Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 41, 2021 - Issue 2
415
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Luminescent Metal-Organic Frameworks for Nitroaromatic Compounds Detection

, , &

References

  • Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Romo, F. J. U.; Furukawa, H.; Long, J. R.; Yaghi, O. M. Metal Insertion in a Microporous Metal−Organic Framework Lined with 2,2′-Bipyridine. J. Am. Chem. Soc. 2010, 132(41), 14382–14384.
  • Du, L.; Lu, Z.; Zheng, K.; Wang, J.; Zheng, X.; Pan, Y.; You, X.; Bai, J. Fine-Tuning Pore Size by Shifting Coordination Sites of Ligands and Surface Polarization of Metal–Organic Frameworks to Sharply Enhance the Selectivity for CO2. J. Am. Chem. Soc. 2013, 135, 562–565. DOI: 10.1021/ja309992a.
  • Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; OKeeffe, M.; Yaghi, O. M. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon Dioxide Selective Capture Properties. J. Am. Chem. Soc. 2009, 131(11), 3875–3877. DOI: 10.1021/ja809459e.
  • Ma, L.; Falkowski, J. M.; Abney, C.; Lin, W. A Series of Isoreticular Chiral Metal–organic Frameworks as A Tunable Platform for Asymmetric Catalysis. Nat. Chem. 2010, 2(10), 838–846. DOI: 10.1038/nchem.738.
  • Lin, X.; Jia, J. H.; Hubberstey, P.; Schroder, M.; Champness, N. R. Hydrogen Storage in Metal–organic Frameworks. CrystEngComm. 2007, 9(6), 438–448. DOI: 10.1039/B706207A.
  • Zheng, B. S.; Yang, Z.; Bai, J. F.; Li, Y. Z.; Li, S. H. High and Selective CO2 Capture by Two Mesoporous Acylamide-functionalized Rht-type Metal–organic Frameworks. Chem. Commun. 2012, 48, 7025–7027.
  • Hu, T. L.; Wang, H.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.; Zhao, Y.; Han, Y.; Wang, X.; Zhou, W.; et al. Microporous Metal–organic Framework with Dual Functionalities for Highly Efficient Removal of Acetylene from Ethylene/acetylene Mixtures. Nat. Commun. 2015, 6(1), 7328.
  • Liu, D.; Poon, C.; Lu, K.; He, C.; Lin, W. Self-assembled Nanoscale Coordination Polymers with Trigger Release Properties for Effective Anticancer Therapy. Nat. Commun. 2014, 5(1), 4182. DOI: 10.1038/ncomms5182.
  • Wang, L.; Xu, H.; Gao, J.; Yao, J.; Zhang, Q. Recent Progress in Metal-organic Frameworks-based Hydrogels and Aerogels and Their Applications. Coord. Chem. Rev. 2019, 398, 213016. DOI: 10.1016/j.ccr.2019.213016.
  • Sun, C. Y.; Qin, C.; Wang, C. G.; Su, Z. M.; Wang, S.; Wang, X. L.; Yang, G. S.; Shao, K. Z.; Lan, Y. Q.; Wang, E. B.. Chiral Nanoporous Metal-Organic Frameworks with High Porosity as Materials for Drug Delivery. Adv. Mater. 2011, 23(47), 5629–5632.
  • Gao, J.; He, M.; Lee, Z. Y.; Cao, W.; Xiong, W. W.; Li, Y.; Ganguly, R.; Wu, T.; Zhang, Q. A Surfactant-thermal Method to Prepare Four New Three-dimensional Heterometal–organic Frameworks. Dalton Trans. 2013, 42(32), 11367–11370.
  • Wang, K.; Bi, R.; Huang, M.; Lv, B.; Wang, H.; Li, C.; Wu, H.; Zhang, Q. Porous Cobalt Metal–Organic Frameworks as Active Elements in Battery–Supercapacitor Hybrid Devices. Inorg. Chem. 2020, 59(10), 6808–6814.
  • Wu, Z.; Adekoya, D.; Huang, X.; Kiefel, M. J.; Xie, J.; Xu, W.; Zhang, Q.; Zhu, D.; Zhang, S. Highly Conductive Two-Dimensional Metal–Organic Frameworks for Resilient Lithium Storage with Superb Rate Capability. ACS Nano. 2020, 14(9), 12016–12026.
  • Li, C.; Wang, K.; Li, J.; Zhang, Q. Nanostructured Potassium–organic Framework as an Effective Anode for Potassium-ion Batteries with a Long Cycle Life. Nanoscale. 2020, 12(14), 7870–7874. DOI: 10.1039/D0NR00964D.
  • Xie, J.; Cheng, X. F.; Cao, X.; He, J. H.; Guo, W.; Li, D. S.; Xu, Z. J.; Huang, Y.; Lu, J. M.; Zhang, Q. Nanostructured Metal–Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage. Small. 2019, 15, 1903188. DOI: 10.1002/smll.201903188.
  • Wang, K.; Li, Q.; Ren, Z.; Li, C.; Chu, Y.; Wang, Z.; Zhang, M.; Wu, H.; Zhang, Q. 2D Metal–Organic Frameworks (Mofs) for High-Performance BatCap Hybrid Devices. Small. 2020, 16(30), 2001987.
  • Wu, Z.; Xie, J.; Xu, Z. J.; Zhang, S.; Zhang, Q. Recent Progress in Metal–organic Polymers as Promising Electrodes for Lithium/sodium Rechargeable Batteries. J. Mater. Chem. A. 2019, 7, 4259–4290.
  • Qin, Z. S.; Dong, W. W.; Zhao, J.; Wu, Y. P.; Zhang, Q.; Li, D. S. A Water-stable Tb(iii)-based Metal–organic Gel (MOG) for Detection of Antibiotics and Explosives. Inorg. Chem. Front. 2018, 5, 120–126. DOI: 10.1039/C7QI00495H.
  • Li, Y.; Zhang, S.; Song, D. A Luminescent Metal-Organic Framework as A Turn-On Sensor for DMF Vapor. Angew. Chem. Int. Ed. 2013, 52(2), 710–713. DOI: 10.1002/anie.201207610.
  • Wang, C.; Lin, W. Diffusion-Controlled Luminescence Quenching in Metal−Organic Frameworks. J. Am. Chem. Soc. 2011, 133(12), 4232–4235. DOI: 10.1021/ja111197d.
  • Tanaka, D.; Horike, S.; Kitagawa, S.; Ohba, M.; Hasegawa, M.; Ozawac, Y.; Toriumi, K. Anthracene Array-type Porous Coordination Polymer with Host–guest Charge Transfer Interactions in Excited States. Chem. Commun. 2007, 30(30), 3142–3144.
  • Xu, G. W.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Wu, X. Q.; Li, D. S.; Zhang, Q. A Multifunctional Tb‐MOF for Highly Discriminative Sensing of Eu3+/Dy3+ and as A Catalyst Support of Ag Nanoparticles. Small. 2017, 13(22), 1602996.
  • Desai, A. V.; Samanta, P.; Manna, B.; Ghosh, S. K. Aqueous Phase Nitric Oxide Detection by an Amine-decorated Metal–organic Framework. Chem. Commun. 2015, 51(28), 6111–6114. DOI: 10.1039/C5CC00773A.
  • Yan, Y.; Li, C.; Wu, Y.; Gao, J.; Zhang, Q. From Isolated Ti-oxo Clusters to Infinite Ti-oxo Chains and Sheets: Recent Advances in Photoactive Ti-based MOFs. J. Mater. Chem. A. 2020, 8, 15245–15270.
  • Manna, K.; Zhang, T.; Carboni, M.; Abney, C. W.; Lin, W. Salicylaldimine-Based Metal–Organic Framework Enabling Highly Active Olefin Hydrogenation with Iron and Cobalt Catalysts. J. Am. Chem. Soc. 2014, 136(38), 13182–13185. DOI: 10.1021/ja507947d.
  • Wu, Y. P.; Wu, X. Q.; Wang, J. F.; Zhao, J.; Dong, W. W.; Li, D. S.; Zhang, Q. C. Assembly of Two Novel Cd3/(Cd3+Cd5)-Cluster-Based Metal–Organic Frameworks: Structures, Luminescence, and Photocatalytic Degradation of Organic Dyes. Cryst. Growth Des. 2016, 16, 2309–2316. DOI: 10.1021/acs.cgd.6b00093.
  • Gao, W. Y.; Chrzanowski, M.; Ma, S. Metal–metalloporphyrin Frameworks: A Resurging Class of Functional Materials. Chem. Soc. Rev. 2014, 43(16), 5841–5866. DOI: 10.1039/C4CS00001C.
  • Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal–organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1330–1352. DOI: 10.1039/b802352m.
  • Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112(2), 1126–1162. DOI: 10.1021/cr200101d.
  • Nagarkar, S. S.; Desai, A. V.; Ghosh, S. K. A Fluorescent Metal–organic Framework for Highly Selective Detection of Nitro Explosives in the Aqueous Phase. Chem. Commun. 2014, 50(64), 8915–8918. DOI: 10.1039/C4CC03053B.
  • Werf, R. V. D.; Zevenhuijzen, D.; Kommandeur, J. Reversible Intersystem Crossing, Fluorescence Lifetime Lengthening and Collisionally Induced Phosphorescence in Biacetyl. Chem. Phys. Lett. 1974, 27, 325–331.
  • Gorokhovskiǐ, A. A.; Pal’M, V. V. Contraction of, and Hole Burning in, a Phosphorescence Line Corresponding to the Forbidden T1⇋S0 Transition in the Spectrum of Pyrene in a Glassy Matrix. JETP Lett. 1983, 37, 237–241.
  • Xiang, S.; Bao, D. X.; Wang, J.; Li, Y. C.; Zhao, X. Q. Luminescent Lanthanide Coordination Compounds with Pyridine-2,6-dicarboxylic Acid. J. Lumin. 2017, 186, 273–282. DOI: 10.1016/j.jlumin.2017.02.037.
  • Mcquade, D. T.; Pullen, A. E.; Swager, T. M. Conjugated Polymer-Based Chemical Sensors. Chem. Rev. 2000, 100(7), 2537–2574. DOI: 10.1021/cr9801014.
  • Sohn, H.; Sailor, M. J.; Magde, W. C. Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles. J. Am. Chem. Soc. 2003, 125(13), 3821–3830. DOI: 10.1021/ja021214e.
  • Li, C.; Wang, K.; Li, J.; Zhang, Q. Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. ACS Mater. Lett. 2020, 2(7), 779–797. DOI: 10.1021/acsmaterialslett.0c00148.
  • Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives. Angew. Chem. Int. Ed. 2009, 48(13), 2334–2338.
  • Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent Metal–organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43(16), 5815–5840. DOI: 10.1039/C4CS00010B.
  • Liu, L.; Chen, X. F.; Qiu, J. S.; Hao, C. New Insights into the Nitroaromatics-detection Mechanism of the Luminescent Metal–organic Framework Sensor. Dalton Trans. 2015, 44(6), 2897–2906. DOI: 10.1039/C4DT03185G.
  • Joarder, B.; Desai, A. V.; Samanta, P.; Mukherjee, S.; Ghosh, S. K. Selective and Sensitive Aqueous-Phase Detection of 2,4,6-Trinitrophenol (TNP) by an Amine-Functionalized Metal-Organic Framework. Chem. Eur. J. 2015, 21(3), 965–969. DOI: 10.1002/chem.201405167.
  • Wu, W. B.; Ye, S. H.; Yu, G.; Liu, Y. Q.; Qin, J. G.; Li, Z. Novel Functional Conjugative Hyperbranched Polymers with Aggregation-Induced Emission: Synthesis through One-Pot “A2+B4” Polymerization and Application as Explosive Chemsensors and PLEDs. Macromol. Rapid Commun. 2012, 33(2), 164–171. DOI: 10.1002/marc.201100503.
  • Sanchez, J. C.; Trogler, W. C. Efficient Blue-emitting Silafluorene–fluorene-conjugated Copolymers: Selective Turn-off/turn-on Detection of Explosives. J. Mat. Chem. 2008, 18(26), 3143–3156. DOI: 10.1039/b802623h.
  • Sabbatini, N.; Guardigli, M.; Lehn, J. M. Luminescent Lanthanide Complexes as Photochemical Supramolecular Devices. Coord. Chem. Rev. 1993, 123, 201–228.
  • Irwin, G.; Kirk, A. D.; Mackay, I.; Nera, J. Photochemistry and Photophysics of Cr(III) Macrocyclic Complexes. Inorg. Chem. 2002, 41(4), 874–883. DOI: 10.1021/ic010236j.
  • Gole, B.; Bar, A. K.; Mukherjee, P. S. Multicomponent Assembly of Fluorescent-Tag Functionalized Ligands in Metal-Organic Frameworks for Sensing Explosives. Chem. Eur. J. 2014, 20(41), 13321–13336. DOI: 10.1002/chem.201402791.
  • Zhang, Q.; Geng, A.; Zhang, H.; Hu, F.; Lu, Z. H.; Sun, D.; Wei, X.; Ma, C. An Independent 1D Single-Walled Metal-Organic Nanotube Transformed from a 2D Layer Exhibits Highly Selective and Reversible Sensing of Nitroaromatic Compounds. Chem. Eur. J. 2014, 20(17), 4885–4890.
  • Liu, J.; Li, B.; Kumar, A.; Li, F.; Liu, W.; Wang, J.; Li, Q. L.; Yadav, R.; Kumar, A. Luminescent Sensing from A New Zn(ii) Metal–organic Framework. RSC Adv. 2016, 6, 31161–31166.
  • Li, B. H.; Wu, J.; Liu, J. Q.; Gu, C. Y.; Xu, J. W.; Luo, M. M.; Yadav, R.; Kumar, A.; Batten, S. R. A Luminescent Zinc (II) Metal-organic Framework for Selective Detection of Nitroaromatics, Fe3+ and CrO4 2-: A Versatile Threefold Fluorescent Sensor. Chempluschem. 2016, 81(8), 885–892.
  • Wang, X. S.; Li, L.; Yuan, D. Q.; Huang, Y. B.; Cao, R. Fast, Highly Selective and Sensitive Anionic Metal-organic Framework with Nitrogen-rich Sites Fluorescent Chemosensor for Nitro Explosives Detection. J. Hazard. Mater. 2018, 344, 283–290. DOI: 10.1016/j.jhazmat.2017.10.027.
  • Huang, W. H.; Ren, J.; Yang, Y. H.; Li, X. M.; Wang, Q.; Jiang, N.; Yu, J. Q.; Wang, F.; Zhang, J. Water-stable Metal–organic Frameworks with Selective Sensing on Fe3+ and Nitroaromatic Explosives, and Stimuli-responsive Luminescence on Lanthanide Encapsulation. Inorg. Chem. 2019, 58(2), 1481–1491.
  • Yao, X. Q.; Xiao, G. B.; Xie, H.; Qin, D. D.; Ma, H. C.; Liu, J. C.; Yan, P. J. Two Triphenylamine-based Luminescent Metal–organic Frameworks as a Dual-functional Sensor for the Detection of Nitroaromatic Compounds and Ofloxacin Antibiotic. CrystEngComm. 2019, 21, 2559–2570. DOI: 10.1039/C8CE02122H.
  • Sun, Q.; Yang, K.; Ma, W.; Zhang, L.; Yuan, G. A Highly Stable 8-Hydroxyquinolinate-based Metal–organic Framework as a Selective Fluorescence Sensor for Fe3+, Cr2O72− and Nitroaromatic Explosives. Inorg. Chem. Front. 2020, 7(22), 4387-4395.
  • Jurcic, M.; Peveler, W. J.; Savory, C. N.; Scanlon, D. O.; Kenyon, A. J.; Parkin, L. P. The Vapour Phase Detection of Explosive Markers and Derivatives Using Two Fluorescent Metal–organic Frameworks. J. Mater. Chem. A. 2015, 3(12), 6351–6359. DOI: 10.1039/C4TA05638H.
  • Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene Immobilized Metal–organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr2O72–and Nitroaromatic Explosives. Cryst. Growth Des. 2017, 17(11), 6041–6048. DOI: 10.1021/acs.cgd.7b01155.
  • Zhang, S. R.; Du, D. Y.; Qin, J. S.; Bao, S. J.; Li, S. L.; He, W. W.; Lan, Y. Q.; Shen, P.; Su, Z. M. A Fluorescent Sensor for Highly Selective Detection of Nitroaromatic Explosives Based on A 2D, Extremely Stable, Metal-Organic Framework. Chem. Eur. J. 2014, 20(13), 3589–3594.
  • Tian, D.; Li, Y.; Chen, R. Y.; Chang, Z.; Wang, G. Y.; Bu, X. H. A Luminescent Metal–organic Framework Demonstrating Ideal Detection Ability for Nitroaromatic Explosives. J. Mater. Chem. A. 2014, 2, 1465–1470. DOI: 10.1039/C3TA13983B.
  • Wang, Z. J.; Qin, L.; Chen, J. X.; Zheng, H. G. H-Bonding Interactions Induced Two Isostructural Cd(II) Metal–Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives. Inorg. Chem. 2016, 55(21), 10999–11005. DOI: 10.1021/acs.inorgchem.6b01521.
  • Shu, T.; Wang, N.; Li, Y.; Fu, D.; Fan, H.; Luo, M.; Yue, S. A New Three‐Dimensional Cd (II) Metal‐Organic Framework for Highly Selective Sensing of Fe3+ as Well as Nitroaromatic Compounds. ChemistrySelect. 2017, 2(36), 12046–12050.
  • Yang, Y. J.; Wang, M. J.; Zhang, K. L. A Novel Photoluminescent Cd(ii)–organic Framework Exhibiting Rapid and Efficient Multi-responsive Fluorescence Sensing for Trace Amounts of Fe3+ Ions and Some NACs, Especially for 4-nitroaniline and 2-methyl-4-nitroaniline. J. Mater. Chem. C. 2016, 4, 11404–11418. DOI: 10.1039/C6TC04195G.
  • Zeng, X. S.; Xu, H. L.; Xu, Y. C.; Li, X. Q.; Nie, Z. Y.; Gao, S. Z.; Xiao, D. R. A Series of Porous Interpenetrating Metal–organic Frameworks Based on Fluorescent Ligands for Nitroaromatic Explosive Detection. Inorg. Chem. Front. 2018, 5, 1622–1632. DOI: 10.1039/C8QI00123E.
  • Wang, Q.; Liu, D. J.; Cui, L. L.; Hu, X. L.; Wang, X. L.; Su, Z. M. A 3D Pillared-layer Metal–organic Framework with Fluorescence Property for Detection of Nitroaromatic Explosives. New J. Chem. 2019, 43(2), 963–969. DOI: 10.1039/C8NJ05276J.
  • Xu, N.; Zhang, Q.; Zhang, G. A Carbazole-functionalized Metal–organic Framework for Efficient Detection of Antibiotics, Pesticides and Nitroaromatic Compounds. Dalton Trans. 2019, 48, 2683–2691.
  • Yang, J.; Wang, Z.; Hu, K. L.; Li, Y. S.; Feng, J. F.; Shi, J. L.; Guo, J. L. Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal–Organic Frameworks. ACS Appl. Mater. Interfaces. 2015, 7(22), 11956–11964.
  • Mostakim, S. K.; Biswas, S. A Thiadiazole-functionalized Zr (Iv)-based Metal–organic Framework as A Highly Fluorescent Probe for the Selective Detection of Picric Acid. CrystEngComm. 2016, 18(17), 3104–3113. DOI: 10.1039/C6CE00421K.
  • Li, Q. Y.; Ma, Z.; Zhang, W. Q.; Xu, J. L.; Wei, W.; Lu, H.; Zhao, X.; Wang, X. J. AIE-active Tetraphenylethene Functionalized Metal–organic Framework for Selective Detection of Nitroaromatic Explosives and Organic Photocatalysis. Chem. Commun. 2016, 52(75), 11284–11287.
  • Li, Y.; Wei, Z.; Zhang, Y.; Guo, Z.; Chen, D.; Jia, P.; Chen, P.; Xing, H. Dual-Emitting EY@Zr-MOF Composite as Self-Calibrating Luminescent Sensor for Selective Detection of Inorganic Ions and Nitroaromatics. ACS Sustainable Chem. Eng. 2019, 7(6), 6196–6203.
  • Song, J. F.; Li, Y.; Zhou, R. S.; Hu, T. P.; Wen, Y. L.; Shao, J.; Cui, X. B. A Novel 3D Cu (I) Coordination Polymer Based on Cu 6 Br 2 and Cu 2 (CN) 2 SBUs: In Situ Ligand Formation and Use as A Naked-eye Colorimetric Sensor for NB and 2-NT. Dalton Trans. 2015, 45(2), 545–551.
  • Ahamad, M. N.; Shahid, M.; Ahmad, M.; Sama, F. Cu(II) MOFs Based on Bipyridyls: Topology, Magnetism, and Exploring Sensing Ability toward Multiple Nitroaromatic Explosives. ACS Omega. 2019, 4(4), 7738–7749. DOI: 10.1021/acsomega.9b00715.
  • Xin, X.; Ai, J.; Li, F.; Zhao, J.; Zhang, L. An Imidazole Functionalized copper(II)-organic Framework for Highly Selective Sensing of Picric Acid and Metal Ions in Water. Appl Organomet Chem. 2020, 34, e5803. DOI: 10.1002/aoc.5803.
  • Guo, F. A Novel Metal-organic Framework Based on Mixed Ligands as A Highly-selective Luminescent Sensor for Cr2O72− and Nitroaromatic Compounds. Inorg. Chem. Commun. 2019, 102, 108–122. DOI: 10.1016/j.inoche.2019.02.026.
  • Zhong, F.; Li, C.; Xie, Y.; Xu, H.; Guo, J. Titanium Metal-organic Framework Nanorods for Highly Sensitive Nitroaromatic Explosives Detection and Nanomolar Sensing of Fe3+. J. Solid State Chem. 2019, 278, 120892. DOI: 10.1016/j.jssc.2019.07.053.
  • Zhong, F.; Zhang, X.; Zheng, C.; Xu, H.; Guo, J.; Xu, S. A Fluorescent Titanium-based Metal-organic Framework Sensor for Nitroaromatics and Nanomolar Fe3+ Detection. J. Solid State Chem. 2020, 288, 121391. DOI: 10.1016/j.jssc.2020.121391.
  • Li, Q. Q.; Dong, Y. W.; Mao, F. F.; Wang, K. B.; Wu, H.; Zhang, Q. C. Recent Progress in Metal-Organic Frameworks for White-Light Emission. Chinese J. Inorg. Chem. 2020, 36, 983–1000.
  • Zhang, Y.; Geng, D.; Kang, X.; Shang, M.; Wu, Y.; Li, X.; Liang, H.; Cheng, Z.; Lin, J. Rapid, Large-Scale, Morphology-Controllable Synthesis of YOF:Ln3+ (Ln = Tb, Eu, Tm, Dy, Ho, Sm) Nano-/Microstructures with Multicolor-Tunable Emission Properties. Inorg. Chem. 2013, 52, 12986–12994. DOI: 10.1021/ic401501t.
  • Zhang, Y.; Li, X.; Li, K.; Lian, H.; Shang, M.; Lin, J. Crystal-Site Engineering Control for the Reduction of Eu3+ to Eu2+ in CaYAlO4: Structure Refinement and Tunable Emission Properties. Mater. Interfaces. 2015, 7, 2715–2725. DOI: 10.1021/am508859c.
  • Parmentier, A. B.; Smet, P. F.; Poelman, D. Broadband Luminescence in Rare Earth Doped Sr2SiS4: Relating Energy Levels of Ce3+ and Eu2+. Materials. 2013, 6, 3663–3675. DOI: 10.3390/ma6083663.
  • Xu, L. J.; Xu, G. T.; Chen, Z. N. Recent Advances in Lanthanide Luminescence with Metal-organic Chromophores as Sensitizers. Coord. Chem. Rev. 2014, 273–274, 47–62. DOI: 10.1016/j.ccr.2013.11.021.
  • Weng, H.; Yan, B. N-GQDs and Eu3+ Co-encapsulated Anionic MOFs: Two-dimensional Luminescent Platform for Decoding Benzene Homologues. Dalton Trans. 2016, 45(21), 8795–8801. DOI: 10.1039/C6DT00994H.
  • Wang, W.; Yang, J.; Wang, R.; Zhang, L.; Yu, J.; Sun, D. Luminescent Terbium-Organic Framework Exhibiting Selective Sensing of Nitroaromatic Compounds (Nacs). Cryst. Growth Des. 2015, 15(6), 2589–2592. DOI: 10.1021/acs.cgd.5b00381.
  • Qin, J. H.; Ma, B.; Liu, X. F.; Lu, H. L.; Dong, X. Y.; Zang, S. Q.; Hou, H. Ionic Liquid Directed Syntheses of Water-stable Eu– And Tb–organic-frameworks for Aqueous-phase Detection of Nitroaromatic Explosives. Dalton Trans. 2015, 44, 14594–14603. DOI: 10.1039/C5DT02054A.
  • Fu, R. B.; Hu, S. M.; Wu, X. T. Rapid and Sensitive Detection of Nitroaromatic Explosives by Using New 3D Lanthanide Phosphonates. J. Mater. Chem. A. 2017, 5, 1952–1956. DOI: 10.1039/C6TA10152F.
  • Gao, R. C.; Guo, F. S.; Bai, N. N.; Wu, Y. L.; Yang, F.; Liang, J. Y.; Li, Z. J.; Wang, Y. Y. Two 3D Isostructural Ln (Iii)-mofs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection of Nitrobenzene and Cr2O72–. Inorg. Chem. 2016, 55(21), 11323–11330.
  • Sun, S.; Wang, F.; Sun, Y.; Guo, X.; Ma, R.; Zhang, M.; Guo, H.; Xie, Y.; Hu, T. Construction of a Dual-Function Metal–Organic Framework: Detection of Fe3+, Cu2+, Nitroaromatic Explosives, and a High Second-Harmonic Generation Response. Ind. Eng. Chem. Res. 2019, 58(38), 17784–17791.
  • Sun, S.; Sun, X.; Sun, Q.; Gao, E. Q.; Zhang, J. L.; Li, W. J. Europium Metal-organic Framework Containing Helical Metal-carboxylate Chains for Fluorescence Sensing of Nitrobenzene and Nitrofunans Antibiotics] Has Been Updated. OK?</chg>. J. Solid State Chem. 2020, 292, 121701. DOI: 10.1016/j.jssc.2020.121701.
  • Xin, X.; Zhang, M.; Ji, S.; Dong, H.; Zhang, L. A Luminescent ytterbium(III)-organic Framework for Highly Selective Sensing of 2,4,6-trinitrophenol. J. Solid State Chem. 2018, 262, 186–190. DOI: 10.1016/j.jssc.2018.03.007.
  • He, H. M.; Chen, S. H.; Zhang, D. Y.; Yang, E. C.; Zhao, X. J. A Luminescent Metal–organic Framework as an Ideal Chemosensor for Nitroaromatic Compounds. RSC Adv. 2017, 7, 38871–38876. DOI: 10.1039/C7RA06320B.
  • Zhang, S. R.; Du, D. Y.; Qin, J. S.; Li, S. L.; He, W. W.; Lan, Y. Q.; Su, Z. M. 2D Cd(II)–Lanthanide(III) Heterometallic–Organic Frameworks Based on Metalloligands for Tunable Luminescence and Highly Selective, Sensitive, and Recyclable Detection of Nitrobenzene. Inorg. Chem. 2014, 53, 8105–8113. DOI: 10.1021/ic5011083.
  • Xie, W.; Zhang, S. R.; Du, D. Y.; Qin, J. S.; Bao, S. J.; Li, J.; Su, Z. M.; He, W. W.; Fu, Q.; Lan, Y. Q. Stable Luminescent Metal–Organic Frameworks as Dual-Functional Materials To Encapsulate Ln3+ Ions for White-Light Emission and To Detect Nitroaromatic Explosives. Inorg. Chem. 2015, 54, 3290–3296. DOI: 10.1021/ic5029383.
  • Han, M. L.; Wen, G. X.; Dong, W. W.; Zhou, Z. H.; Wu, Y. P.; Zhao, J.; Li, D. S.; Ma, L. F.; Bu X. A Heterometallic Sodium–europium-cluster-based Metal–organic Framework as A Versatile and Water-stable Chemosensor for Antibiotics and Explosives. J. Mater. Chem. C. 2017, 5, 8469–8474. DOI: 10.1039/C7TC02885G.
  • Rajak, R.; Saraf, M.; Verma, S. K.; Kumar, R.; Mobin, S. M. Dy(III)-Based Metal–Organic Framework as a Fluorescent Probe for Highly Selective Detection of Picric Acid in Aqueous Medium. Inorg. Chem. 2019, 58(23), 16065–16074. DOI: 10.1021/acs.inorgchem.9b02611.
  • Gong, Y. N.; Huang, Y. L.; Jiang, L.; Lu, T. B. A Luminescent Microporous Metal–Organic Framework with Highly Selective CO2 Adsorption and Sensing of Nitro Explosives. Inorg. Chem. 2014, 53, 9457–9459. DOI: 10.1021/ic501413r.
  • Xie, S. L.; Wang, H. F.; Liu, Z. H.; Dai, R. K.; Huang, L. Z. Fluorescent Metal–organic Framework Based on Pyrene Chromophore for Sensing of Nitrobenzene. RSC Adv. 2015, 5(10), 7121–7124. DOI: 10.1039/C4RA10835C.
  • Li, H. P.; Dou, Z.; Chen, S. Q.; Hu, M.; Li, S.; Sun, H. M.; Jiang, Y.; Zhai, Q. G. Design of a Multifunctional Indium–Organic Framework: Fluorescent Sensing of Nitro Compounds, Physical Adsorption, and Photocatalytic Degradation of Organic Dyes. Inorg. Chem. 2019, 58(16), 11220–11230.
  • Cao, Z.; Chen, L.; Li, S.; Yu, M.; Li, Z.; Zhou, K.; Liu, C.; Jiang, F.; Hong, M. A Flexible Two-Fold Interpenetrated Indium MOF Exhibiting Dynamic Response to Gas Adsorption and High-Sensitivity Detection of Nitroaromatic Explosives. Chem. Asian J. 2019, 14, 3597–3602. DOI: 10.1002/asia.201900458.
  • Sun, Y.; Dong, B. X.; Liu, W. L. An Adjustable Dual-emission Fluorescent Metal-organic Framework: Effective Detection of Multiple Metal Ions, Nitro-based Molecules and DMA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117283. DOI: 10.1016/j.saa.2019.117283.
  • Wang, L.;. A Dual-Functional Lead(II) Metal–Organic Framework Based on 5-Aminonicotinic Acid as A Luminescent Sensor for Selective Sensing of Nitroaromatic Compounds and Detecting the Temperature. J. Inorg. Organomet. Polym. 2020, 30, 291–298. DOI: 10.1007/s10904-019-01186-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.