Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 2
72
Views
2
CrossRef citations to date
0
Altmetric
Review Article

The Samsonov Configurational Model: Instructive Historical Remarks and the Extension of Its Application to Substituted Hydroxyapatite

ORCID Icon

References

  • Vasilkovska, M. A.; Ivashchenko, V. I.; Skorokhod, V. V.; Paustovskyi, O. B.; Imofeyeva, I. I. T., and Yarmola, T. M., Eds. Collection of Memories about G. V. Samsonov: Scientist, Organizer, Teacher, Kyiv, Ukraine: Akademperiodyka, 2018.
  • Samsonov, G. V.; Pryadko, I. F.; Pryadko, L. F. A Configurational Model of Matter. In Studies in Society Science Series, Plenum Publishing: New York, NY, 1973.
  • Ristić, M. M.; Skripnik, F. V.; Pryadko, L. F. Estimation of Physical Properties of Transition Metals Based on a Configuration Model of Solids. Monatsh. Chem. 1987, 118, 323–328. DOI: 10.1007/BF00809942.
  • Upadhyaya, G. S. Electronic Mechanism of Sintering: Some Case Studies on Real Systems. Bull. Mater. Sci. 1994, 17, 921–934. DOI: 10.1007/BF02757569.
  • Samsonov, G. V. Role of Stable Electron Configurations in Forming the Properties of Chemical Elements and Compounds. Ukr. Khim. Zh. 1965, 31, 1233–1245.
  • Neshpor, V. S.; Samsonov, G. V. Electronic He at Capacity of Transition Metals, Fiz. Met. i Metallov. 1968, 25, 1132.
  • Pryadko, I. F. Zh. Fiz. Khim. Thermodynamic Properties of Transition Metals and Their Compounds from the Point of View of the Formation of Stable Configurations of the Localized Part of the Valency Electrons, 1968. 42(3), 755–760.
  • Upadkhaya, G. S. Stacking Faults in Crystals and the Model of Configurational Localization. Soviet Phys. J. 1969, 12, 1003–1009. DOI: 10.1007/BF00820930.
  • Podchernyaeva, I. A.; Samsonov, G. V.; Fomenko, V. S. Differences in Emission Parameters and Adsorption Properties of single-crystal Faces. Soviet Phys. J. 1969, 12, 721–725. DOI: 10.1007/BF00814169.
  • Pryadko, I. F. Dissertation [In Russian]. Institute for Problems in Materials Science, USSR, Kiev, 1968.
  • Samsonov, G. V. Ukrainsk. Khim. Zh. 1967, 33, 763.
  • Upadhyaya, G. S.; Samsonov, G. V. Some Relationships of Constitutional Diagrams of IIIA–VIA Transition Metals. J. Less Common Met. 1969, 17, 161–165. DOI: 10.1016/0022-5088(69)90049-6.
  • Samsonov, G. V.; Upadkhaya, G. S. Properties of Alloys of Niobium and Titanium Carbides in Their Homogeneity Region. Powder Metall. Met. Ceram. 1968, 7, 723–726. DOI: 10.1007/BF00773741.
  • Samsonov, G. V.; Kovalchenko, M. S.; Petrykina, R. Y.; Grechishkina, N. P. Hot Pressing of Molybdenum Powder. Sov. Powder Metall. Metal Ceram. 1970, 9, 389–391. DOI: 10.1007/BF00796506.
  • Delić, D.; Janaćković, T.; Uskoković, D.; Ristić, M. M. Macrokinetics of the Sintering of α-Nb2O5. J. Jap. Soc. Powder Powder Metall. 1973, 19, 291–301. DOI: 10.2497/jjspm.19.291.
  • Ristić, M. M.; Pryadko, L. F.; Dzyuba, V. V.; Linnik, V. P. Influence of Energetic Concurrence of S and D Electrons of Formation of Electronic Structure of Transition Metals. Sci. Sinter. 1988, 20, 7–23.
  • Ristić, M. M. G. V. Samsonov’s Search for the Essential Nature of the Sintering Process. Powder Metall. Met. Ceram. 1998, 37, 11–14. DOI: 10.1007/BF02677224.
  • Bordia, R. K.; Kang, S. J. K.; Olevsky, E. A. Current Understanding and Future Research Directions at the Onset of the Next Century of Sintering Science and Technology. J. Amer. Cer. Soc. 2017, 100, 2314–2352. DOI: 10.1111/jace.14919.
  • Pecora, L. M.; Ficalora, P. A Synthesis of the Brewer-Engel and Samsonov-Pryadko-Pryadko Electron Correlations for Metals. J. Solid State Chem. 1979, 27, 239–253. DOI: 10.1016/0022-4596(79)90163-4.
  • Johnson, O. Electron Density and Electron Redistribution in Alloys-I. Electron Density in Elemental Metals. J. Phys. Chem. Solids. 1981, 42(2), 65–76. DOI: 10.1016/0022-3697(81)90090-1.
  • Johnson, J. L., and German, R. M. Theoretical Modeling of Densification during Activated Solid-State Sintering. Metall. Mater. Trans. A. 1996, 27(2), 441–450. DOI: 10.1007/BF02648421.
  • Sivaram, S.; Ficalora, P. J.; Cadien, K. C. Extension of the Engel–Brewer Metallic Correlation to Transition Metal Silicides. J. Appl. Phys. 1985, 58, 1314–1319. DOI: 10.1063/1.336099.
  • Morris, J. F. Decreased Creep for Increased Space Power. Eng. Fract. Mech. 1986, 24, 77–95. DOI: 10.1016/0013-7944(86)90009-3.
  • Avasarala, B.; Haldar, P. Electrochemical Oxidation Behavior of Titanium Nitride Based Electrocatalysts under PEM Fuel Cell Conditions. Electrochim. Acta. 2010, 55(28), 9024–9034. DOI: 10.1016/j.electacta.2010.08.035.
  • Arzpeyma, G.; Gheribi, A. E.; Medraj, M. On the Prediction of Gibbs Free Energy of Mixing of Binary Liquid Alloys. J. Chem. Thermodyn. 2013, 57, 82–91. DOI: 10.1016/j.jct.2012.07.020.
  • Moscu, A.; Schuurman, Y., and Meunier, F. C. Recent Progresses on the Use of Supported Bimetallic Catalysts for the Preferential Oxidation of CO (PROX). Catalysis. 2016, 28, 237–267 doi:10.1039/9781782626855-00237.
  • Schmuecker, S. M.; Clouser, D.; Kraus, T. J.; Leonard, B. M. Synthesis of Metastable Chromium Carbide Nanomaterials and Their Electrocatalytic Activity for the Hydrogen Evolution Reaction. Dalton Trans. 2017, 46(39), 13524–13530. DOI: 10.1039/C7DT01404J.
  • Pryadko, L. F.; Timofeeva, I. I.; Fomenko, V. S. Second Scientific Symposium on the Configurational Model of Matter. Poroshkovaya Metall. 1976, 7, 163, 105–106. Reprinted in Soviet Powder Metallurgy and Metal Ceramics, 15 (7), pp. 580-582.
  • Fomenko, V. S.; Timofeeva, I. I. Scientific Symposium on the Configurational Model of Matter. Poroshkovaya Metall. 1973, 4, 124, 105–106. Reprinted in Soviet Powder Metallurgy and Metal Ceramics, 12 (4), pp. 353-354.
  • Kuhn, T 1962 The Structure of Scientific Revolutions. (Belgrade: Nolit).
  • Uskoković, V. On Science of Metaphors and the Nature of Systemic Reasoning. World Fut. J. New Paradigm Res. 2009, 65, 241–269. DOI: 10.1080/02604020701852885.
  • Galbraith, JM, Shaik, S, Danovich, D, Braïda, B, Wu, W, Hiberty, P, Cooper, DL, Karadakov, PB, and Dunning, TH. Valence Bond and Molecular Orbital: Two Powerful Theories that Nicely Complement One Another. J. Chem. Ed. 2021, 98, 3617–3620. doi:10.1021/acs.jchemed.1c00919.
  • Freedman, D. E. Chemistry for the Second Quantum Revolution, Presented at the American Chemical Society Spring Conference, San Diego, CA, 2022.
  • Ristić, M. M. Principles of Materials Science, Belgrade: Serbian Academy of Sciences and Arts, 1993; pp 66.
  • Uskoković, D. P.; Samsonov, G. V.; Ristić, M. M. Activated Sintering, International Institute for the Science of Sintering: Belgrade, 1974.
  • Samsonov, G. V.; Kovalchenko, M. S.; Verkhuturov, A. D.; Roshchina, A. I. Laser-radiation Treatment of Heat Resisting Metals and Their Compounds. Ehlektronnaya Obrabotka Materialov. 1976, 6, 5–10.
  • Samsonov, G. V.; Yakovlev, I. V. A Contribution to the Study of the Electronic Mechanism of Activated Sintering of Tungsten. Sci. Sinter. 1975, 7, 231–240.
  • Samsonov, G. V.; Kovenskaya, B. A.; Serebryakova, T. I. Some Physical Characteristics of the Diborides of Transition Metals of Groups IV and V. Sov Physical J. 1971, 14, 11–14. DOI: 10.1007/BF00819852.
  • Upadhyaya, G. S. Samsonov’s Model for Electronic Mechanism of Sintering and Its Relevance. Mat. Sci. Forum. 2009, 624, 57–69. doi:10.4028/scientific.net/MSF.624.57
  • Upadhyaya, G. S. Phase Stability and Sintering of Multiphase Alloy Systems. In Science of Sintering; Uskoković, D. P., Palmour, H., Spriggs, R. M., Eds.; Springer : Boston, MA, 1989:215-226.
  • Pryadko, L. F.; Ristić, M. M.; Stefanović, D. Č. Structure and Properties of Transition Metals in the Light of the Correlation Theory, SANU: Belgrade, 1984.
  • Maričić, A. M.; Minić, V. M.; Nikolić, M. V.; Radić, S. M.; Ristić, M. M. The Melting Temperature and Atomization Energy of f2-7 Lanthanides from the Viewpoint of the Configurational Model of Solids. J. Serb. Chem. Soc. 1997, 62(8), 635–641.
  • Bayanov, A. P. Thermodynamics of the Interaction of the Lanthanides with Other Elements. Russ. Chem. Rev. 1975, 44(2), 122–127. DOI: 10.1070/RC1975v044n02ABEH002251.
  • Ristić, M. M., Maričić, A. M. Prognosis of Material Properties Based on the Configuration Model of Solids. Center for Multidisciplinary Studies of the Belgrade University, Technical Faculty, Čačak, Institute of Technical Sciences of SASA, Belgrade & Čačak, 1997.
  • Espositi, L. D.; Marković, S.; Ignjatović, N.; Panseri, S.; Montesi, M.; Adamiano, A.; Fosca, M.; Rau, J.; Uskoković, V.; Iafisco, M. Thermal Crystallization of Amorphous Calcium Phosphate Combined with Citrate and Fluoride Doping: A Novel Route to Produce Hydroxyapatite Bioceramics. J. Mater Chem. B. 2021, 9(24), 4832–4845. DOI: 10.1039/D1TB00601K.
  • Afifi, M.; Ahmed, M. K.; Fathi, A. M.; Uskoković, V. Physical, Electrochemical and Biological Evaluations of Spin-Coated ε-Polycaprolactone Thin Films Containing Alumina/Graphene/Carbonated Hydroxyapatite/Titania for Tissue Engineering Applications. Int. J. Pharmaceutics. 2020, 585, 119503. DOI: 10.1016/j.ijpharm.2020.119502.
  • Landi, E.; Logroscino, G.; Proietti, L.; Tampieri, A.; Sandri, M.; Sprio, S. Biomimetic Mg-substituted Hydroxyapatite: From Synthesis to in Vivo Behaviour. J. Mater. Sci. Mater. Med. 2008, 19, 239–247. DOI: 10.1007/s10856-006-0032-y.
  • Xue, W.; Tao, S.; Liu, X.; Zheng, X.; Ding, C. In Vivo Evaluation of Plasma Sprayed Hydroxyapatite Coatings Having Different Crystallinity. Biomaterials. 2004, 25, 415–421. DOI: 10.1016/S0142-9612(03)00545-3.
  • Low, H. R.; Phonthammachai, N.; Maignan, A.; Stewart, G. A.; Bastow, T. J.; Ma, L. L.; White, T. J. The Crystal Chemistry of Ferric Oxyhydroxyapatite. Inorg. Chem. 2008, 47(24), 11774–11782. DOI: 10.1021/ic801491t.
  • Okazaki, M.; Takahashi, J.; Kimura, H. Crystallinity and Solubility Behavior of iron-containing Fluoridated Hydroxyapatites. J. Biomed. Mater. Res. 1986, 20, 879–886. DOI: 10.1002/jbm.820200703.
  • McQueen, T. Quantum Materials. Presented at the American Chemical Society Spring Conference, San Diego, CA, 2022.
  • Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, 32, 751–767. DOI: 10.1107/S0567739476001551.
  • Samsonov, G. V. Problems of Obtaining Materials with Definite Properties. In Materials in Electronics; Ristić, M. M., Mikijelj, V. Đ., Eds.; International Institute for the Science of Sintering: Belgrade, 1977; pp 21.
  • Posavec, L.; Knijnenburg, J. T. N.; Hilty, F. M.; Krumeich, F.; Pratsinis, S. E.; Zimmermann, M. B. Dissolution and Storage Stability of Nanostructured Calcium Carbonates and Phosphates for Nutrition. J. Nanopart. Res. 2016, 18, 10. art. no. 310. DOI: 10.1007/s11051-016-3608-6.
  • Verbeeck, R. M. H.; Thun, H. P.; Driessens, F. C. M. Effect of Dehydration of Hydroxyapatite on Its Solubility Behaviour. Zeitschrift für Physikalische Chemie. 1980, 119(1), 79–84. DOI: 10.1524/zpch.1980.119.1.079.
  • Ito, A.; Maekawa, K.; Tsutsumi, S.; Ikazaki, F.; Tateishi, T. Solubility Product of OH-carbonated Hydroxyapatite. J. Biomed. Mater. Res. 1997, 36, 522–528. DOI: 10.1002/(SICI)1097-4636(19970915)36:4<522::AID-JBM10>3.0.CO;2-C.
  • Ereiba, K. M. T.; Mostafa, A. G.; Gamal, G. A.; Said, A. H. In Vitro Study of Iron Doped Hydroxyapatite. J. Biophys. Chem. 2013, 4(4), 122–130. DOI: 10.4236/jbpc.2013.44017.
  • Sutter, B.; Hossner, L. R.; Ming, D. W. Dissolution Kinetics of Iron-, Manganese-, and Copper-Containing Synthetic Hydroxyapatites. Soil Sci. Soc. Am. J. 2005, 69, 362–370. DOI: 10.2136/sssaj2005.0362.
  • Medvecký, Ľ.; Štulajterová, R.; Parilák, Ľ.; Trpčevská, J.; Ďurišin, J.; Barinov, S. M. Influence of Manganese on Stability and Particle Growth of Hydroxyapatite in Simulated Body Fluid. Colloids Surf. A. 2006, 281, 221–229. DOI: 10.1016/j.colsurfa.2006.02.042.
  • Weiss, K. M. Investigating the Structure, Solubility, and Antibacterial Efficacy of Silver and Copper Doped Hydroxyapatite. A Thesis Presented to the Faculty of Alfred University, Alfred, NY, 2017.
  • Sumathi, S.; Gopal, B. In Vitro Degradation of Multisubstituted Hydroxyapatite and Fluorapatite in the Physiological Condition. J. Cryst. Growth. 2015, 422, 36–43. DOI: 10.1016/j.jcrysgro.2015.04.022.
  • Unabia, R. B.; RT Jr, C.; Pawłowski, L.; Salvatori, R.; Bellucci, D.; Cannillo, V. In Vitro Studies of Solution Precursor plasma-sprayed copper-doped Hydroxyapatite Coatings with Increasing Copper Content. J. Biomed. Mater. Res. B Appl. Biomater. Aug 2020, 108, 6, 2579–2589. DOI: 10.1002/jbm.b.34589.
  • Christoffersen, M. R.; Thyregod, H. C.; Christoffersen, J. Effects of aluminum(III), chromium(III), and iron(III) on the Rate of Dissolution of Calcium Hydroxyapatite Crystals in the Absence and Presence of the Chelating Agent Desferrioxamine. Calcif. Tissue Int. 1987, 41(1), 27–30. DOI: 10.1007/BF02555127.
  • Zhao, X.; Zhu, Y.; Zhu, Z.; Liang, Y.; Niu, Y.; Lin, J. Characterization, Dissolution, and Solubility of Zn-Substituted Hydroxylapatites [(ZnxCa1−x)5(PO4)3OH] at 25°C. J. Chem. 2017, 2017, 4619159. DOI: 10.1155/2017/4619159.
  • Gigilev, A. S.; Korotchenko, N. M.; Lariushina, A. V.; Kozik, V. V. Microwave Synthesis and Study of Physicochemical Properties of Hydroxyapatite Modified with Silver and Zinc Ions. IOP Conf. Ser. Mater. Sci. Eng. 2019, 597, 12004. DOI: 10.1088/1757-899X/597/1/012004.
  • Veselinović, L.; Karanović, L.; Stojanović, Z.; Bračko, I.; Marković, S.; Ignjatović, N.; Uskoković, D. Crystal Structure of cobalt-substituted Calcium Hydroxyapatite Nanopowders Prepared by Hydrothermal Processing. J. Appl. Cryst. 2010, 43, 320–327. DOI: 10.1107/S0021889809051395.
  • Wu, W.; Nancollas, G. H. A New Understanding of the Relationship between Solubility and Particle Size. J. Solution Chem. 1998, 27(6), 521–531. DOI: 10.1023/A:1022678505433.
  • Kipp, J. E. The Role of Solid Nanoparticle Technology in the Parenteral Delivery of Poorly water-soluble Drugs. Int. J. Pharm. 2004, 284(1/2), 109–122. DOI: 10.1016/j.ijpharm.2004.07.019.
  • Uskoković, V. Ion-Doped Hydroxyapatite: An Impasse or the Road to Follow? Ceram. Int. 2020, 46(8/B), 11443–11465. DOI: 10.1016/j.ceramint.2020.02.001.
  • Uskoković, V.; Iyer, M. A.; Wu, V. M. One Ion to Rule Them All: Combined Antibacterial, Osteoinductive and Anticancer Properties of Selenite-Incorporated Hydroxyapatite. J. Mater. Chem. B. 2017, 5, 1430–1445. DOI: 10.1039/C6TB03387C.
  • Wu, V. M.; Ahmed, M. K.; Mostafa, M. S.; Uskoković, V. Empirical and Theoretical Insights into the Structural Effects of Selenite Doping in Hydroxyapatite and the Ensuing Inhibition of Osteoclasts. Mater. Sci. Eng. C. 2020, 117, 111257. DOI: 10.1016/j.msec.2020.111257.
  • Ahmed, M. K.; Mansour, S. F.; Al-Wafi, R.; El-dek, S. I.; Uskoković, V. Tuning the Mechanical, Microstructural and Cell Adhesion Properties of Electrospun ε-Polycaprolactone Microfibers by Doping Selenium-Containing Carbonated Hydroxyapatite as the Reinforcing Agent with Magnesium Ions. J. Mater. Sci. 2019, 54(23), 14524–14544. DOI: 10.1007/s10853-019-03947-1.
  • Ahmed, M. K.; Mansour, S. F.; Al-Wafi, R.; Afifi, M.; Uskoković, V. Gold as a Dopant in Selenium-Containing Carbonated Hydroxyapatite Fillers of Nanofibrous ε-Polycaprolactone Scaffolds for Tissue Engineering. Int. J. Pharmaceutics. 2020, 577, 118950. DOI: 10.1016/j.ijpharm.2019.118950.
  • Al-Wafi, R.; Ahmed, M. K.; Mansour, S. F.; El-dek, S. I.; Uskoković, V. Physical and Biological Changes Associated with the Doping of Carbonated Hydroxyapatite/Polycaprolactone Core-Shell Nanofibers Dually, with Rubidium and Selenite. J. Mater. Res. Technol. 2020, 9(3), 3710–3723. DOI: 10.1016/j.jmrt.2020.01.108.
  • Petit, S.; Gode, T.; Thomas, C.; Dzwigaj, S.; Lillot, Y.; Brouri, D.; Krafft, J. M.; Rousse, G.; Laberty-Robert, C.; Costentin, G. Incorporation of Vanadium into the Framework of Hydroxyapatites: Importance of the Vanadium Content and pH Conditions during the Precipitation Step. Phys. Chem. Chem. Phys. 2017, 19, 9630–9640. DOI: 10.1039/C6CP08782E.
  • Neshpor, V. S.; Kh, A.; Bychkov, S. S.; Ordanyan, S. S. Semenov. Influence of high-temperature Plastic Deformation on the Electrical Properties of Hard Refractory Compounds. Powder Metall. 1976, 5(161), 40–44.
  • Samsonov, G. V., and Bozhko, S. A. Collective Recrystallization in Loosely Poured Zirconium Carbide Powders. Powder Metall. 1970, 3(87), 35–38. doi:10.1007/BF00803950.
  • Kopayev, A. V.; Bushkova, V. S. Application of the Electron Theory of Sintering to the Ferrite Systems. Proceedings of the International Workshop “Oxide Materials for Electronic Engineering” (OMEE-2009), Lviv, 2009, Published in Acta Physica Polonica A 116, 30–33 2010.
  • Samsonov, G. V. Development of Electron Mechanism Concepts for Diffusion Phenomena in Metals and Alloys. Fiziko-Khimicheskaya Mekhanika Materialov. 1968, 4, 502–506.
  • Ghiasi, B.; Sefidbakht, Y.; Mozaffari-Jovin, S.; Gharachloo, B.; Mehraria, M.; Khodadadi, A.; Rezaei, M.; Ranaei-Siadat, S. O.; Uskoković, V. Hydroxyapatite as A Biomaterial – A Gift that Keeps on Giving. Drug Dev. Ind. Pharm. 2020, 46(7), 1035–1062. DOI: 10.1080/03639045.2020.1776321.
  • Wu, V. M., and Uskoković, V. Waiting for Apatao: 250 Years Later. Found. Sci. 2019, 24(4), 617–640. DOI: 10.1007/s10699-019-09602-x.
  • Uskoković, V., and Uskoković, D. P. Nanosized Hydroxyapatite and Other Calcium Phosphates: Chemistry of Formation and Application as Drug and Gene Delivery Agents. J.Biomed. Mater. Res. B. 2011, 96B(1), 152–191. doi:10.1002/jbm.b.31746.
  • Andrievskii, R. A. G. V. Samsonov and Modern Materials Science. Powder Metall. Met. Ceram. 1998, 37(1–2), 6–10. DOI: 10.1007/BF02677223.
  • V. G. Samsonov Profile at the Open Library. https://openlibrary.org/authors/OL1192150A/G._V._Samsonov 2022.
  • Binod, K. R.; Morosan, E. Intermediate Valence in Single Crystals of (Lu1−xY bx)3Rh4Ge13 (0 ≤ X ≤ 1). APL Mater. 2015, 3, 41511. DOI: 10.1063/1.4913742.
  • Pryadko, L. F.; Ristić, M. M. Configuration Model of Matter and Its Role in Theoretical Science of Materials. Powder Metall. Met. Ceram. 2008, 47, 21–25. DOI: 10.1007/s11106-008-0005-4.
  • Anon. Gregoriy Valentinovich Samsonov. Biographical Information. National Technical University of Ukraine, https://kpi.ua/en/samsonov-about 2022.
  • Ihm, J. Total Energy Calculations in Solid State Physics. Rep. Prog. Phys. 1988, 51, 105. DOI: 10.1088/0034-4885/51/1/003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.