Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 41, 2021 - Issue 5
458
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Metal Organic Frameworks: A Versatile Class of Hybrid Compounds for Luminescent Detection and Adsorptive Removal of Enviromental Hazards

ORCID Icon & ORCID Icon

References

  • Martin, A. E. „Mortality and morbidity statistics and air pollution.„ (1964): 969–975
  • Adegoke, Kayode Adesina, et al. „Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater.„Materials Chemistry and Physics253 (2020): 123246
  • Burakov, Alexander E., et al. „Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.„Ecotoxicology and environmental safety148 (2018): 702–712
  • Siriwardane, Ranjani V., et al. „Adsorption of CO2 on molecular sieves and activated carbon.„ Energy & Fuels 15.2 (2001): 279–284
  • Wahby, Anass, et al. „High‐surface‐area carbon molecular sieves for selective CO2 adsorption.„ ChemSusChem 3.8 (2010): 974–981
  •  
  • Vikrant, Kumar, et al. „Metal–Organic Frameworks for the Adsorptive Removal of Gaseous Aliphatic Ketones.„ ACS applied materials & interfaces 12.9 (2020): 10317–10331
  • Desai, Aamod V., Shivani Sharma, and Sujit K. Ghosh. „Metal-organic frameworks for recognition and sequestration of toxic anionic pollutants.„Metal-Organic Frameworks (MOFs) for Environmental Applications. Elsevier, 2019. 95–140
  • Ruiz, M. A., A. Sua, and F. Tian. „Covalent Attachment of Metal-Organic Framework Thin Films on Surfaces„. Elsevier, 2018. 646–671
  • Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T. Metal–organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134(36), 15016–15021.
  •  
  • Lazaro, I. A.; Forgan, R. S. Application of Zirconium MOFs in Drug Delivery and Biomedicine. Coord. Chem. Rev. 2019, 380, 230–259. DOI: https://doi.org/10.1016/j.ccr.2018.09.009.
  • Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive Removal of Hazardous Materials Using Metal-organic Frameworks (Mofs): A Review. J. Hazard. Mater. 2013, 244, 444–456. DOI: https://doi.org/10.1016/j.jhazmat.2012.11.011.
  • Tang, J.; Yamauchi, Y. Carbon Materials: MOF Morphologies in Control. Nat. Chem. 2016, 8(7), 638–639. DOI: https://doi.org/10.1038/nchem.2548.
  • Wang, Z.; Cohen, S. M. Postsynthetic Modification of Metal–organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1315–1329. DOI: https://doi.org/10.1039/b802258p.
  • Garibay, Sergio J., et al. „Postsynthetic modification: a versatile approach toward multifunctional metal-organic frameworks.„ Inorganic chemistry 48.15 (2009): 7341–7349
  • Allendorf, Mark D., et al. „A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions.„ Chemistry–A European Journal 17.41 (2011): 11372–11388
  • Zhang, Yingmu, et al. „Luminescent sensors based on metal-organic frameworks.„Coordination Chemistry Reviews354 (2018): 28–45
  • Janiak, C. Engineering Coordination Polymers Towards Applications. Dalton Trans. 2003, (14), 2781–2804. DOI: https://doi.org/10.1039/b305705b.
  • Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Old Materials with New Tricks: Multifunctional Open-framework Materials. Chem. Soc. Rev. 2007, 36(5), 770–818.
  • Yi, Fei‐Yan, et al. „Chemical sensors based on metal–organic frameworks.„ ChemPlusChem 81.8 (2016): 675–690
  •  
  • Stassen, Ivo, et al. „An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors.„ Chemical Society Reviews 46.11 (2017): 3185–3241
  • Lei, Jianping, et al. „Design and sensing applications of metal–organic framework composites.„TrAC Trends in Analytical Chemistry58 (2014): 71–78
  • Allendorf, Mark D., et al. „Luminescent metal–organic frameworks.„ Chemical Society Reviews 38.5 (2009): 1330–1352
  • Hu, Z.; Deibert, B. J.; Li, J. Luminescent Metal–organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43(16), 5815–5840. DOI: https://doi.org/10.1039/C4CS00010B.
  • Banerjee, D.; Hu, Z.; Li, J. Luminescent Metal–organic Frameworks as Explosive Sensors. Dalton Trans. 2014, 43(28), 10668–10685. DOI: https://doi.org/10.1039/C4DT01196A.
  • Fraiji, L. K.; Hayes, D. M.; Werner, T. Static and Dynamic Fluorescence Quenching Experiments for the Physical Chemistry Laboratory. J. Chem. Educ. 1992, 69(5), 424. DOI: https://doi.org/10.1021/ed069p424.
  • Hu, Jinsong, et al. „Multifunctional luminescent Cd (II)-based metal-organic framework material for highly selective and sensitive sensing 2, 4, 6-trinitrophenol (TNP) and Fe3+ cation.„Microporous and Mesoporous Materials272 (2018): 177–183
  • Zhong, Fangyuan, et al. „Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+.„Journal of Solid State Chemistry278 (2019): 120892
  • Liu, Y.; Liu, C.; Zhang, X.; Liu, L.; Ge, C.; Zhuang, X.; Zhang, N.; Yang, Q.; Huang, Y.-Q.; Zhang, Z. Highly Selective and Sensitive Detection of Fe3+, Al3+ and Picric Acid by a Water-stable Luminescent MOF. J. Solid State Chem. 2019, 272, 1–8. DOI: https://doi.org/10.1016/j.jssc.2019.01.017.
  • Li, Linnan, et al. „Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution.„Sensors and Actuators B: Chemical267 (2018): 542–548
  • He, Yuchun, et al. „UiO-66-NDC (1, 4-naphthalenedicarboxilic acid) as a novel fluorescent probe for the selective detection of Fe3+.„Journal of Solid State Chemistry285 (2020): 121206
  • Akram, Muhammad Awais, et al. „Bifunctional chemosensor based on a dye-encapsulated metal-organic framework for highly selective and sensitive detection of Cr2O72− and Fe3+ ions.„Polyhedron185 (2020): 114604
  • Let, Sumanta, et al. „A Dye@ MOF composite as luminescent sensory material for selective and sensitive recognition of Fe (III) ions in water.„Inorganica Chimica Acta500 (2020): 119205
  • Zhang, Xiaolong, et al. „A bifunctional luminescent coordination polymer as recyclable sensor for detecting TNP and Fe3+ with high selectivity and sensitivity.„Inorganica Chimica Acta486 (2019): 556–561
  •  
  • Xia, Zhengqiang, et al. „Ultrasensitive Fe3+ luminescence sensing and supercapacitor performances of a triphenylamine-based TbIII-MOF.„Journal of Solid State Chemistry282 (2020): 121083
  • Weng, H.; Yan, B. A Flexible Tb (III) Functionalized Cadmium Metal Organic Framework as Fluorescent Probe for Highly Selectively Sensing Ions and Organic Small Molecules. Sens. Actuators B Chem. 2016, 228, 702–708. DOI: https://doi.org/10.1016/j.snb.2016.01.101.
  • Li, Shaodong, et al. „A bifunctional chemosensor for detection of volatile ketone or hexavalent chromate anions in aqueous solution based on a Cd (II) metal–organic framework.„Sensors and Actuators B: Chemical258 (2018): 970–980
  • Gao, Loujun, et al. „A highly sensitive multifunctional Eu-MOF sensor with pentacarboxylate for fluorescence detecting acetone, Cu2+ and Cr2O72−, and electrochemical detection of TNP.„ Journal of Solid State Chemistry 284 (2020): 121199.
  • Xiao, Jiannan, et al. „A multi-chemosensor based on Zn-MOF: ratio-dependent color transition detection of Hg (II) and highly sensitive sensor of Cr (VI).„Sensors and Actuators B: Chemical269 (2018): 164–172
  • Ye, Junwei, et al. „A fluorescent zinc–pamoate coordination polymer for highly selective sensing of 2, 4, 6-trinitrophenol and Cu2+ ion.„Sensors and Actuators B: Chemical210 (2015): 566–573
  • Zhao, Xudong, et al. „Highly selective and sensitive metal-organic framework fluorescent probe for Cu2+ through rational design of binding sites.„Microporous and Mesoporous Materials224 (2016): 149–154
  • Zhou, Y.; Chen, -H.-H.; Yan, B. An Eu 3+ Post-functionalized Nanosized Metal–organic Framework for Cation Exchange-based Fe 3+-sensing in an Aqueous Environment. J. Mater. Chem. A. 2014, 2(33), 13691–13697. DOI: https://doi.org/10.1039/C4TA01297F.
  • Dang, Song, et al. „A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach.„ Journal of Materials Chemistry 22.33 (2012): 16920–16926
  • Chen, Zhen, et al. „A tubular europium–organic framework exhibiting selective sensing of Fe 3+ and Al 3+ over mixed metal ions.„ Chemical Communications 49.98 (2013): 11557–11559.
  • Fan, Tianen, et al. „A porous and luminescent metal-organic framework containing triazine group for sensing and imaging of Zn2+.„Microporous and Mesoporous Materials266 (2018): 1–6
  • Li, Yuanyuan, et al. „Unconventional application of gold nanoclusters/Zn-MOF composite for fluorescence turn-on sensitive detection of zinc ion.„Analytica chimica acta1024 (2018): 145–152
  • Deng, Ye, et al. „Metal organic frameworks with 1, 3-bis (1-imidazolyl)-5-(imidazol-1-ylmethyl) benzene and 3, 3′-disulfobiphenyl-4, 4′-dicarboxylate ligands: Synthesis, structure and selectively sensing property.„Sensors and Actuators B: Chemical244 (2017): 114–123
  • Pan, Yanan, et al. „A new three-dimensional zinc-based metal-organic framework as a fluorescent sensor for detection of cadmium ion and nitrobenzene.„Journal of colloid and interface science513 (2018): 418–426
  • Liu, C.; Yan, B. J. J. O. C.; i. science. Zeolite-type Metal Organic Frameworks Immobilized Eu3+ for Cation Sensing in Aqueous Environment. J. Colloid Interface Sci. 2015, 459, 206–211. DOI: https://doi.org/10.1016/j.jcis.2015.08.025.
  • Tian, Pei, et al. „Porous metal-organic framework Cu3 (BTC) 2 as catalyst used in air-cathode for high performance of microbial fuel cell.„Bioresource technology244 (2017): 206–212
  • Xu, Fujian, et al. „Metal–organic frameworks of zeolitic imidazolate framework-7 and zeolitic imidazolate framework-60 for fast mercury and methylmercury speciation analysis.„Analytica chimica acta804 (2013): 240–245
  • Hou, Jin-Xin, et al. „Highly selective and sensitive detection of Pb2+ and UO22+ ions based on a carboxyl-functionalized Zn (II)-MOF platform.„Dyes and Pigments160 (2019): 159–164
  • Liu, Jie, et al. „Stable Cd (II)-MOF as a fluorescent sensor for efficient detection of uranyl ions.„Materials Letters241 (2019): 184–186
  • Wan, Yongyan, et al. „A 3D porous luminescent terbium metal-organic framework for selective sensing of F− in aqueous solution.„Inorganic Chemistry Communications80 (2017): 53–57
  • Zhu, Huilin, et al. „Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium.„Journal of Luminescence208 (2019): 67–74
  • Sun, Yuan, et al. „Luminescent metal organic frameworks–based chemiluminescence resonance energy transfer platform for turn–on detection of fluoride ion.„Talanta209 (2020): 120582
  • Zhao, Xudong, et al. „Fluorescent molecule incorporated metal-organic framework for fluoride sensing in aqueous solution.„Applied Surface Science402 (2017): 129–135
  • Lu, Ting, et al. „Amino-functionalized metal-organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine.„ Analytical chemistry 88.6 (2016): 3413–3420
  • Singha, Debal Kanti, et al. „A luminescent cadmium based MOF as selective and sensitive iodide sensor in aqueous medium.„Journal of Photochemistry and Photobiology A: Chemistry356 (2018): 389–396
  • Shi, Peng-Fei, et al. „Fast capture and separation of, and luminescent probe for, pollutant chromate using a multi-functional cationic heterometal-organic framework.„ Chemical Communications 48.66 (2012): 8231–8233
  • Xu, Hang, Chun-Shuai Cao, and Bin Zhao. „A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions.„ Chemical Communications 51.51 (2015): 10280–10283
  • Li, L.; Zou, J.-Y.; You, S.-Y. A Luminescent Pillar-layer Zn (II) Metal-organic Framework for the Ultrasensitive Detection of Nitroaniline. Inorg. Chim. Acta. 2020, 509, 119703. DOI: https://doi.org/10.1016/j.ica.2020.119703.
  • Zhang, Jinfang, et al. „Two 1, 2, 4, 5-tetra (4-pyridyl) benzene-based Zn (II)-organic frameworks: Structures and luminescence sensing property.„Polyhedron182 (2020): 114484
  • Pramanik, Sanhita, et al. „New microporous metal− organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds.„ Journal of the American Chemical Society 133.12 (2011): 4153–4155
  • Singh, Divyendu, and C. M. Nagaraja. „A luminescent 3D interpenetrating metal–organic framework for highly selective sensing of nitrobenzene.„ Dalton Transactions 43.48 (2014): 17912–17915
  • Gole, Bappaditya, Arun Kumar Bar, and Partha Sarathi Mukherjee. „Fluorescent metal–organic framework for selective sensing of nitroaromatic explosives.„ Chemical Communications 47.44 (2011): 12137–12139
  • Lan, Anjian, et al. „A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives.„ Angewandte Chemie 121.13 (2009): 2370–2374
  • Pramanik, Sanhita, et al. „A Systematic Study of Fluorescence‐Based Detection of Nitroexplosives and Other Aromatics in the Vapor Phase by Microporous Metal–Organic Frameworks.„ Chemistry–A European Journal 19.47 (2013): 15964–15971
  • Zhang, Shu-Ran, et al. „2D Cd (II)–lanthanide (III) heterometallic–organic frameworks based on metalloligands for tunable luminescence and highly selective, sensitive, and recyclable detection of nitrobenzene.„ Inorganic chemistry 53.15 (2014): 8105–8113
  • Xu, Hui, et al. „A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives.„ Chemical Communications 47.11 (2011): 3153–3155
  • Zhang, Jinfang, et al. „Two luminescent Zn (II)/Cd (II) metal–organic frameworks as rare multifunctional sensors.„ New Journal of Chemistry 41.16 (2017): 8107–8117
  • Zou, Ji-Yong, et al. „Sensitive luminescent probes of aniline, benzaldehyde and Cr (VI) based on a zinc (II) metal-organic framework and its lanthanide (III) post-functionalizations.„Dyes and Pigments159 (2018): 429–438
  • Sun, Wei, et al. „A luminescent terbium metal-organic framework for selective sensing of nitroaromatic compounds in high sensitivity.„Materials Letters126 (2014): 189–192
  • Lin, Xiao-Ming, et al. „A luminescent Tb (III)-MOF based on pyridine-3, 5-dicarboxylic acid for detection of nitroaromatic explosives.„Inorganic Chemistry Communications72 (2016): 69–72
  • Das, A.; Biswas, S. J. S.; Chemical, A. B.; Rodrigues, P.; Madeira, N. A Multi-responsive Carbazole-functionalized Zr (Iv)-based Metal-organic Framework for Selective Sensing of Fe (III), Cyanide and P-nitrophenol. Psychiatry Research. 2017, 250, 121–131. DOI: https://doi.org/10.1016/j.psychres.2017.01.028.
  • Li, Chunmei, et al. „Dual-emitting fluorescence of Eu/Zr-MOF for ratiometric sensing formaldehyde.„Sensors and Actuators B: Chemical253 (2017): 275–282
  • Freire, João Miguel, et al. „siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model.„Journal of Controlled Release245 (2017): 127–136
  • He, Ning, et al. „Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material.„Forensic science international297 (2019): 1–7
  • Zhang, Xiao-lei, et al. „Ammoniated MOF-74 (Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A.„Ecotoxicology and environmental safety187 (2020): 109821
  • Dalapati, Rana, et al. „A dinitro-functionalized Zr (IV)-based metal-organic framework as colorimetric and fluorogenic probe for highly selective detection of hydrogen sulphide.„Sensors and Actuators B: Chemical245 (2017): 1039–1049
  • Cao, -Y.-Y.; Guo, X.-F.; Wang, H. High Sensitive Luminescence Metal-organic Framework Sensor for Hydrogen Sulfide in Aqueous Solution: A Trial of Novel Turn-on Mechanism. Sens. Actuators B Chem. 2017, 243, 8–13. DOI: https://doi.org/10.1016/j.snb.2016.11.085.
  • Qin, Si-Jia, et al. „Highly sensing probe for biological metabolite of benzene series pollutants based on recyclable Eu3+ functionalized metal-organic frameworks hybrids.„Sensors and Actuators B: Chemical253 (2017): 852–859
  • Qin, S.-J.; Yan, B. A Facile Indicator Box Based on Eu3+ Functionalized MOF Hybrid for the Determination of 1-naphthol, A Biomarker for Carbaryl in Urine. Sens. Actuators B Chem. 2018, 259, 125–132. DOI: https://doi.org/10.1016/j.snb.2017.12.060.
  • Xie, Bao-Ping, et al. „Simultaneous detection of Dengue and Zika virus RNA sequences with a three-dimensional Cu-based zwitterionic metal–organic framework, comparison of single and synchronous fluorescence analysis.„Sensors and Actuators B: Chemical254 (2018): 1133–1140
  • Wei, Xiaofeng, et al. „Fluorescence biosensor for the H 5 N 1 antibody based on a metal–organic framework platform.„ Journal of Materials Chemistry B 1.13 (2013): 1812–1817
  • Wu, Lan‐Lan, et al. „A metal–organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury (II) ion detection.„ Chemistry–A European Journal 22.2 (2016): 477–480
  • He, Ran, et al. „Eu3+-functionalized metal-organic framework composite as ratiometric fluorescent sensor for highly selective detecting urinary 1-hydroxypyrene.„Dyes and Pigments151 (2018): 342–347
  • Sun, Z.; Liu, Y.; Li, Y. Selective Recognition of 6-mercaptopurine Based on Luminescent Metal–organic Frameworks Fe-MIL-88NH2. Spectrochim. Acta, Part A. 2015, 139, 296–301. DOI: https://doi.org/10.1016/j.saa.2014.12.009.
  • Chen, Lifen, et al. „Metal–organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA.„ Analyst 138.12 (2013): 3490–3493
  • Qiu, Gui-Hua, et al. „A metal-organic framework based PCR-free biosensor for the detection of gastric cancer associated microRNAs.„Journal of inorganic biochemistry177 (2017): 138–142
  • Kumar, Pawan, et al. „Luminescent nanocrystal metal organic framework based biosensor for molecular recognition.„Inorganic Chemistry Communications43 (2014): 114–117
  • O’Keeffe, M. Design of MOFs and Intellectual Content in Reticular Chemistry: A Personal View. Chem. Soc. Rev. 2009, 38(5), 1215–1217. DOI: https://doi.org/10.1039/b802802h.
  • Sarker, M.; Song, J. Y.; Jhung, S. H. Adsorptive Removal of Anti-inflammatory Drugs from Water Using Graphene Oxide/metal-organic Framework Composites. Chem. Eng. J. 2018, 335, 74–81. DOI: https://doi.org/10.1016/j.cej.2017.10.138.
  • Gusain, Rashi, et al. „Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review.„Advances in colloid and interface science272 (2019): 102009
  • Khan, N. A.; Jhung, S. H. Adsorptive Removal and Separation of Chemicals with Metal-organic Frameworks: Contribution of π-complexation. J. Hazard. Mater. 2017, 325, 198–213. DOI: https://doi.org/10.1016/j.jhazmat.2016.11.070.
  • Khan, M. S.; Khalid, M.; Shahid, M. What Triggers Dye Adsorption by Metal Organic Frameworks? the Current Perspectives. Mater. Adv. 2020, 1(6), 1575–1601. DOI: https://doi.org/10.1039/D0MA00291G.
  • Tanabe, K. K.; Cohen, S. M. Postsynthetic Modification of Metal–organic Frameworks—a Progress Report. Chem. Soc. Rev. 2011, 40(2), 498–519. DOI: https://doi.org/10.1039/C0CS00031K.
  • Seo, Pill Won, et al. „Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: remarkable adsorbents with hydrogen-bonding abilities.„ Scientific reports 6.1 (2016): 1–11
  • Moussout, Hamou, et al. „Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models.„ Karbala International Journal of Modern Science 4.2 (2018): 244–254
  • Au, Vonika Ka-Man. „Recent advances in the use of metal-organic frameworks for dye adsorption.„ Frontiers in Chemistry 8 (2020)
  • Haque, E.; Jun, J. W.; Jhung, S. H. Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with a Metal-organic Framework Material, Iron Terephthalate (MOF-235). J. Hazard. Mater. 2011, 185(1), 507–511. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.035.
  • Shen, Tingting, et al. „Hierarchically mesostructured MIL-101 metal–organic frameworks with different mineralizing agents for adsorptive removal of methyl orange and methylene blue from aqueous solution.„ Journal of Environmental Chemical Engineering 3.2 (2015): 1372–1383
  • Luo, Xi-Ping, et al. „Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101.„Microporous and Mesoporous Materials237 (2017): 268–274
  • Bao, Shuangyou, et al. „Synthesis of amino-functionalization magnetic multi-metal organic framework (Fe3O4/MIL-101 (Al0. 9Fe0. 1)/NH2) for efficient removal of methyl orange from aqueous solution.„Journal of the Taiwan Institute of Chemical Engineers87 (2018): 64–72
  • Liu, Xiaoxia, et al. „Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate.„Journal of Alloys and Compounds648 (2015): 986–993
  • Chen, Qi, et al. „Selective adsorption of cationic dyes by UiO-66-NH2.„Applied Surface Science327 (2015): 77–85
  • Ezugwu, Chizoba I., et al. „Selective and adsorptive removal of anionic dyes and CO2 with azolium-based metal-organic frameworks.„Journal of colloid and interface science519 (2018): 214–223
  • Yang, Ji-Min, et al. „Rapid adsorptive removal of cationic and anionic dyes from aqueous solution by a Ce (III)-doped Zr-based metal–organic framework.„Microporous and Mesoporous Materials292 (2020): 109764
  • Wang, Xiao-Xiao, et al. „Synthesis and characterizations of a bis (triazole)-based 3D crystalline copper (II) MOF with high adsorption capacity for congo red dye.„Inorganic Chemistry Communications54 (2015): 9–11
  • Ghosh, A.; Das, G. Green Synthesis of Sn (II)-BDC MOF: Preferential and Efficient Adsorption of Anionic Dyes. Microporous Mesoporous Mater. 2020, 297, 110039. DOI: https://doi.org/10.1016/j.micromeso.2020.110039.
  • Xiao, Mi, et al. „A double-layered neutral cadmium-organic framework for selective adsorption of cationic organic dyes through electrostatic affinity.„Journal of Solid State Chemistry288 (2020): 121376
  • Chen, D.; Feng, P.-F.; Wei, F.-H. Preparation of Fe (Iii)-mofs by Microwave-assisted Ball for Efficiently Removing Organic Dyes in Aqueous Solutions under Natural Light. Chem Eng Processing-Process Intensif. 2019, 135, 63–67. DOI: https://doi.org/10.1016/j.cep.2018.11.013.
  • Tambat, Sneha N., et al. „Hydrothermal synthesis of NH2-UiO-66 and its application for adsorptive removal of dye.„ Advanced Powder Technology 29.11 (2018): 2626–2632
  • Alqadami, Ayoub Abdullah, et al. „Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism.„Journal of environmental management223 (2018): 29–36
  • Zhang, J.; Li, F.; Sun, Q. Rapid and Selective Adsorption of Cationic Dyes by a Unique Metal-organic Framework with Decorated Pore Surface. Appl. Surf. Sci. 2018, 440, 1219–1226. DOI: https://doi.org/10.1016/j.apsusc.2018.01.258.
  • Panda, Jagannath, et al. „Efficient removal of two anionic dyes by a highly robust zirconium based metal organic framework from aqueous medium: Experimental findings with molecular docking study.„Environmental Nanotechnology, Monitoring & Management14 (2020): 100340
  • Chen, Chen, et al. „Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101 (Cr).„ Chemical Engineering Journal 183 (2012): 60–67
  • Lee, Yu-Jen, et al. „Effective adsorption of phosphoric acid by UiO-66 and UiO-66-NH2 from extremely acidic mixed waste acids: Proof of concept.„Journal of the Taiwan Institute of Chemical Engineers96 (2019): 483–486
  • Khan, Nazmul Abedin, et al. „Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks.„Journal of Hazardous Materials282 (2015): 194–200
  • Jung, Beom K., et al. „Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8.„Chemical Engineering Journal267 (2015): 9–15
  • Lin, Zu-Jin, et al. „Effective and selective adsorption of organoarsenic acids from water over a Zr-based metal-organic framework.„Chemical Engineering Journal378 (2019): 122196
  • Yu, Kwangsun, et al. „Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545.„Chemosphere250 (2020): 126133
  • Jung, B. K.; Hasan, Z.; Jhung, S. H. Adsorptive Removal of 2, 4-dichlorophenoxyacetic Acid (2, 4-D) from Water with a Metal–organic Framework. Chem. Eng. J. 2013, 234, 99–105. DOI: https://doi.org/10.1016/j.cej.2013.08.110.
  • Hasan, Z.; Jeon, J.; Jhung, S. H. Adsorptive Removal of Naproxen and Clofibric Acid from Water Using Metal-organic Frameworks. J. Hazard. Mater. 2012, 209, 151–157. DOI: https://doi.org/10.1016/j.jhazmat.2012.01.005.
  • Hasan, Z.; Choi, E.-J.; Jhung, S. H. Adsorption of Naproxen and Clofibric Acid over a Metal–organic Framework MIL-101 Functionalized with Acidic and Basic Groups. Chem. Eng. J. 2013, 219, 537–544. DOI: https://doi.org/10.1016/j.cej.2013.01.002.
  • Hasan, Z.; Khan, N. A.; Jhung, S. H. Adsorptive Removal of Diclofenac Sodium from Water with Zr-based Metal–organic Frameworks. Chem. Eng. J. 2016, 284, 1406–1413. DOI: https://doi.org/10.1016/j.cej.2015.08.087.
  • Liu, Weicong, et al. „Selective adsorption and removal of drug contaminants by using an extremely stable Cu (II)-based 3D metal-organic framework.„Chemosphere215 (2019): 524–531
  • Azhar, Muhammad Rizwan, et al. „Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater.„Journal of colloid and interface science478 (2016): 344–352
  • Naeimi, S.; Faghihian, H. Application of Novel Metal Organic Framework, MIL-53 (Fe) and Its Magnetic Hybrid: For Removal of Pharmaceutical Pollutant, Doxycycline from Aqueous Solutions. Environ. Toxicol. Pharmacol. 2017, 53, 121–132. DOI: https://doi.org/10.1016/j.etap.2017.05.007.
  • Peng, Yaguang, et al. „Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture.„Chemical Engineering Journal333 (2018): 678–685
  • Wu, Gege, et al. „Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions.„Journal of colloid and interface science528 (2018): 360–371
  • Mirsoleimani-azizi, Seyed Mohammad, et al. „Tetracycline antibiotic removal from aqueous solutions by MOF-5: Adsorption isotherm, kinetic and thermodynamic studies.„ Journal of environmental chemical engineering 6.5 (2018): 6118–6130
  • Dehghan, Aliakbar, et al. „Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling.„Chemosphere217 (2019): 250–260
  • Li, Na, et al. „Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework.„Journal of hazardous materials366 (2019): 563–572
  • Yang, Zhao-hui, et al. „Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr (VI) from aqueous solution.„Microporous and Mesoporous Materials277 (2019): 277–285
  • Sarker, Mithun, et al. „Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5 (Co).„Journal of hazardous materials324 (2017): 131–138
  • Tella, Adedibu C., et al. „Synthesis of zinc-carboxylate metal-organic frameworks for the removal of emerging drug contaminant (amodiaquine) from aqueous solution.„Journal of Environmental Sciences64 (2018): 264–275
  • Jamali, A.; Shemirani, F.; Morsali, A. A Comparative Study of Adsorption and Removal of Organophosphorus Insecticides from Aqueous Solution by Zr-based MOFs. J. Ind. Eng. Chem. 2019, 80, 83–92. DOI: https://doi.org/10.1016/j.jiec.2019.07.034.
  • Jian, Meipeng, et al. „Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles.„Colloids and Surfaces A: Physicochemical and Engineering Aspects465 (2015): 67–76
  • Liu, Bao, et al. „Highly efficient removal of arsenic (III) from aqueous solution by zeolitic imidazolate frameworks with different morphology.„Colloids and Surfaces A: Physicochemical and Engineering Aspects481 (2015): 358–366
  • Abbasi, A.; Moradpour, T.; Van Hecke, K. A New 3D Cobalt (II) Metal–organic Framework Nanostructure for Heavy Metal Adsorption. Inorg. Chim. Acta. 2015, 430, 261–267. DOI: https://doi.org/10.1016/j.ica.2015.03.019.
  • Bakhtiari, N.; Azizian, S. Adsorption of Copper Ion from Aqueous Solution by Nanoporous MOF-5: A Kinetic and Equilibrium Study. J. Mol. Liq. 2015, 206, 114–118. DOI: https://doi.org/10.1016/j.molliq.2015.02.009.
  • Luo, Xubiao, et al. „Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water.„Journal of hazardous materials306 (2016): 313–322
  • Fu, Likang, et al. „Post-functionalization of UiO-66-NH2 by 2, 5-Dimercapto-1, 3, 4-thiadiazole for the high efficient removal of Hg (II) in water.„Journal of hazardous materials368 (2019): 42–51
  • Liu, X.; Pang, H.; Liu, X.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M.; Hu, B.; Yang, H.; Wang, X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovat. 2021, 2(1), 100076.
  • Zhong, Xin, et al. „Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO22+ and TcO4− ions immobilization from aqueous solution.„Journal of Hazardous Materials407 (2021): 124729
  • Öztürk, M.; Zorer, Ö. S.; Gülcan, M. Synthesis and Characterization of UTSA-76 Metal Organic Framework Containing Lewis Basic Sites for the Liquid-phase Adsorption of UVI. Colloids Surf. A. 2021, 609, 125663. DOI: https://doi.org/10.1016/j.colsurfa.2020.125663.
  • Mu, Wanjun, et al. „Efficient and irreversible capture of strontium ions from aqueous solution using metal–organic frameworks with ion trapping groups.„ Dalton Transactions 48.10 (2019): 3284–3290
  • Hou, Yun-Long, et al. „High-Performance Metal–Organic Framework-Templated Sorbent for Selective Eu (III) Capture.„ ACS omega 5.13 (2020): 7392–7398
  • Zhong, Xin, et al. „Highly efficient enrichment mechanism of U (VI) and Eu (III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions.„Applied Surface Science504 (2020): 144403
  • Zhong, Xin, et al. „The fabrication of 3D hierarchical flower-like δ-MnO 2@ COF nanocomposites for the efficient and ultra-fast removal of UO 2 2+ ions from aqueous solution.„ Environmental Science: Nano 7.11 (2020): 3303–3317
  • Zhao, Xiaoliang, et al. „Recent Advances in Metal-organic Frameworks for the Removal of Heavy Metal Oxoanions from Water.„Chemical Engineering Journal(2020): 127221
  • Liu, Yue, et al. „Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: a review.„Chemical Engineering Journal(2020): 127139
  • Rallapalli, Phani Brahma Somayajulu, et al. „Upgrading pipeline-quality natural gas to liquefied-quality via pressure swing adsorption using MIL-101 (Cr) as adsorbent to remove CO2 and H2S from the gas.„Fuel281 (2020): 118985
  • Wang, H., et al. „Experimental and numerical study of SO2 removal from a CO2/SO2 gas mixture in a Cu-BTC metal organic framework.„Journal of Molecular Graphics and Modelling96 (2020): 107533
  • Bhatt, Prashant M., et al. „Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases.„Chemical Engineering Journal324 (2017): 392–396
  • Ye, Y.; Xiong, S.; Wu, X.; Zhang, L.; Li, Z.; Wang, L.; Ma, X.; Chen, Q.-H.; Zhang, Z.; Xiang, S. Microporous Metal–organic Framework Stabilized by Balanced Multiple Host–couteranion Hydrogen-bonding Interactions for High-density CO2 Capture at Ambient Conditions. Inorg. Chem. 2016, 55(1), 292–299.
  • Milner, Phillip J., et al. „A diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism.„ Journal of the American Chemical Society 139.38 (2017): 13541–13553.
  • Han, X.; Yang, S.; Schröder, M. Porous Metal–organic Frameworks as Emerging Sorbents for Clean Air. Nat. Rev. Chem. 2019, 3(2), 108–118. DOI: https://doi.org/10.1038/s41570-019-0073-7.
  • Zhu, Lina, et al. „Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review.„Journal of environmental management232 (2019): 964–977
  • Wang, H.; Lustig, W. P.; Li, J. Sensing and Capture of Toxic and Hazardous Gases and Vapors by Metal–organic Frameworks. Chem. Soc. Rev. 2018, 47(13), 4729–4756. DOI: https://doi.org/10.1039/C7CS00885F.
  • Wang, Bin, et al. „Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal.„ Green Energy & Environment 3.3 (2018): 191–228
  • Hanif, M. A.; Ibrahim, N.; Abdul Jalil, A. Sulfur Dioxide Removal: An Overview of Regenerative Flue Gas Desulfurization and Factors Affecting Desulfurization Capacity and Sorbent Regeneration. Environ. Sci. Pollut. Res. 2020, 27(22), 27515–27540. DOI: https://doi.org/10.1007/s11356-020-09191-4.
  •  
  • Das, A.; Biswas, S. A Multi-responsive Carbazole-functionalized Zr (Iv)-based Metal-organic Framework for Selective Sensing of Fe (III), Cyanide and P-nitrophenol. Sens. Actuators B Chem. 2017, 250, 121–131. DOI: https://doi.org/10.1016/j.snb.2017.04.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.