Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 2
805
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Schiff Base Based Metal Complexes: A Review of Their Catalytic Activity on Aldol and Henry Reaction

&

References

  • Pellissier, H. Asymmetric Organocatalysis. Tetrahedron. 2007, 63(38), 9267–9331. DOI: 10.1016/j.tet.2007.06.024.
  • (a) Dickerson, T. J., and Janda, K. D. Aqueous Aldol Catalysis by a Nicotine Metabolite. J. Am. Chem. Soc. 2002, 124(13), 3220–3221. DOI: 10.1021/ja017774f. (b) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst. Angew. Chem. Int. Ed., 2004, 43, 1983-1986. (c) Dickerson, T. J.; Lovell, T.; Meijler, M. M.; Noodleman, L.; Janda, K. D. Nornicotine Aqueous Aldol Reactions:  Synthetic and Theoretical Investigations into the Origins of Catalysis. J. Org. Chem., 2004, 69, 6603-6609. (d) Pihko, P. M.; Laurikainen, K. M.; Usano, A.; Nyberg, A. J.; Kaavi, J. A. Tetrahedron, 2006, 62, 317-328. (e) Huang, J.; Zhang, X.; Armstrong, D. W. Highly Efficient Asymmetric Direct Stoichiometric Aldol Reactions on/in Water. Angew. Chem. Int. Ed., 2007, 46, 9073-9077. (f) Aratake, S.; Itoh, T.; Okano, T.; Usui, T.; Shoji, M.; Hayashi, Y. Small organic molecule in enantioselective, direct aldol reaction “in water.” Chem. Comm., 2007, 48, 2524-2526. (g) Aratake, S.; Itoh, T.; Okano, T.; Nagae, N.; Sumiya, T.; Shoji, M.; Hayashi, Y. Highly Diastereo- and Enantioselective Direct Aldol Reactions of Aldehydes and Ketones Catalyzed by Siloxyproline in the Presence of Water. Chem. Eur. J., 2007, 13, 10246-10256. (h) Giacalone, F.; Gruttadauria, M.; Lo Meo, P.; Riela, S.; Noto, R. New Simple Hydrophobic Proline Derivatives as Highly Active and Stereoselective Catalysts for the Direct Asymmetric Aldol Reaction in Aqueous Medium. Adv. Syn.Catal., 2008, 350, 2747-2760. (i) Chimni, S. S.; Singh, S.; Kumar, A. The pH of the reaction controls the stereoselectivity of organocatalyzed direct aldol reactions in water. Tetrahedron: Asymmetry, 2009, 20, 1722-1724.
  • (a) Vaderbit, B. M., and Hass, H. B. Aldehyde-Nitroparaffin Condensation. Ind. Eng. Chem. 1940, 32, 34–38. DOI: 10.1021/ie50361a007. (b) Hass, H. B.; Riley, E. F. The Nitroparaffins. Chem. Rev., 1943, 32, 373-430; (c) Lichtenthaler, F. W. New Methods of Preparative Organic Chemistry IV. Cyclization of Dialdehydes with Nitromethane. Angew. Chem. Int. Ed. Engl., 1964, 3, 211-224. (d) Costantino, V.; Curini, M.; Marmottini, F.; Rosati, O.; Pisani, E. Potassium Exchanged Layered Zirconium Phosphate as Base Catalyst in the Synthesis of 2-Nitroalkanols. Chem. Lett., 1994, 23, 2215-2218.
  • Mandal, S.; Mandal, S.; Ghosh, S. K.; Ghosh, A.; Saha, R.; Banerjee, S.; Saha, B. Review of the Aldol Reaction. Syn. Comm. 2016, 46, 1327–1342. DOI: 10.1080/00397911.2016.1206938.
  • Dias, L. C.; de Lucca, E. C., Jr.; Ferreira, A. B. M.; Polo, E. C. Metal-Catalyzed Asymmetric Aldol Reactions. J. Braz. Chem. Soc. 2012, 23, 2137–2158. DOI: 10.1590/S0103-50532012001200003.
  • (a) Hanessian, S., and Kloss, J. Total Synthesis of Biologically Important Amino Sugars via Thenitroaldol Reaction. Tetrahedron Lett. 1985, 26, 1261–1264. DOI: 10.1016/S0040-4039(00)94865-2. (b) Chou, W. -C.; Fotsch, C.; Wong, C. -H. Synthesis of Nitrocyclitols Based on Enzymic Aldol Reaction and Intramolecular Nitroaldol Reaction. J. Org. Chem., 1995, 60, 2916-2917. (c) Kudyba, I.; Raczko, J.; Jurczak, J. Synthesis of (−)-bestatin and the Taxotere side-chain via nitroaldol reaction of (1R)-8-phenylmenthyl glyoxylate. Tetrahedron Lett., 2003, 44, 8685-8687. (d) Kudyba, I.; Raczko, J.; Jurczak, J. Asymmetric Nitroaldol Reaction. Synthesis of Taxotere Side Chain and (−)-Bestatin Using (1R)-8-Phenylmenthyl Glyoxylate. J. Org. Chem., 2004, 69, 2844-2850. (e) Kamimura, A.; Nagata, Y.; Kadowaki, A.; Uchida, K.; Uno, H. Stereoselective conjugate addition of lactams to nitroalkenes and formal total synthesis of indolizidine 167B. Tetrahedron, 2007, 63, 11856-11861. (f) Mihara, H.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Chiral-Catalyst-Based Convergent Synthesis of HIV Protease Inhibitor GRL-06579A. Chem. Asian J., 2008, 3, 359-366. (g) Gopinath, P.; Wang, L.; Abe, H.; Ravi, G.; Masuda, T.; Watanabe, T.; Shibasaki, M. Catalytic Asymmetric Total Synthesis of (+)-Caprazol.Org. Lett., 2014, 16, 3364-3367.
  • Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction. J. Am. Chem. Soc. 2003, 125, 12692–12693. DOI: 10.1021/ja0373871.
  • (a) Sun, D.; Ma, S.; Ke, Y.; Collins, D. J., and Zhou, H. C. An Interweaving MOF with High Hydrogen Uptake. J. Am. Chem. Soc. 2006, 128(12), 3896–3897. DOI: 10.1021/ja058777l. (b) Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc. Chem. Res., 2001, 34, 319-330. (c) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature, 2003, 423, 705-714. (d) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized Frameworks with Giant Pores:  Are There Limits to the Possible? Acc. Chem. Res., 2005, 38, 217-225.
  • (a) Latroche, M.; Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H., and Ferey, G. Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 2006, 45(48), 8227–8231. DOI: 10.1002/anie.200600105. (b) Zeng, M. H.; Wang, B.; Wang, X. Y.; Zhang, W. X.; Chen, X. M.; Gao, S. Chiral Magnetic Metal-Organic Frameworks of Dimetal Subunits:  Magnetism Tuning by Mixed-Metal Compositions of the Solid Solutions. Inorg. Chem., 2006, 45, 7069-7076. (c) Verbiest, T.; van Elshocht, S.; Karuanen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science, 1998, 282, 913-915.
  • (a) Hagrman, P. J.; Hagrman, D., and Zubieta, J. Organic-Inorganic Hybrid Materials: From “Simple” Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. Angew. Chem. Int. Ed. 1999, 38(18), 2638–2684. DOI: 10.1002/(SICI)1521-3773(19990917)38:18<2638::AID-ANIE2638>3.0.CO;2-4. (b) Chen, B.; Ma, S.; Zapata, F.; Fronczek, F. R.; Lobkovsky, E. B.; Zhou, H. C. Rationally Designed Micropores within a Metal−Organic Framework for Selective Sorption of Gas Molecules. Inorg. Chem., 2007, 46, 1233-1236. (c) Moulton, B.; Zaworotko, M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev., 2001, 101, 629-1658.
  • (a) Chen, B. L.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S., and Yaghi, O. M. High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angew. Chem. Int. Ed. 2005, 44(30), 4745–4749. DOI: 10.1002/anie.200462787. (b) Kesanli, B.; Lin, W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coord. Chem. Rev., 2003, 246, 305-326. (c) Horike, S.; Matsuda, R.; Tanaka, D.; Mizuno, M.; Endo, K.; Kitagawa, S. Immobilization of Sodium Ions on the Pore Surface of a Porous Coordination Polymer. J. Am. Chem. Soc., 2006, 128, 4222-4223.
  • (a) Ma, L. F.; Wang, L. Y.; Huo, X. K.; Wang, Y. Y.; Fan, Y. T.; Wang, J. G., and Chen, S. H. C. Chain, Pillar, Layer, and Different Pores: A N-[(3-Carboxyphenyl)-sulfonyl]glycine Ligand as A Versatile Building Block for the Construction of Coordination Polymers. Cryst. Growth. Des. 2008, 8(2), 620–628. DOI: 10.1021/cg700797v. (b) Ma, L. F.; Wang, Y. Y.; Wang, L. Y.; Liu, J. Q.; Wu, Y. P.; Wang, J. G.; Shi, Q. Z.; Peng, S. M. Two Novel Flexible Multidentate Ligands for Crystal Engineering: Syntheses, Structures, and Properties of CuII, MnII Complexes with N-[(3-Carboxyphenyl)sulfonyl]glycine and N,N′-(1,3-Phenylenedisulfonyl)bis(glycine). Eur. J. Inorg. Chem., 2008, 693-703.
  • (a) Yang, J.; Yue, Q.; Li, G. D.; Cao, J. J.; Li, G. H., and Chen, J. S. Structures, Photoluminescence, Up-Conversion, and Magnetism of 2D and 3D Rare-Earth Coordination Polymers with Multicarboxylate Linkages. Inorg. Chem. 2006, 45(7), 2857–2865. DOI: 10.1021/ic051557o. (b) Yue, Q.; Yang, J.; Li, G. H.; Li, G. D.; Xu, W.; Chen, J. S.; Wang, S. N. Three-Dimensional 3d−4f Heterometallic Coordination Polymers:  Synthesis, Structures, and Magnetic Properties. Inorg. Chem., 2005, 44, 5241-5246. (c) Ma, B. Q.; Zhang, D. S.; Gao, S.; Jin, T. Z.; Yan, C. H. From Cubane to Supercubane: The Design, Synthesis, and Structure of a Three-Dimensional Open Framework Based on a Ln4O4 Cluster. Angew. Chem. Int. Ed., 2000, 39, 3644-3646.
  • (a) Joseyphus, R. S., and Nair, M. S. Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II). Mycobiology.2008, 36(2), 93–98. DOI: 10.4489/MYCO.2008.36.2.093. (b) Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih, N.; Salimon, J.; Abdullah, B. Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arabian J. Chem., 2017, 10, S1639-S1644. (c) da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende, M. A.; Martins, C. V. B.; de Fa´tima, A. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2, 1-8. (d) Anaconaa, J. R.; Santaella, J.; Raheem Al-shemary, R. K.; Amenta, J.; Otero, A.; Ramos, C.; Celis, F. Ceftriaxone-based Schiff base transition metal(II) complexes. Synthesis, characterization, bacterial toxicity, and DFT calculations. Enhanced antibacterial activity of a novel Zn(II) complex against S. aureus and E. coli. J. Inorg. Biochem., 2021, 223, 111519. (e) Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. Med. Chem. Comm., 2018, 9, 409-436. (f) Adhikari, J.; Bhattarai, A.; Chaudhary, N. K. Synthesis, characterization, physicochemical studies, and antibacterial evaluation of surfactant-based Schiff base transition metal complexes. Chemical Papers, 2022, 76, 2549-2566. (g) Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M. S. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics, 2022, 11, 191.
  • (a) Frei, A.; Paden King, A.; Lowe, G. J.; Cain, A. K.; Short, F. L.; Dinh, H.; Elliott, A. G.; Zuegg, J.; Wilson, J. J., and Blaskovich, M. A. T. Nontoxic Cobalt(III) Schiff Base Complexes with Broad-Spectrum Antifungal Activity. Chem. Eur. J. 2021, 27(6), 2021–2029. DOI: 10.1002/chem.202003545. (b) Srivastva, A. N.; Pal Singh, N.; Kiran Shriwastaw, C. In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation. Arabian J. Chem., 2016, 9, 48-61. (c) Chohan, Z. H.; Hanif, M. Antibacterial and antifungal metal based triazole Schiff bases. J. Enzyme Inhibit Med. Chem., 2013, 5, 944-953.
  • (a) Abu-Dief, A. M., and Mohamed, I. M. A. A Review on Versatile Applications of Transition Metal Complexes Incorporating Schiff Bases. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119–133. (b) Jarrahpour, A.; Khalili, D.; Clercq, E. D.; Salmi, C.; Brunel, J. M. Synthesis, Antibacterial, Antifungal and Antiviral Activity Evaluation of Some New bis-Schiff Bases of Isatin and Their Derivatives. Molecules,2007, 12, 1720-1730. (c) Chang, E. L.; Simmers, C.; Knight, D. A. Cobalt Complexes as Antiviral and Antibacterial Agents. Pharmaceuticals,2010, 3, 1711-1728.
  • (a) Tadele, K. T. Antioxidant Activity of Schiff Bases and Their Metal Complexes: A Recent Review. J. Pharm. Med. Res. 2017, 3, 73–77. (b) Kostova, I.; Saso, L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr. Med. Chem., 2013, 20, 4609-4632. (c) MacLean, L.; Karcz, D.; Jenkins, H.; McClean, S.; Devereux, M.; Howe, O.; Pereira, M. D.; May, N. V.; Enyedy, É. A.; Creaven, B. S. Copper(II) complexes of coumarin-derived Schiff base ligands: Pro- or antioxidant activity in MCF-7 cells? J. Inorg. Biochem., 2019, 197, 110702-110742. (d) Saif, M.; El-Shafiy, H. F.; Mashaly, M. M.; Eid, M. F.; Nabeel, A. I.; Fouad, R. Synthesis, characterization, and antioxidant/cytotoxic activity of new chromoneSchiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II). J. Mol. Struc., 2016, 1118, 75-82.
  • Nielsen, A. T., and Houlihan, W. J. The. Aldol Condensat. Accessed15 March 2011. DOI: 10.1002/0471264180.or016.01.
  • Tang, Y.; Xu, J.; Gu, X. Modified Calcium Oxide as Stable Solid Base Catalyst for Aldol Condensation Reaction. J. Chem. Sci. 2013, 125(2), 313–320. DOI: 10.1007/s12039-013-0362-5.
  • Arora, Z.; Eftemie, D. –. I.; Spinciu, A.; Maxim, C.; Hanganu, A. –. M.; Tudorache, M.; Cojocaru, B.; Pavel, O. D.; Granger, P.; Andruh, M., et al. Valmet Chiral Schiff-Base Ligands and Their Copper(II) Complexes as Organo, Homogeneous and Heterogeneous Catalysts for Henry, Cyanosilylation and Aldol Coupling Reactions. Chem. Cat. Chem. 2021, 13, 4634–4644.
  • Hassan, Y.; Klein, R.; Kaye, T. An Efficient Catalyst for Aldol Condensation Reactions. Jotcsa. 2017, 4, 517–524.
  • Yoshino, T.; Morimoto, H.; Lu, G.; Matsunaga, S.; Shibasaki, M. Construction of Contiguous Tetrasubstituted Chiral Carbon Stereocenters via Direct Catalytic Asymmetric Aldol Reaction of α-Isothiocyanato Esters with Ketones. J. Am. Chem. Soc. 2009, 131(47), 17082–17083. DOI: 10.1021/ja908571w.
  • Hatano, M.; Takagi, E.; Ishihara, K. Sodium Phenoxide−Phosphine Oxides as Extremely Active Lewis Base Catalysts for the Mukaiyama Aldol Reaction with Ketones. Org. Lett. 2007, 9(22), 4527–4530. DOI: 10.1021/ol702052r.
  • Louis, H. Synthetic formation of nitrated alcohols Comptesrendus. 1895, 120, 1265–1268. (b) Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis. Burlington, MA: Elsevier Academic Press. 2005, 202-203; (c) Ono, N. The Nitro Group in Organic Synthesis. New York, NY: Wiley-VCH. 2001, 30-69.
  • Wei, Y.; Yao, L.; Zhang, B.; He, W.; Zhang, S. Novel Schiff Base Ligands Derived from Cinchona Alkaloids for Cu(II)-catalyzed Asymmetric Henry Reaction. Tetrahedron. 2011, 67(44), 8552–8558. DOI: 10.1016/j.tet.2011.08.076.
  • Sutradhar, M.; da Silva, M. F. C. G.; Pombeiro, A. J. L. A New Cyclic Binuclear Ni(II) Complex as A Catalyst Towards Nitroaldol (Henry) Reaction. Cat. Comm. 2014, 57, 103–106. DOI: 10.1016/j.catcom.2014.08.013.
  • Hazra, S.; Karmakar, A.; da Silva, M. F. C. G.; Dlháň, Ľ.; Bočac, R.; Pombeiro, A. J. L. Sulfonated Schiff Base Dinuclear and Polymeric copper(II) Complexes: Crystal Structures, Magnetic Properties and Catalytic Application in Henry Reaction. New J. Chem. 2015, 39(5), 3424–3434. DOI: 10.1039/C5NJ00330J.
  • Aryanejad, S.; Bagherzade, G.; Moudi, M. Design and Development of Novel Co-MOF Nanostructures as an Excellent Catalyst for Alcohol Oxidation and Henry Reaction, with a Potential Antibacterial Activity. Appl. Org. Chem. 2019, 4820, 1–11.
  • Zhou, G. P.; Hui, Y. H.; Wan, N. N.; Liu, Q. J.; Xie, Z. F.; Wang, J. D. Mn(OAc)2/Schiff Base as a New Efficient Catalyst System for the Henry Reaction of Nitroalkanes with Aldehydes. Chin. Chem. Let. 2012, 23(6), 690–694. DOI: 10.1016/j.cclet.2012.04.018.
  • Lai, G.; Wang, S.; Wang, Z. Asymmetric Henry Reaction Catalyzed by a Copper Tridentate Chiral schiff-base Complex. Tetrahedron: Asymmetry. 2008, 19(15), 1813–1819. DOI: 10.1016/j.tetasy.2008.06.036.
  • Koz, G.; Astley, D.; Astley, S. T. Enantioselective Henry Reaction Catalyzed by a Novel L-(+)-aspartic acid-derived Schiff Base Ligand and Cu(II) Ion. Turk. J. Chem. 2011, 35, 553–560.
  • Song, Q.; An, X.; Xia, T.; Zhou, X.; Shen, T. Catalytic Asymmetric Henry Reaction Using copper(II) Chiral Tridentate Schiff-base Complexes and Their polymer-supported Complexes. C R Chimie. 2015, 18(2), 215–222. DOI: 10.1016/j.crci.2014.03.014.
  • Ananthi, N.; Balakrishnan, U.; Velmathi, S. Salicylaldimine Based Copper (II) Complex: A Potential Catalyst for the Asymmetric Henry Reaction. ARKIVOC. 2010, xi, 370–379.
  • Larionov, V. A.; Yashkina, L. V.; Medvedev, M. G.; Smol’yakov, A. F.; Peregudov, A. S.; Pavlov, A. A.; Eremin, D. B.; Savel’yeva, T. F.; Maleev, V. I.; Belokon, Y. N. Henry Reaction Revisited. Crucial Role of Water in an Asymmetric Henry Reaction Catalyzed by Chiral NNO-Type Copper(II) Complexes. Inorg. Chem. 2019, 58(16), 11051–11065. DOI: 10.1021/acs.inorgchem.9b01574.
  • Moodi, Z.; Bagherzade, G. Synthesis and Characterization of Ni(II) and Cu(II) Complexes Based on Quercetin Schiff Base and Using Them as Heterogeneous Catalysts in Henry Reaction. Ind. J. Chem. 2022, 61, 136–143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.