S.; Cho, E. J.; You, Y. Mechanisms and Applications of Cyclometalated Pt(II) Complexes in Photoredox Catalytic Trifluoromethylation. Chem. Sci. 2015, 6(2), 1454–1464. DOI: 10.1039/C4SC02537G.
  • Mydlak, M.; Mauro, M.; Polo, F.; Felicetti, M.; Leonhardt, J.; Diener, G.; De Cola, L.; Strassert, C. A. Controlling Aggregation in Highly Emissive Pt(II) Complexes Bearing Tridentate Dianionic N ∧ N ∧ N Ligands. Synthesis, Photophysics, and Electroluminescence. Chem. Mater. 2011, 23(16), 3659–3667. DOI: 10.1021/cm2010902.
  • Yam, V. W. W.; Tang, R. P.L.; Wong, K. M. C.; Cheung, K. K. Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes. Organometallics. 2001, 20(22), 4476–4482. DOI: 10.1021/om010336x.
  • Yang, Q.-Z.; Wu, L.-Z.; Wu, Z.-X.; Zhang, L.-P.; Tung, C.-H. Long-Lived Emission from Platinum(II) Terpyridyl Acetylide Complexes. Inorg. Chem. 2002, 41(22), 5653–5655. DOI: 10.1021/ic025580a.
  • Hissler, M.; McGarrah, J. E.; Connick, W. B.; Geiger, D. K.; Cummings, S. D.; Eisenberg, R. Platinum Diimine Complexes: Towards a Molecular Photochemical Device. Coord. Chem. Rev. 2000, 208, 115–137. DOI: 10.1016/S0010-8545(00)00254-X.
  • Schneider, J.; Du, P.; Jarosz, P.; Lazarides, T.; Wang, X.; Brennessel, W. W.; Eisenberg, R. Cyclometalated 6-phenyl-2,2′-bipyridyl (CNN) Platinum(II) Acetylide Complexes: Structure, Electrochemistry, Photophysics, and Oxidative- and Reductive-Quenching Studies. Inorg. Chem. 2009, 48(10), 4306–4316. DOI: 10.1021/ic801947v.
  • Zhang, Y.; Lee, T. S.; Petersen, J. L.; Milsmann, C. A Zirconium Photosensitizer with A Long-Lived Excited State: Mechanistic Insight into Photoinduced Single-Electron Transfer. J. Am. Chem. Soc. 2018, 140(18), 5934–5947. DOI: 10.1021/jacs.8b00742.
  • Büldt, L. A.; Guo, X.; Prescimone, A.; Wenger, O. S. A molybdenum(0) Isocyanide Analogue of Ru(2,2′-Bipyridine)32+: A Strong Reductant for Photoredox Catalysis. Angew. Chem. Int. Ed. 2016, 55(37), 11247–11250. DOI: 10.1002/anie.201605571.
  • Sattler, W.; Henling, L. M.; Winkler, J. R.; Gray, H. B. Bespoke Photoreductants: Tungsten Arylisocyanides. J. Am. Chem. Soc. 2015, 137(3), 1198–1205. DOI: 10.1021/ja510973h.
  • Kern, J.-M.; Sauvage, J.-P. Photoassisted C–C Coupling via Electron Transfer to Benzylic Halides by a Bis(Di-Imine) Copper(I) Complex. J. Chem. Soc. Chem. Commun. 1987, 8, 546–548. DOI: 10.1039/C39870000546.
  • Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. [Cu(dap)2cl] as an Efficient Visible-Light-Driven Photoredox Catalyst in Carbon-Carbon Bond-Forming Reactions. Chem. - Eur. J. 2012, 18(24), 7336–7340. DOI: 10.1002/chem.201200967.
  • Kjær, K. S.; Kaul, N.; Prakash, O.; Chábera, P.; Rosemann, N. W.; Honarfar, A.; Gordivska, O.; Fredin, L. A.; Bergquist, K.-E.; Häggström, L., et al. Luminescence and Reactivity of a Charge-Transfer Excited Iron Complex with Nanosecond Lifetime. Science. 2019, 363(6424), 249–253. DOI: 10.1126/science.aau7160.
  • Nzulu, F.; Telitel, S.; Stoffelbach, F.; Graff, B.; Morlet-Savary, F.; Lalevée, J.; Fensterbank, L.; Goddard, J.-P.; Ollivier, C. A. Dinuclear Gold(I) Complex as a Novel Photoredox Catalyst for Light-Induced Atom Transfer Radical Polymerization. Polym. Chem. 2015, 6(25), 4605–4611. DOI: 10.1039/C5PY00435G.
  • Whittemore, T. J.; Millet, A.; Sayre, H. J.; Xue, C.; Dolinar, B. S.; White, E. G.; Dunbar, K. R.; Turro, C. Tunable Rh 2 (II,II) Light Absorbers as Excited-State Electron Donors and Acceptors Accessible with Red/Near-Infrared Irradiation. J. Am. Chem. Soc. 2018, 140(15), 5161–5170. DOI: 10.1021/jacs.8b00599.
  • Hockin, B. M.; Li, C.; Robertson, N.; Zysman-Colman, E. Photoredox Catalysts Based on Earth-Abundant Metal Complexes. Catal. Sci. Technol. 2019, 9(4), 889–915. DOI: 10.1039/C8CY02336K.
  • Francés‐Monerris, A.; Gros, P. C.; Assfeld, X.; Monari, A.; Pastore, M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. ChemPhotoChem. 2019, 3(9), 666–683. DOI: 10.1002/cptc.201900100.
  • Cai, S.; Zhao, X.; Wang, X.; Liu, Q.; Li, Z.; Wang, D. Z. Visible-Light-Promoted C–C Bond Cleavage: Photocatalytic Generation of Iminium Ions and Amino Radicals. Angew. Chem. Int. Ed. 2012, 51(32), 8050–8053. DOI: 10.1002/anie.201202880.
  • Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Aerobic Visible-Light Photoredox Radical C–H Functionalization: Catalytic Synthesis of 2-substituted Benzothiazoles. Org. Lett. 2012, 14(1), 98–101. DOI: 10.1021/ol2028866.
  • McNally, A.; Prier, C. K.; MacMillan, D. W. C. Discovery of an -amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science. 2011, 334(6059), 1114–1117. DOI: 10.1126/science.1213920.
  • Pan, X.; Malhotra, N.; Zhang, J.; Matyjaszewski, K. Photoinduced Fe-Based Atom Transfer Radical Polymerization in the Absence of Additional Ligands, Reducing Agents, and Radical Initiators. Macromolecules. 2015, 48(19), 6948–6954. DOI: 10.1021/acs.macromol.5b01815.
  • Pac, C.; Ihama, M.; Yasuda, M.; Miyauchi, Y.; Sakurai, H. Tris(2,2ʹ-Bipyridine)Ruthenium(2+)-Mediated Photoreduction of Olefins with 1-Benzyl-1,4-Dihydronicotinamide: A Mechanistic Probe for Electron-Transfer Reactions of NAD(P)H-Model Compounds. J. Am. Chem. Soc. 1981, 103(21), 6495–6497. DOI: 10.1021/ja00411a040.
  • Du, J.; Yoon, T. P. Crossed Intermolecular [2+2] Cycloadditions of Acyclic Enones via Visible Light Photocatalysis. J. Am. Chem. Soc. 2009, 131(41), 14604–14605. DOI: 10.1021/ja903732v.
  • Tyson, E. L.; Farney, E. P.; Yoon, T. P. Photocatalytic [2 + 2] Cycloadditions of Enones with Cleavable Redox Auxiliaries. Org. Lett. 2012, 14(4), 1110–1113. DOI: 10.1021/ol3000298.
  • Torres, J.; Carrión, M. C.; Leal, J.; Jalón, F. A.; Cuevas, J. V.; Rodríguez, A. M.; Castañeda, G.; Manzano, B. R. Cationic Bis(Cyclometalated) Ir(III) Complexes with Pyridine–Carbene Ligands. Photophysical Properties and Photocatalytic Hydrogen Production from Water. Inorg. Chem. 2018, 57(3), 970–984. DOI: 10.1021/acs.inorgchem.7b02289.
  • Bachmann, C.; Guttentag, M.; Spingler, B.; Alberto, R. 3d Element Complexes of Pentadentate Bipyridine-Pyridine-Based Ligand Scaffolds: Structures and Photocatalytic Activities. Inorg. Chem. 2013, 52(10), 6055–6061. DOI: 10.1021/ic4004017.
  • Du, P.; Schneider, J.; Li, F.; Zhao, W.; Patel, U.; Castellano, F. N.; Eisenberg, R. Bi- and Terpyridyl Platinum(II) Chloro Complexes: Molecular Catalysts for the Photogeneration of Hydrogen from Water or Simply Precursors for Colloidal Platinum? J. Am. Chem. Soc. 2008, 130(15), 5056–5058. DOI: 10.1021/ja711090w.
  • Petronilho, A.; Woods, J. A.; Bernhard, S.; Albrecht, M. Bimetallic Iridium-Carbene Complexes with Mesoionic Triazolylidene Ligands for Water Oxidation Catalysis: Bimetallic Iridium-Carbene Complexes. Eur. J. Inorg. Chem. 2014, 2014(4), 708–714. DOI: 10.1002/ejic.201300843.
  • Woods, J. A.; Lalrempuia, R.; Petronilho, A.; McDaniel, N. D.; Müller-Bunz, H.; Albrecht, M.; Bernhard, S. Carbene Iridium Complexes for Efficient Water Oxidation: Scope and Mechanistic Insights. Energy Env. Sci. 2014, 7(7), 2316–2328. DOI: 10.1039/C4EE00971A.
  • Li, M.; Takada, K.; Goldsmith, J. I.; Bernhard, S. Iridium(III) Bis-Pyridine-2-Sulfonamide Complexes as Efficient and Durable Catalysts for Homogeneous Water Oxidation. Inorg. Chem. 2016, 55(2), 518–526. DOI: 10.1021/acs.inorgchem.5b01709.
  • Han, Z.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst. Science. 2012, 338(6112), 1321–1324. DOI: 10.1126/science.1227775.
  • Metz, S.; Bernhard, S. Robust Photocatalytic Water Reduction with Cyclometalated Ir(III) 4-vinyl-2,2′-bipyridine Complexes. Chem. Commun. 2010, 46(40), 7551–7553. DOI: 10.1039/c0cc01827a.
  • Tinker, L. L.; McDaniel, N. D.; Curtin, P. N.; Smith, C. K.; Ireland, M. J.; Bernhard, S. Visible Light Induced Catalytic Water Reduction without an Electron Relay. Chem. - Eur. J. 2007, 13(31), 8726–8732. DOI: 10.1002/chem.200700480.
  • Teets, T. S.; Nocera, D. G. Photocatalytic Hydrogen Production. Chem. Commun. 2011, 47(33), 9268–9274. DOI: 10.1039/c1cc12390d.
  • Cheung, P. L.; Machan, C. W.; Malkhasian, A. Y. S.; Agarwal, J.; Kubiak, C. P. Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using Fac-Mn(CN)(Bpy)(CO)3. Inorg. Chem. 2016, 55(6), 3192–3198. DOI: 10.1021/acs.inorgchem.6b00379.
  • Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Acc. Chem. Res. 2009, 42(12), 1983–1994. DOI: 10.1021/ar9001679.
  • Seo, H.; Katcher, M. H.; Jamison, T. F. Photoredox Activation of Carbon Dioxide for Amino Acid Synthesis in Continuous Flow. Nat. Chem. 2016, 9(5), 453–456. DOI: 10.1038/nchem.2690.
  • Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO2 Reduction. ACS Catal. 2017, 7(1), 70–88. DOI: 10.1021/acscatal.6b02181.
  • Chen, L.; Guo, Z.; Wei, X.-G.; Gallenkamp, C.; Bonin, J.; Anxolabéhère-Mallart, E.; Lau, K.-C.; Lau, T.-C.; Robert, M. Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO Vs HCOOH by Switching of the Metal Center. J. Am. Chem. Soc. 2015, 137(34), 10918–10921. DOI: 10.1021/jacs.5b06535.
  • Genoni, A.; Chirdon, D. N.; Boniolo, M.; Sartorel, A.; Bernhard, S.; Bonchio, M. Tuning Iridium Photocatalysts and Light Irradiation for Enhanced CO2 Reduction. ACS Catal. 2017, 7(1), 154–160. DOI: 10.1021/acscatal.6b03227.
  • Thoi, V. S.; Kornienko, N.; Margarit, C. G.; Yang, P.; Chang, C. J. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N -heterocyclic Carbene–Isoquinoline Complex. J. Am. Chem. Soc. 2013, 135(38), 14413–14424. DOI: 10.1021/ja4074003.
  • Bosque, I.; Magallanes, G.; Rigoulet, M.; Kärkäs, M. D.; Stephenson, C. R. J. Redox Catalysis Facilitates Lignin Depolymerization. ACS Cent. Sci. 2017, 3(6), 621–628. DOI: 10.1021/acscentsci.7b00140.
  • Kärkäs, M. D.; Matsuura, B. S.; Monos, T. M.; Magallanes, G.; Stephenson, C. R. J. Transition-Metal Catalyzed Valorization of Lignin: The Key to a Sustainable Carbon-Neutral Future. Org. Biomol. Chem. 2016, 14(6), 1853–1914. DOI: 10.1039/C5OB02212F.
  • Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115(21), 11559–11624. DOI: 10.1021/acs.chemrev.5b00155.
  • Zhang, J.; Jiang, X.; Ye, X.; Chen, L.; Lu, Q.; Wang, X.; Dong, C. Pyrolysis Mechanism of A β-O-4 Type Lignin Dimer Model Compound: A Joint Theoretical and Experimental Study. J. Therm. Anal. Calorim. 2016, 123(1), 501–510. DOI: 10.1007/s10973-015-4944-y.
  • Yang, Q.; Dumur, F.; Morlet-Savary, F.; Poly, J.; Lalevée, J. Photocatalyzed Cu-Based ATRP Involving an Oxidative Quenching Mechanism under Visible Light. Macromolecules. 2015, 48(7), 1972–1980. DOI: 10.1021/ma502384y.
  • Fors, B. P.; Hawker, C. J. Control of a Living Radical Polymerization of Methacrylates by Light. Angew. Chem. Int. Ed. 2012, 51(35), 8850–8853. DOI: 10.1002/anie.201203639.
  • Lalevée, J.; Peter, M.; Dumur, F.; Gigmes, D.; Blanchard, N.; Tehfe, M.-A.; Morlet-Savary, F.; Fouassier, J. P. Subtle Ligand Effects in Oxidative Photocatalysis with Iridium Complexes: Application to Photopolymerization. Chem. Eur. J. 2011, 17(52), 15027–15031. DOI: 10.1002/chem.201101445.
  • Lalevée, J.; Tehfe, M.-A.; Dumur, F.; Gigmes, D.; Blanchard, N.; Morlet-Savary, F.; Fouassier, J. P. Iridium Photocatalysts in Free Radical Photopolymerization under Visible Lights. ACS Macro Lett. 2012, 1(2), 286–290. DOI: 10.1021/mz2001753.
  • Telitel, S.; Dumur, F.; Telitel, S.; Soppera, O.; Lepeltier, M.; Guillaneuf, Y.; Poly, J.; Morlet-Savary, F.; Fioux, P.; Fouassier, J.-P., et al. Photoredox Catalysis Using a New Iridium Complex as an Efficient Toolbox for Radical, Cationic and Controlled Polymerizations under Soft Blue to Green Lights. Polym. Chem. 2015, 6(4), 613–624. DOI: 10.1039/C4PY01358A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.