Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 41, 2021 - Issue 4
472
Views
15
CrossRef citations to date
0
Altmetric
Comment

Preparation, Characterization of Novel Cadmium-Based Metal-Organic Framework for Using as a Highly Selective and Sensitive Modified Carbon Paste Electrode in Determination of Cu(II) Ion

, , , &

References

  • Gismera, J. D.; Procopio, H. J. R.; Sevilla, M. T. Ion-selective Carbon Paste Electrode Based on Tetraethyl Thiuram Disulfide for copper(II) and mercury(II). Anal. Chim. Acta. 2004, 524, 347–353. DOI: 10.1016/j.aca.2004.03.098.
  • Frag, E. Y. Z.; Mohamed, M. E.; Ali, A. E.; Mohamed G. G. Potentiometric Sensors Selective for Cu(II) Determination in Real Water Samples and Biological Fluids Based on Graphene and Multi-walled Carbon Nanotubes Modified Graphite Electrodes. Indian J. Chem. A (IJC-A). 2020, 59, 162–173.
  • Ghaedi, M.; Naderi, S.; Montazerozohori, M.; Taghizadeh, F.; Asghari, A. Chemically Modified Multiwalled Carbon Nanotube Carbon Paste Electrode for Copper Determination. Arabian J. Chem. 2017, 10, S2934–S2943. DOI: 10.1016/j.arabjc.2013.11.029.
  • Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.-F.; Margaritis, I. Dietary Copper and Human Health: Current Evidence and Unresolved Issues. J. Trace Elements Med. Biol. 2016, 35, 107–115. DOI: 10.1016/j.jtemb.2016.02.006.
  • Phule, S. R.; Kokate, S. J.; Kuchekar, S. R. Reversed Phase Partition Chromatographic Separation of Divalent Copper with N-n-octylaniline on Silica Gel. J. Saudi Chem. Soc. 2011, 15, 209–213. DOI: 10.1016/j.jscs.2010.08.007.
  • Horstkotte, B.; Alexovic, M.; Maya, F.; Duarte, C. M.; Andruch, V.; Cerda, V. Automatic Determination of Copper by In-syringe Dispersive Liquid–liquid Microextraction of Its Bathocuproine-complex Using Long Path-length Spectrophotometric Detection. Talanta 2012, 99, 349–356. DOI: 10.1016/j.talanta.2012.05.063.
  • Panahi, H. A.; Karimi, M.; Moniri, E.; Soudi, H. Development of a Sensitive Spectrophotometeric Method for Determination of Copper. African J. Pure Appl. Chem. 2008, 2, 96–99.
  • Ghaedi, M.; Shokrollahi, A.; Ahmadi, F.; Rajabi, H. R.; Soylak, M. Cloud Point Extraction for the Determination of Copper, Nickel and Cobalt Ions in Environmental Samples by Flame Atomic Absorption Spectrometry. J. Hazardous Mater. 2008, 150, 533–540. DOI: 10.1016/j.jhazmat.2007.05.029.
  • Citak, D.; Tuzen, M. A Novel Preconcentration Procedure Using Cloud Point Extraction for Determination of Lead, Cobalt and Copper in Water and Food Samples Using Flame Atomic Absorption Spectrometry. Food Chem. Toxicol. 2010, 48, 1399–1404. DOI: 10.1016/j.fct.2010.03.008.
  • Soylak, M.; Tuzen, M.; Mendil, D.; Turkekul, I. Biosorption of Heavy Metals on Aspergillus Fumigatus Immobilized Diaion HP-2MG Resin for Their Atomic Absorption Spectrometric Determinations. Talanta. 2006, 70, 1129–1135. DOI: 10.1016/j.talanta.2006.02.027.
  • Tuzen, M.; Soylak, M.; Citak, D.; Ferreira, H. S.; Korn, M. G. A.; Bezerra, M. A. A Preconcentration System for Determination of Copper and Nickel in Water and Food Samples Employing Flame Atomic Absorption Spectrometry. J. Hazardous Mater. 2009, 162, 1041–1045. DOI: 10.1016/j.jhazmat.2008.05.154.
  • Ghaedi, M.; Shabani, R.; Shokrollahi, A.; Montazerozohori, M.; Sahraiean, A.; Soylak, M. Preconcentration and Separation of Trace Amount of Copper (II) on N1, N2-bis(4-fluorobenzylidene)ethane-1,2-diamine Loaded on Sepabeads SP70. J. Hazardous Mater. 2009, 170, 169–174. DOI: 10.1016/j.jhazmat.2009.04.110.
  • Mahajan, R. A mercury(II) Ion-selective Electrode Based on Neutral Salicylaldehyde Thiosemicarbazone. Talanta. 2003, 59, 101–105. DOI: 10.1016/S0039-9140(02)00473-3.
  • Kopylovich, N.; Mahmudov, K. T.; Pombeiro, A. J. L. Poly(vinyl) Chloride Membrane Copper-selective Electrode Based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione. J. Hazardous Mater. 2011, 186, 1154–1162. DOI: 10.1016/j.jhazmat.2010.11.119.
  • Ali, T. A.; Mohamed, G. G.; Said, A. H. Construction and Performance Characteristics of Modified Screen Printed and Modified Carbon Paste Sensors for Selective Determination of Cu(II) Ions in Different Polluted Water Samples. Chem. Eng. Commun. 2015, 203, 150914124221005. DOI: 10.1080/00986445.2015.1088438.
  • Ali, T. A.; Mohamed, G. G.; El-Dessouky, M. M. I.; Abou El-Ella, S. M.; Mohamed, R. T. F. Modified Screen-Printed Electrode for Potentiometric Determination of Copper(II) in Water Samples. J. Solution Chem. 2013, 42, 1336–1354. DOI: 10.1007/s10953-013-0030-x.
  • Birinci, A.; Eren, H.; Coldur, F.; Coskun, E.; Andac, M. Rapid Determination of Trace Level Copper in Tea Infusion Samples by Solid Contact Ion Selective Electrode. J. Food Drug Anal. 2016, 24, 485–492. DOI: 10.1016/j.jfda.2016.02.012.
  • Gupta, V. K.; Singh, L. P.; Singh, R.; Upadhyay, N.; Kaur, S. P.; Sethi, B. A Novel Copper (II) Selective Sensor Based on Dimethyl 4, 4′ (O-phenylene) Bis(3-thioallophanate) in PVC Matrix. J. Mol. Liq. 2012, 174, 11–16. DOI: 10.1016/j.molliq.2012.07.016.
  • Abbaspour, A.; Refahi, M.; Khalafi-Nezhad, A.; Soltani Rad, N.; Behrouz, S. Carbon composite–PVC Based Membrane Coated Platinum Electrode for Chromium Determination. J. Hazardous Mater. 2010, 184, 20–25. DOI: 10.1016/j.jhazmat.2010.07.064.
  • Zayed, M. A.; Abbas, A. A.; Mahmoud, W. H.; Ali, A. E.; Mohamed, G. G. Development and Surface Characterization of a Bis(aminotriazoles) Derivative Based Renewable Carbon Paste Electrode for Selective Potentiometric Determination of Cr(III) Ion in Real Water Samples. Microchemical J. 2020, 159, 105478. DOI: 10.1016/j.microc.2020.105478.
  • Lallana, E.; Sousa-Herves, A.; Fernandez-Trillo, F.; Riguera, R.; Fernandez-Megia, E. Click Chemistry for Drug Delivery Nanosystems. Pharma. Res. 2012, 29, 1–34. DOI: 10.1007/s11095-011-0568-5.
  • Ma, Z.; Moulton, B. Recent Advances of Discrete Coordination Complexes and Coordination Polymers in Drug Delivery. Coord. Chem. Rev. 2011, 255, 1623–1641. DOI: 10.1016/j.ccr.2011.01.031.
  • Masoomi, M. Y.; Morsali, A. Morphological Study and Potential Applications of Nano Metal-organic Coordination Polymers. RSC Adv. 2013, 3, 19191. DOI: 10.1039/c3ra43346c.
  • Corma, A.; Garcia, H.; Llabreés I Xamena, F. X. Engineering Metal-Organic Frameworks for Heterogeneous Catalysis. Chem. Rev. 2010, 110, 4606–4655. DOI: 10.1021/cr9003924.
  • Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen Storage in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 782–835. DOI: 10.1021/cr200274s.
  • Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. DOI: 10.1021/cr200256v.
  • Masoomi, M. Y.; Stylianou, K. C.; Morsali, A.; Retailleau, P.; Maspoch, D. Selective CO2 Capture in Metal-Organic Frameworks with Azine-Functionalized Pores Generated by Mechanosynthesis. Cryst. Growth Des. 2014, 14, 2092–2096. DOI: 10.1021/cg500033b.
  • Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. DOI: 10.1021/cr300014x.
  • Zhou, H. C.; Kitagawa, S. Metal-Organic Frameworks (Mofs). Chem. Soc. Rev. 2014, 43, 5415–5418. DOI: 10.1039/C4CS90059F.
  • Zhang, Z.; Yao, Z. Z.; Xiang, S.; Chen, B. Perspective of Microporous Metal-organic Frameworks for CO2 Capture and Separation. Energy Environ. Sci. 2014, 7, 2868. DOI: 10.1039/C4EE00143E.
  • Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Y. Applications of Metal-organic Frameworks in Heterogeneous Supramolecular Catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. DOI: 10.1039/C4CS00094C.
  • Wonsawat, W.; Chuanuwatanakul, S.; Dungchai, W.; Punrat, E.; Motomizu, S.; Chailapakul, O. Graphene-carbon Paste Electrode for Cadmium and Lead Ion Monitoring in a Flow-based System. Talanta. 2012, 100, 282–289. DOI: 10.1016/j.talanta.2012.07.045.
  • Chui, S. S. A Chemically Functionalizable Nanoporous Material [Cu3(tma)2(h2o)3]n. Science. 1999, 283, 1148–1150. DOI: 10.1126/science.283.5405.1148.
  • Dybtsev, D. N.; Chun, H.; Kim, K. Rigid and Flexible: A Highly Porous Metal-Organic Framework with Unusual Guest-Dependent Dynamic Behavior. Angewandte Chem. Internat. Ed. 2004, 43, 5033–5036. DOI: 10.1002/anie.200460712.
  • Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-organic Framework. Nature. 1999, 402, 276–279. DOI: 10.1038/46248.
  • Zayed, M. A.; Mahmoud, W. H.; Abbas, A. A.; Ali, A. E.; Mohamed, G. G. A Highly Sensitive, Selective and Renewable Carbon Paste Electrode Based on A Unique Acyclic Diamide Ionophore for the Potentiometric Determination of Lead Ions in Polluted Water Samples. RSC Adv. 2020, 10, 17552–17560. DOI: 10.1039/D0RA01435D.
  • Aglan, R. F.; Mohamed, G. G.; Mohamed, H. A. Determination of Aluminum (III) by Using a Modified Carbon Paste Selective Electrode. J. Pharm. Res. 2012, 5, 4748–4754.
  • Kamata, S.; Bhale, A.; Fukunaga, Y.; Murata, H. Copper(II)-selective Electrode Using Thiuram Disulfide Neutral Carriers. Anal. Chem. 1988, 60, 2464–2467. DOI: 10.1021/ac00173a006.
  • Rebary, B.; Paul, P.; Ghosh, P. K. Determination of Iodide and Iodate in Edible Salt by Ion Chromatography with Integrated Amperometric Detection. Food Chem. 2010, 123, 529–534. DOI: 10.1016/j.foodchem.2010.04.046.
  • Chandra, S.; Vandana. Synthesis, Spectroscopic, Anticancer and Antibacterial Studies of Ni(II) and Cu(II) Complexes with 2-carboxybenzaldehyde Thiosemicarbazone. Spectrochim. Acta A. 2014, 129, 333–338. DOI: 10.1016/j.saa.2014.02.141.
  • Mahmoud, W. H.; Deghadi, R. G.; El Desssouky, M. M. I.; Mohamed, G. G. Transition Metal Complexes of Nano Bidentate Organometallic Schiff Base: Preparation, Structure Characterization, Biological Activity, DFT and Molecular Docking Studies. Appl. Organomet. Chem. 2019, 33, 1–21. DOI: 10.1002/aoc.4556.
  • Gangu, K. K.; Pothala, V.; TVSPV, S. G.; Maddila, S.; Jonnalagadda, S. B. A Study on the Catalytic Behaviour of Cd(II) and Sm(III) Coordination Complexes Towards the Four-component Synthesis of Quinoline-3-carboxylates. Inorg. Chem. Commun. 2020, 119, 108084. DOI: 10.1016/j.inoche.2020.108084.
  • Ullah, S.; Bustam, M. A.; Assiri, M. A.; Al-Sehemi, A. G.; Gonfa, G.; Mukhtar, A.; Abdul Kareem, F. A.; Ayoub, M.; Saqib, S.; Mellon, N. B. Synthesis and Characterization of Mesoporous MOF UMCM-1 for CO2/CH4 Adsorption; an Experimental, Isotherm Modeling and Thermodynamic Study. Microporous Mesoporous Mater. 2020, 294, 109844. DOI: 10.1016/j.micromeso.2019.109844.
  • Palacios, E. G.; Juárez-López, G.; Monhemius, A. J. Infrared Spectroscopy of Metal Carboxylates. Hydrometallurgy. 2004, 72, 139–148. DOI: 10.1016/S0304-386X(03)00137-3.
  • Kadir, M. A.; Mansor, N.; Khairul, W. M.; Yusof, M. S. M.; Ismail, M. Synthesis and Characterization of New Metal-organic Framework Derived from 6-(methoxycarbonyl) Pyridine-2-carboxylic Acid as Application for Hydrogen Storage Materials. Internat. J. Appl. Chem. 2016, 12, 257–271.
  • Fei, H.; Oliver, S. R. J. Two Cationic Metal-organic Frameworks Based on Cadmium and α,ω-alkanedisulfonate Anions and Their Photoluminescent Properties. Dalton Trans. 2010, 39, 11193–11200. DOI: 10.1039/c0dt01064b.
  • Wang, D.; Zhang, L.; Li, G.; Huo, Q.; Liu, Y. Luminescent MOF Material Based on Cadmium(ii) and Mixed Ligands: Application for Sensing Volatile Organic Solvent Molecules. RSC Adv. 2015, 5, 18087–18091. DOI: 10.1039/C4RA16599C.
  • Khani, H.; Rofouei, M. K.; Arab, P.; Gupta, V. K.; Vafaei, Z. Multi-walled Carbon Nanotubes-ionic Liquid-carbon Paste Electrode as a Super Selectivity Sensor: Application to Potentiometric Monitoring of Mercury ion(II). J. Hazardous Mater. 2010, 183, 402–409. DOI: 10.1016/j.jhazmat.2010.07.039.
  • Soleymanpour, A.; Ghasemian, M. Chemically Modified Carbon Paste Sensor for the Potentiometric Determination of Carvedilol in Pharmaceutical and Biological Media. Measurement. 2015, 59, 14–20. DOI: 10.1016/j.measurement.2014.09.046.
  • Arada Pérez, M. A.; Marı́n, L. P.; Quintana, J. C.; Yazdani-Pedram, M. Influence of Different Plasticizers on the Response of Chemical Sensors Based on Polymeric Membranes for Nitrate Ion Determination. Sens. Actuators B. 2003, 89, 262–268. DOI: 10.1016/S0925-4005(02)00475-6.
  • Shamsipur, M.; Kazemi, S.; Sharghi, H. Design of a Selective and Sensitive PVC-Membrane Potentiometric Sensor for Strontium Ion Based on 1,10-Diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dioneas a Neutral Ionophore. Sensors. 2007, 7, 438–447. DOI: 10.3390/s7040438.
  • Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem. Rev. 1997, 97, 3083–3132. DOI: 10.1021/cr940394a.
  • Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity Coefficients for Ion-selective Electrodes: Recommended Methods for Reporting KA,Bpot Values (Technical Report). Pure Appl. Chem. 1995, 67, 507–518. DOI: 10.1351/pac199567030507.
  • Gupta, V. K.; Sethi, B.; Sharma, R. A.; Agarwal, S.; Bharti, A. Mercury Selective Potentiometric Sensor Based on Low Rim Functionalized Thiacalix [4]-arene as a Cationic Receptor. J. Mol. Liq. 2013, 177, 114–118. DOI: 10.1016/j.molliq.2012.10.008.
  • Pergamon Press, Great Britain. Recommendations for Nomenclature of ION-Selective Electrodes. Pure Appl. Chem. 1976, 48, 127–132. DOI: 10.1351/pac197648010127.
  • Buzuk, M.; Briničr, S.; Generalič, E.; Bralič, M. Copper(II) Ion Selective PVC Membrane Electrode Based on S,S’-bis(2-aminopheny)ethanebis(thioate). Croatica Chem. Acta. 2009, 82, 801–806.
  • Müller, B.; Hauser, P. C. Effect of Pressure on the Potentiometric Response of Ion-selective Electrodes and Reference Electrodes. Anal. Chim. Acta. 1996, 320, 69–75. DOI: 10.1016/0003-2670(95)00527-7.
  • Jin, J. C.; Wu, J.; Yang, G. P.; Wu, Y. L.; Wang, Y. Y. A Microporous Anionic Metal-organic Framework for A Highly Selective and Sensitive Electrochemical Sensor of Cu2+ Ions. Chem. Commun. 2016, 52, 8475–8478. DOI: 10.1039/C6CC03063G.
  • Lu, M.; Deng, Y.; Luo, Y.; Lv, J.; Li, T.; Xu, J.; Chen, S. W.; Wang, J. Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Anal. Chem. 2019, 91, 888–895. DOI: 10.1021/acs.analchem.8b03764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.