Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 2
429
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Catalytic Applications of Heteropoly acid-Supported Nanomaterials in Synthetic Transformations and Environmental Remediation

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M., and Grimes, R. Advanced Inorganic Chemistry; New York, United States: John Wiley & Sons, 1988.
  • Corma, A. Inorganic Solid Acids and Their Use in acid-catalyzed Hydrocarbon Reactions. Chem. Rev. 1995, 95, 559–614. DOI: 10.1021/cr00035a006.
  • Gumerova, N. I.; Rompel, A. Synthesis, Structures and Applications of electron-rich Polyoxometalates. Nat. Rev. Chem. 2018, 2, 1–20.
  • Long, D.-L.; Burkholder, E.; Cronin, L. Polyoxometalate Clusters, Nanostructures and Materials: From Self Assembly to Designer Materials and Devices. Chem. Soc. Rev. 2007, 36, 105–121. DOI: 10.1039/B502666K.
  • Mizuno, N.; Misono, M. Heterogeneous Catalysis. Chem. Rev. 1998, 98, 199–218. DOI: 10.1021/cr960401q.
  • Anyushin, A. V.; Kondinski, A.; Parac-Vogt, T. N. Hybrid Polyoxometalates as post-functionalization Platforms: From Fundamentals to Emerging Applications. Chem. Soc. Rev. 2020, 49, 382–432. DOI: 10.1039/c8cs00854j.
  • Kamata, K.; Yonehara, K.; Nakagawa, Y.; Uehara, K.; Mizuno, N. Efficient stereo-and Regioselective Hydroxylation of Alkanes Catalysed by a Bulky Polyoxometalate. Nat. Chem. 2010, 2, 478–483. DOI: 10.1038/nchem.648.
  • Long, Z.; Zhou, Y.; Chen, G.; Ge, W.; Wang, J. C 3 N 4-H 5 PMo 10 V 2 O 40: A dual-catalysis System for reductant-free Aerobic Oxidation of Benzene to Phenol. Sci. Rep. 2014, 4, 1–5.
  • Li, G.; Ding, Y.; Wang, J.; Wang, X.; Suo, J. New Progress of Keggin and Wells–Dawson Type Polyoxometalates Catalyze Acid and Oxidative Reactions. J. Mol. Catal. A: Chem. 2007, 262, 67–76. DOI: 10.1016/j.molcata.2006.08.067.
  • Kozhevnikov, I. V. E. Advances in Catalysis by Heteropolyacids. Russ. Chem. Rev. 1987, 56, 811. DOI: 10.1070/RC1987v056n09ABEH003304.
  • Katsoulis, D. E. A Survey of Applications of Polyoxometalates. Chem. Rev. 1998, 98, 359–388. DOI: 10.1021/cr960398a.
  • Okuhara, T.; Mizuno, N.; Misono, M. Catalysis by Heteropoly compounds—recent Developments. Appl. Catal., A. 2001, 222, 63–77. DOI: 10.1016/S0926-860X(01)00830-4.
  • Kozhevnikov, I. Sustainable Heterogeneous Acid Catalysis by Heteropoly Acids. J. Mol. Catal. A: Chem. 2007, 262, 86–92. DOI: 10.1016/j.molcata.2006.08.072.
  • Kozhevnikov, I. V. Catalysts for Fine Chemical Synthesis. Catal. by Polyoxometalates. 2002, 2, 216.
  • Mizuno, N.; Yamaguchi, K.; Kamata, K. Epoxidation of Olefins with Hydrogen Peroxide Catalyzed by Polyoxometalates. Coord. Chem. Rev. 2005, 249, 1944–1956. DOI: 10.1016/j.ccr.2004.11.019.
  • Neumann, R. Activation of Molecular Oxygen, Polyoxometalates, and liquid-phase Catalytic Oxidation. Inorg. Chem. 2010, 49, 3594–3601. DOI: 10.1021/ic9015383.
  • Mizuno, N.; Kamata, K. Catalytic Oxidation of Hydrocarbons with Hydrogen Peroxide by vanadium-based Polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370. DOI: 10.1016/j.ccr.2011.01.041.
  • Zhou, Y.; Chen, G.; Long, Z.; Wang, J. Recent Advances in polyoxometalate-based Heterogeneous Catalytic Materials for liquid-phase Organic Transformations. RSC Adv. 2014, 4, 42092–42113. DOI: 10.1039/C4RA05175K.
  • Chen, Y.; Li, F.; Li, S.; Zhang, L.; Sun, M. A Review of Application and Prospect for polyoxometalate-based Composites in Electrochemical Sensor. Inorg. Chem. Commun. 2022, 135, 109084. DOI: 10.1016/j.inoche.2021.109084.
  • Ladera, R. M.; Ojeda, M.; Fierro, J. L. G.; Rojas, S. TiO 2-supported Heteropoly Acid Catalysts for Dehydration of Methanol to Dimethyl Ether: Relevance of Dispersion and Support Interaction. Catal. Sci. Technol. 2015, 5, 484–491. DOI: 10.1039/C4CY00998C.
  • Farhadi, S.; Afshari, M.; Maleki, M.; Babazadeh, Z. Photocatalytic Oxidation of Primary and Secondary Benzylic Alcohols to Carbonyl Compounds Catalyzed by H3PW12O40/SiO2 under an O2 Atmosphere. Tetrahedron Lett. 2005, 46, 8483–8486. DOI: 10.1016/j.tetlet.2005.10.019.
  • Farhadi, S.; Afshari, M. Efficient and Selective Oxidation of Benzylic Alcohols to Carbonyl Compounds Using O2 Catalysed by [N Bu4N] 4W10O32/SiO2 under Photoirradiation. J. Chem. Res. 2006, 2006, 188–191. DOI: 10.3184/030823406776330765.
  • Li, J.; Yang, Z.; Hu, G.; Zhao, J. Heteropolyacid Supported MOF Fibers for Oxidative Desulfurization of Fuel. Chem. Eng. J. 2020, 388, 124325. DOI: 10.1016/j.cej.2020.124325.
  • Afshari, M.; Gorjizadeh, M.; Afshar, G. Phosphotungstic Acid Supported on Magnetic Nanoparticle Used as Selective and Reusable Photocatalyst for Aerobic Oxidation of Benzylic Alcohols. Orient. J. Chem. 2013, 29, 1675. DOI: 10.13005/ojc/290457.
  • Ferreira, P.; Gonçalves, I. S.; Kühn, F. E.; Lopes, A. D.; Martins, M. A.; Pillinger, M.; Pina, A.; Rocha, J.; Romão, C. C.; Santos, A. M. Mesoporous Silicas Modified with Dioxomolybdenum (VI) Complexes: Synthesis and Catalysis. Eur. J. Inorg. Chem. 2000, 2000, 2263–2270. DOI: 10.1002/1099-0682(200010)2000:10<2263::AID-EJIC2263>3.0.CO;2-U.
  • Nunes, C. D.; Valente, A. A.; Pillinger, M.; Fernandes, A. C.; Romao, C. C.; Rocha, J.; Gonçalves, I. S. MCM-41 Functionalized with Bipyridyl Groups and Its Use as a Support for Oxomolybdenum (VI) Catalysts. J. Mater. Chem. 2002, 12, 1735–1742. DOI: 10.1039/b109678h.
  • Jia, M.; Seifert, A.; Thiel, W. R. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene. Chem. Mater. 2003, 15, 2174–2180. DOI: 10.1021/cm021380l.
  • Sakthivel, A.; Zhao, J.; Raudaschl-Sieber, G.; Hanzlik, M.; Chiang, A. S.; Kühn, F. E. Heterogenization of Chiral Molybdenum (VI) Dioxo Complexes on Mesoporous Materials and Their Application in Catalysis. Appl. Catal., A. 2005, 281, 267–273. DOI: 10.1016/j.apcata.2004.11.035.
  • Zheng, Y.; Stevens, P. D.; Gao, Y. Magnetic Nanoparticles as an Orthogonal Support of Polymer Resins: Applications to solid-phase Suzuki cross-coupling Reactions. J. Org. Chem. 2006, 71, 537–542. DOI: 10.1021/jo051861z.
  • Astruc, D. Nanoparticles and Catalysis; New York, United States: John Wiley & Sons, 2008.
  • Somorjai, G. A.; Frei, H.; Park, J. Y. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques. J. Am. Chem. Soc. 2009, 131, 16589–16605. DOI: 10.1021/ja9061954.
  • Esmaeilpour, M.; Sardarian, A. R.; Javidi, J. Schiff Base Complex of Metal Ions Supported on Superparamagnetic Fe3O4@ SiO2 Nanoparticles: An Efficient, Selective and Recyclable Catalyst for Synthesis of 1, 1-diacetates from Aldehydes under solvent-free Conditions. Appl. Catal., A. 2012, 445, 359–367. DOI: 10.1016/j.apcata.2012.09.010.
  • Polshettiwar, V.; Varma, R. S. Green Chemistry by nano-catalysis. Green Chem. 2010, 12, 743–754. DOI: 10.1039/b921171c.
  • Khatami, M.; Iravani, S. Green and eco-friendly Synthesis of Nanophotocatalysts: An Overview. Comments Inorg. Chem. 2021, 41, 133–187. DOI: 10.1080/02603594.2021.1895127.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of organic–inorganic nanocomposites—A Review. Prog. Polym. Sci. 2013, 38, 1232–1261.
  • Vengatesan, M. R., and Mittal, V. Surface Modification of Nanomaterials for Application in Polymer Nanocomposites: An Overview. Surface Modification of Nanopart. and Nat. Fibers Fillers. 2015, 1–28.
  • Tojo, G., and Fernández, M. I. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice; New York, United States: Springer Science & Business Media, 2006.
  • Kopylovich, M. N.; Ribeiro, A. P.; Alegria, E. C.; Martins, N. M.; Martins, L. M.; Pombeiro, A. J. Catalytic Oxidation of Alcohols: Recent Advances. Adv. Organomet. Chem. 2015, 63, 91–174.
  • Jachuck, R.; Selvaraj, D.; Varma, R. Process Intensification: Oxidation of Benzyl Alcohol Using a Continuous Isothermal Reactor under Microwave Irradiation. Green Chem. 2006, 8, 29–33. DOI: 10.1039/B512732G.
  • Namboodiri, V. V.; Polshettiwar, V.; Varma, R. S. Expeditious Oxidation of Alcohols to Carbonyl Compounds Using Iron (III) Nitrate. Tetrahedron Lett. 2007, 48, 8839–8842. DOI: 10.1016/j.tetlet.2007.10.068.
  • Baig, R. N.; Nadagouda, M. N.; Varma, R. S. Carbon-coated Magnetic Palladium: Applications in Partial Oxidation of Alcohols and Coupling Reactions. Green Chem. 2014, 16, 4333–4338. DOI: 10.1039/C4GC00748D.
  • Verma, S.; Baig, R. N.; Nadagouda, M. N.; Varma, R. S. Selective Oxidation of Alcohols Using Photoactive VO@ g-C3N4. ACS Sustainable Chem. Eng. 2016, 4, 1094–1098. DOI: 10.1021/acssuschemeng.5b01163.
  • Mehrjoyan, F.; Afshari, M. Nano NiFe2O4 Supported Phenanthroline Cu (II) Complex as a Retrievable Catalyst for Selective and Environmentally Friendly Oxidation of Benzylic Alcohols. J. Mol. Struct. 2021, 1236, 130284. DOI: 10.1016/j.molstruc.2021.130284.
  • NASEH, M. Cobalt Salophen Complex Supported on Magnetic Nanoparticles as an Efficient Reusable Catalyst for Oxidation of Benzylic Alcohols. (2013).
  • Mizuno, N. Modern Heterogeneous Oxidation Catalysis: Design, Reactions and Characterization; New York, United States: John Wiley & Sons, 2009.
  • Bamoharram, F. F.; Heravi, M. M.; Teymouri, H.; Zebarjad, M.; Ahmadpour, A. Preyssler Heteropolyacid Supported on nano-SiO2: A Green and Reusable Catalyst in Selective Oxidation of Benzyl Alcohols to Benzaldehydes. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2011, 41, 1221–1228. DOI: 10.1080/15533174.2011.591873.
  • Sartori, G.; Maggi, R. Use of Solid Catalysts in Friedel− Crafts Acylation Reactions. Chem. Rev. 2006, 106, 1077–1104. DOI: 10.1021/cr040695c.
  • Zhang, J.; Zhu, Z.; Li, C.; Wen, L.; Min, E. Characterization and Kinetic Investigation of Tungstophosphoric Supported on SiO2 for Alkylation of Benzene with 1-dodecene to Synthesize Linear Alkylbenzene. J. Mol. Catal. A: Chem. 2003, 198, 359–367. DOI: 10.1016/S1381-1169(03)00004-9.
  • Devassy, B. M.; Shanbhag, G.; Lefebvre, F.; Halligudi, S. Alkylation of p-cresol with tert-butanol Catalyzed by Heteropoly Acid Supported on Zirconia Catalyst. J. Mol. Catal. A: Chem. 2004, 210, 125–130. DOI: 10.1016/j.molcata.2003.09.015.
  • Kamalakar, G.; Komura, K.; Kubota, Y.; Sugi, Y. Friedel–Crafts Benzylation of Aromatics with Benzyl Alcohols Catalyzed by Heteropoly Acids Supported on Mesoporous Silica. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2006, 81, 981–988. DOI: 10.1002/jctb.1488.
  • Senapati, K. K.; Borgohain, C.; Phukan, P. Synthesis of Highly Stable CoFe2O4 Nanoparticles and Their Use as Magnetically Separable Catalyst for Knoevenagel Reaction in Aqueous Medium. J. Mol. Catal. A: Chem. 2011, 339, 24–31. DOI: 10.1016/j.molcata.2011.02.007.
  • Lim, C. W.; Lee, I. S. Magnetically Recyclable Nanocatalyst Systems for the Organic Reactions. Nano Today. 2010, 5, 412–434. DOI: 10.1016/j.nantod.2010.08.008.
  • Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011, 111, 3036–3075. DOI: 10.1021/cr100230z.
  • Baig, R. N.; Varma, R. S. Magnetically Retrievable Catalysts for Organic Synthesis. Chem. Commun. 2013, 49, 752–770. DOI: 10.1039/C2CC35663E.
  • Kooti, M.; Afshari, M. Molybdenum Schiff Base Complex Covalently Anchored to silica-coated Cobalt Ferrite Nanoparticles as a Novel Heterogeneous Catalyst for the Oxidation of Alkenes. Catal. Lett. 2012, 142, 319–325. DOI: 10.1007/s10562-012-0770-z.
  • Afshari, M.; Gorjizadeh, M.; Nazari, S.; Naseh, M. Cobalt Salophen Complex Supported on Imidazole Functionalized Magnetic Nanoparticles as a Recoverable Catalyst for Oxidation of Alkenes. J. Magn. Magn. Mater. 2014, 363, 13–17. DOI: 10.1016/j.jmmm.2014.03.042.
  • Zheng, X.; Zhang, L.; Li, J.; Luo, S.; Cheng, J.-P. Magnetic Nanoparticle Supported Polyoxometalates (Poms) via non-covalent Interaction: Reusable Acid Catalysts and Catalyst Supports for Chiral Amines. Chem. Commun. 2011, 47, 12325–12327. DOI: 10.1039/c1cc14178c.
  • Al-Mutairi, E.; Narasimharao, K.; Mokhtar, M. Heteropolyacid Generated on the Surface of Iron Phosphate Nanotubes: Structure and Catalytic Activity Studies. RSC Adv. 2015, 5, 63917–63929. DOI: 10.1039/C5RA11175G.
  • Kong, A.; Wang, P.; Zhang, H.; Yang, F.; Huang, S.; Shan, Y. One-pot Fabrication of Magnetically Recoverable Acid Nanocatalyst, heteropolyacids/chitosan/Fe3O4, and Its Catalytic Performance. Appl. Catal., A. 2012, 417, 183–189. DOI: 10.1016/j.apcata.2011.12.040.
  • Hudlicky, M. Oxidations in Organic Chemistry; Washington, DC, United States: American Chemical Society, 1990.
  • Okuhara, T.; Mizuno, N.; Misono, M. Catalytic Chemistry of Heteropoly Compounds. Adv. Catal. 1996, 41, 113–252.
  • Hill, C. L.; Prosser-McCartha, C. M. Homogeneous Catalysis by Transition Metal Oxygen Anion Clusters. Coord. Chem. Rev. 1995, 143, 407–455. DOI: 10.1016/0010-8545(95)01141-B.
  • Kooti, M.; Afshari, M. Phosphotungstic Acid Supported on Magnetic Nanoparticles as an Efficient Reusable Catalyst for Epoxidation of Alkenes. Mater. Res. Bull. 2012, 47, 3473–3478. DOI: 10.1016/j.materresbull.2012.07.001.
  • Gao, R.; Zhu, Q.; Dai, W.-L.; Fan, K. A Green Process for the Epoxidation of Dicyclopentadiene with Aqueous H 2 O 2 over Highly Efficient and Stable HPW-NH 2-SBA-15. RSC Adv. 2012, 2, 6087–6093. DOI: 10.1039/c2ra20779f.
  • Mirzaee, M.; Bahramian, B.; Shahraki, M.; Moghadam, H.; Mirzaee, A. Molybdenum Containing Catalysts Grafted on Functionalized Hydrous Zirconia nano-particles for Epoxidation of Alkenes. Catal. Lett. 2018, 148, 3003–3017. DOI: 10.1007/s10562-018-2521-2.
  • Chen, S.; Xiang, Y.; Banks, M. K.; Xu, W.; Peng, C.; Wu, R. Polyoxometalate-coupled Graphene Nanohybrid via Gemini Surfactants and Its Electrocatalytic Property for Nitrite. Appl. Surf. Sci. 2019, 466, 110–118. DOI: 10.1016/j.apsusc.2018.09.246.
  • Naydenova, E. D.; Todorov, P. T.; Mateeva, P. I.; Zamfirova, R. N.; Pavlov, N. D.; Todorov, S. B. Synthesis and Biological Activity of Novel Small Peptides with Aminophosphonates Moiety as NOP Receptor Ligands. Amino Acids. 2010, 39, 1537–1543. DOI: 10.1007/s00726-010-0624-1.
  • Amira, A.; Aouf, Z.; K’tir, H.; Chemam, Y.; Ghodbane, R.; Zerrouki, R.; Aouf, N. E. Recent Advances in the Synthesis of α‐Aminophosphonates: A Review. ChemistrySelect. 2021, 6, 6137–6149. DOI: 10.1002/slct.202101360.
  • Afshari, M.; Gorjizadeh, M.; Naseh, M. Supported Sulfonic Acid on Magnetic Nanoparticles Used as a Reusable Catalyst for Rapid Synthesis of α-aminophosphonates. Inorg. Nano-Metal Chem. 2017, 47, 591–596. DOI: 10.1080/15533174.2016.1186096.
  • Hamadi, H.; Kooti, M.; Afshari, M.; Ghiasifar, Z.; Adibpour, N. Magnetic Nanoparticle Supported Polyoxometalate: An Efficient and Reusable Catalyst for solvent-free Synthesis of α-aminophosphonates. J. Mol. Catal. A: Chem. 2013, 373, 25–29. DOI: 10.1016/j.molcata.2013.02.018.
  • Heydari, A.; Hamadi, H.; Pourayoubi, M. A New one-pot Synthesis of α-amino Phosphonates Catalyzed by H3PW12O40. Catal. Commun. 2007, 8, 1224–1226. DOI: 10.1016/j.catcom.2006.11.008.
  • Hajavazzade, R.; Mahjoub, A. R.; Kargarrazi, M. Silica-coated MgAl 2 O 4 Nanoparticles Supported Phosphotungstic Acid as an Effective Catalyst for Synthesis of α-aminophosphonates. Res. Chem. Intermed. 2019, 45, 2341–2355. DOI: 10.1007/s11164-019-03737-z.
  • Kappe, C. O. Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog. Acc. Chem. Res. 2000, 33, 879–888. DOI: 10.1021/ar000048h.
  • Gong, L. Z.; Chen, X. H.; Xu, X. Y. Asymmetric Organocatalytic Biginelli Reactions: A New Approach to Quickly Access Optically Active 3, 4‐dihydropyrimidin‐2‐(1H)‐ones. Chemistry. 2007, 13, 8920–8926. DOI: 10.1002/chem.200700840.
  • de Fátima, Â.; Braga, T. C.; Neto, L. D. S.; Terra, B. S.; Oliveira, B. G.; da Silva, D. L.; Modolo, L. V. A mini-review on Biginelli Adducts with Notable Pharmacological Properties. J. Adv. Res. 2015, 6, 363–373. DOI: 10.1016/j.jare.2014.10.006.
  • Nazari, S.; Saadat, S.; Fard, P. K.; Gorjizadeh, M.; Nezhad, E. R.; Afshari, M. Imidazole Functionalized Magnetic Fe3O4 Nanoparticles as a Novel Heterogeneous and Efficient Catalyst for Synthesis of Dihydropyrimidinones by Biginelli Reaction. Monatshefte für Chemie-Chem. Mon. 2013, 144, 1877–1882. DOI: 10.1007/s00706-013-1085-5.
  • Eshghi, H.; Javid, A.; Khojastehnezhad, A.; Moeinpour, F.; Bamoharram, F. F.; Bakavoli, M.; Mirzaei, M. Preyssler Heteropolyacid Supported on Silica Coated NiFe2O4 Nanoparticles for the Catalytic Synthesis of Bis (Dihydropyrimidinone) Benzene and 3, 4-dihydropyrimidin-2 (1h)-ones. Chin. J. Catal. 2015, 36, 299–307. DOI: 10.1016/S1872-2067(14)60265-5.
  • Zolfagharinia, S.; Kolvari, E.; Koukabi, N. A New Type of magnetically-recoverable Heteropolyacid Nanocatalyst Supported on zirconia-encapsulated Fe 3 O 4 Nanoparticles as A Stable and Strong Solid Acid for Multicomponent Reactions. Catal. Lett. 2017, 147, 1551–1566. DOI: 10.1007/s10562-017-2015-7.
  • Kumar, K. A.; Renuka, N.; Kumar, G. V.; Lokeshwari, D. Pyrans: Heterocycles of Chemical and Biological Interest. J. Chem. Pharm. Res. 2015, 7, 693–700.
  • Asif, M.; Imran, M. A Review on Chemical and Pharmacological Interest of Morpholine and Pyrans Derivatives. Front. in Chem. Res. 2019, 1, 5–12.
  • Fadavipoor, E.; Nazari, S.; Ahmadi, A. Z.; Gorjizadeh, M.; Afshari, M.; Keshavarz, M. Covalently Supported Sulfonic and Acetic Acids onto Polypyrrole Asgreen, Cheap and Recoverablesolid Acid Catalysts for the Synthesis of 4H-pyrano [2, 3-c] Pyrazoles. Orient. J. Chem. 2015, 31, 733. DOI: 10.13005/ojc/310215.
  • Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and Pharmacological Activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide Derivatives. Eur. J. Med. Chem. 1993, 28, 517–520. DOI: 10.1016/0223-5234(93)90020-F.
  • Maleki, B.; Eshghi, H.; Barghamadi, M.; Nasiri, N.; Khojastehnezhad, A.; Ashrafi, S. S.; Pourshiani, O. Silica-coated Magnetic NiFe 2 O 4 nanoparticles-supported H 3 PW 12 O 40; Synthesis, Preparation, and Application as an Efficient, Magnetic, Green Catalyst for one-pot Synthesis of Tetrahydrobenzo [B] Pyran and Pyrano [2, 3-c] Pyrazole Derivatives. Res. Chem. Intermed. 2016, 42, 3071–3093. DOI: 10.1007/s11164-015-2198-8.
  • Ayati, A.; Heravi, M. M.; Daraie, M.; Tanhaei, B.; Bamoharram, F. F.; Sillanpaa, M. H 3 PMo 12 O 40 Immobilized chitosan/Fe 3 O 4 as a Novel Efficient, Green and Recyclable Nanocatalyst in the Synthesis of pyrano-pyrazole Derivatives. J. Iran. Chem. Soc. 2016, 13, 2301–2308. DOI: 10.1007/s13738-016-0949-0.
  • Mohtasham, N. H.; Gholizadeh, M. Nano Silica Extracted from Horsetail Plant as a Natural Silica Support for the Synthesis of H 3 PW 12 O 40 Immobilized on Aminated Magnetic Nanoparticles (Fe 3 O 4@ SiO 2-EP-NH-HPA): A Novel and Efficient Heterogeneous Nanocatalyst for the Green one-pot Synthesis of Pyrano [2, 3-c] Pyrazole Derivatives. Res. Chem. Intermed. 2020, 46, 3037–3066.
  • Alimadadi, B.; Heravi, M. M.; Nazari, N.; Abdi Oskooie, H.; Bamoharram, F. F. An Efficient one-pot three-component Synthesis of Pyrido [2, 3-d] Pyrimidine Derivatives in the Presence of Nano silica-supported Preyssler H14 [NaP5W30O110]/SiO2 as a Green and Reusable Catalyst. Scientia Iranica. 2016, 23, 2717–2723. DOI: 10.24200/sci.2016.3980.
  • Mozafari, R.; Heidarizadeh, F. Phosphotungstic Acid Supported on SiO2@ NHPhNH2 Functionalized Nanoparticles of MnFe2O4 as a Recyclable Catalyst for the Preparation of Tetrahydrobenzo [B] Pyran and Indazolo [2, 1-b] phthalazine-triones. Polyhedron. 2019, 162, 263–276. DOI: 10.1016/j.poly.2019.01.065.
  • Shabalin, D. A.; Camp, J. E. Recent Advances in the Synthesis of Imidazoles. Org. Biomol. Chem. 2020, 18, 3950–3964. DOI: 10.1039/D0OB00350F.
  • Chopra, P. N., and Sahu, J. K. Biological Significance of Imidazole-based Analogues in New Drug Development. Curr. Drug Discovery Technol. 17 574–584 2019.
  • Maleki, B.; Eshghi, H.; Khojastehnezhad, A.; Tayebee, R.; Ashrafi, S. S.; Kahoo, G. E.; Moeinpour, F. Silica Coated Magnetic NiFe 2 O 4 Nanoparticle Supported Phosphomolybdic Acid; Synthesis, Preparation and Its Application as a Heterogeneous and Recyclable Catalyst for the one-pot Synthesis of tri-and tetra-substituted Imidazoles under Solvent Free Conditions. RSC Adv. 2015, 5, 64850–64857.
  • Shamsi, T.; Amoozadeh, A.; Tabrizian, E.; Sajjadi, S. M. A New Zwitterionic nano-titania Supported Keggin Phosphotungstic Heteropolyacid: An Efficient and Recyclable Heterogeneous Nanocatalyst for the Synthesis of 2, 4, 5-triaryl Substituted Imidazoles. React. Kinet., Mech. Catal. 2017, 121, 505–522. DOI: 10.1007/s11144-017-1177-z.
  • Zolfagharinia, S.; Kolvari, E.; Koukabi, N.; Hosseini, M. M. Core-shell zirconia-coated Magnetic Nanoparticles Offering a Strong Option to Prepare a Novel and Magnetized Heteropolyacid Based Heterogeneous Nanocatalyst for three-and four-component Reactions. Arabian J. Chem. 2020, 13, 227–241. DOI: 10.1016/j.arabjc.2017.04.004.
  • Ren, H.; Grady, S.; Gamenara, D.; Heinzen, H.; Moyna, P.; Croft, S. L.; Kendrick, H.; Yardley, V.; Moyna, G. Design, Synthesis, and Biological Evaluation of a Series of Simple and Novel Potential Antimalarial Compounds. Bioorg. Med. Chem. Lett. 2001, 11, 1851–1854. DOI: 10.1016/S0960-894X(01)00308-0.
  • Benedini, F.; Bertolini, G.; Cereda, R.; Dona, G.; Gromo, G.; Levi, S.; Mizrahi, J.; Sala, A. New Antianginal Nitro Esters with Reduced Hypotensive Activity. Synthesis and Pharmacological Evaluation of 3-[(nitrooxy) alkyl]-2H-1, 3-benzoxazin-4 (3h)-ones. J. Med. Chem. 1995, 38, 130–136. DOI: 10.1021/jm00001a018.
  • Machado, I. V.; Dos Santos, J. R.; Januario, M. A.; Corrêa, A. G. Greener Organic Synthetic Methods: Sonochemistry and Heterogeneous Catalysis Promoted Multicomponent Reactions. Ultrason. Sonochem. 2021, 78, 105704. DOI: 10.1016/j.ultsonch.2021.105704.
  • Afshari, M.; Gorjizadeh, M. Synthesis of 1-amidoalkyl-2-naphthol Derivatives Using Supported Sulfonic Acid on Silica Coated Cobalt Ferrite Nanoparticles as a Catalyst under Solvent Free Conditions. J. Chem. React. Synth. 2022, 12, 34–41.
  • Nagarapu, L.; Baseeruddin, M.; Apuri, S.; Kantevari, S. Potassium Dodecatungstocobaltate Trihydrate (K5CoW12O40· 3H2O): A Mild and Efficient Reusable Catalyst for the Synthesis of Amidoalkyl Naphthols in Solution and under solvent-free Conditions. Catal. Commun. 2007, 8, 1729–1734. DOI: 10.1016/j.catcom.2007.02.008.
  • Jiang, W. Q.; An, L. T.; Zou, J. P. Molybdophosphoric Acid: An Efficient Keggin‐type Heteropoloacid Catalyst for the One‐pot Three‐Component Synthesis of 1‐Amidoalkyl‐2‐naphthols. Chin. J. Chem. 2008, 26, 1697–1701. DOI: 10.1002/cjoc.200890307.
  • Tayebee, R.; Amini, M. M.; Rostamian, H.; Aliakbari, A. Preparation and Characterization of a Novel Wells–Dawson heteropolyacid-based Magnetic inorganic–organic Nanohybrid Catalyst H6P2W18O62/pyridino-Fe3O4 for the Efficient Synthesis of 1-amidoalkyl-2-naphthols under solvent-free Conditions. Dalton Trans. 2014, 43, 1550–1563. DOI: 10.1039/C3DT51594J.
  • Esmaeilpour, M.; Javidi, J.; Zandi, M. Preparation and Characterization of Fe3O4@ SiO2@ PMA: AS an Efficient and Recyclable Nanocatalyst for the Synthesis of 1-amidoalkyl-2-naphthols. Mater. Res. Bull. 2014, 55, 78–87. DOI: 10.1016/j.materresbull.2014.04.019.
  • Sadeghzadeh, S. M. A heteropolyacid-based Ionic Liquid Immobilized onto Fe 3 O 4/SiO 2/salen/Mn as an Environmentally Friendly Catalyst in A multi-component Reaction. RSC Adv. 2015, 5, 17319–17324. DOI: 10.1039/C4RA16726K.
  • Bouzina, A.; Grib, I.; Bechlem, K.; Belhani, B.; Aouf, N.-E.; Berredjem, M. Efficient Synthesis of Novel N-acylsulfonamide Oxazolidin-2-ones Derivatives. Karbala Int. J. Mod. Sci. 2016, 2, 98–103. DOI: 10.1016/j.kijoms.2016.02.003.
  • Paisuwan, W.; Chantra, T.; Rashatasakhon, P.; Sukwattanasinitt, M.; Ajavakom, A. Direct Synthesis of Oxazolidin-2-ones from tert-butyl Allylcarbamate via halo-induced Cyclisation. Tetrahedron. 2017, 73, 3363–3367. DOI: 10.1016/j.tet.2017.04.063.
  • Gunal, S. E.; Tuncel, S. T.; Kelekci, N. G.; Ucar, G.; Dursun, B. Y.; Erdem, S. S.; Dogan, I. Asymmetric Synthesis, Molecular Modeling and Biological Evaluation of 5-methyl-3-aryloxazolidine-2, 4-dione Enantiomers as Monoamine Oxidase (MAO) Inhibitors. Bioorg. Chem. 2018, 77, 608–618. DOI: 10.1016/j.bioorg.2018.02.003.
  • Yang, B.; Shi, L.; Wu, J.; Fang, X.; Yang, X.; Wu, F. Microwave-assisted Expeditious Synthesis of 5-fluoroalkyl-3-(aryl/alkyl)-oxazolidin-2-ones. Tetrahedron. 2013, 69, 3331–3337. DOI: 10.1016/j.tet.2013.01.052.
  • Zhao, J.; Jiang, H. Copper (I) Catalyzed Synthesis of 1, 3-oxazolidin-2-ones from Alkynes, Amines, and Carbon Dioxide under solvent-free Conditions. Tetrahedron Lett. 2012, 53, 6999–7002. DOI: 10.1016/j.tetlet.2012.10.073.
  • Yadav, G. D.; Pawar, S. V. Novelty of Immobilized Enzymatic Synthesis of 3-ethyl-1, 3-oxazolidin-2-one Using 2-aminoalcohol and Dimethyl Carbonate: Mechanism and Kinetic Modeling of Consecutive Reactions. J. Mol. Catal. B: Enzym. 2014, 109, 62–69. DOI: 10.1016/j.molcatb.2014.08.001.
  • Mozafari, R.; Heidarizadeh, F.; Nikpour, F. MnFe2O4 Magnetic Nanoparticles Modified with Chitosan Polymeric and Phosphotungstic Acid as a Novel and Highly Effective Green Nanocatalyst for regio-and Stereoselective Synthesis of Functionalized Oxazolidin-2-ones. Mater. Sci. Eng C. 2019, 105, 110109. DOI: 10.1016/j.msec.2019.110109.
  • Li, F.; Song, L.; Duan, L.; Li, X.; Sun, Z. A Frequency Response Study of Thiophene Adsorption in Zeolite Catalysts. Appl. Surf. Sci. 2007, 253, 8802–8809. DOI: 10.1016/j.apsusc.2007.05.010.
  • R. EPA-Diesel. Regulatory Impact Analysis: Heavy-duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements, United States Environmental Protection Agency. Air and Radiat. 2000, EPA420-R-00-026.
  • Tong, Q.-L.; Fan, Z.-F.; Yang, J.-W.; Li, Q.; Chen, Y.-X.; Cheng, M.-S.; Liu, Y. The Selective Oxidation of Sulfides to Sulfoxides or Sulfones with Hydrogen Peroxide Catalyzed by a Dendritic Phosphomolybdate Hybrid. Catalysts. 2019, 9, 791. DOI: 10.3390/catal9100791.
  • Zhao, W.; Yang, C.; Huang, J.; Jin, X.; Deng, Y.; Wang, L.; Su, F.; Xie, H.; Wong, P. K.; Ye, L. Selective Aerobic Oxidation of Sulfides to Sulfoxides in Water under Blue Light Irradiation over Bi 4 O 5 Br 2. Green Chem. 2020, 22, 4884–4889. DOI: 10.1039/D0GC01930E.
  • Zhang, Z.; Zhang, F.; Zhu, Q.; Zhao, W.; Ma, B.; Ding, Y. Magnetically Separable Polyoxometalate Catalyst for the Oxidation of Dibenzothiophene with H2O2. J. Colloid Interface Sci. 2011, 360, 189–194. DOI: 10.1016/j.jcis.2011.04.045.
  • Cui, X.; Yao, D.; Li, H.; Yang, J.; Hu, D. Nano-magnetic Particles as Multifunctional Microreactor for Deep Desulfurization. J. Hazard. Mater. 2012, 205, 17–23. DOI: 10.1016/j.jhazmat.2011.11.063.
  • Rafiee, E.; Nobakht, N. Keggin Type Heteropoly Acid, Encapsulated in metal-organic Framework: A Heterogeneous and Recyclable Nanocatalyst for Selective Oxidation of Sulfides and Deep Desulfurization of Model Fuels. J. Mol. Catal. A: Chem. 2015, 398, 17–25. DOI: 10.1016/j.molcata.2014.11.015.
  • Rezvani, M. A.; Miri, O. F. Synthesis and Characterization of PWMn/NiO/PAN Nanosphere Composite with Superior Catalytic Activity for Oxidative Desulfurization of Real Fuel. Chem. Eng. J. 2019, 369, 775–783. DOI: 10.1016/j.cej.2019.03.135.
  • Ali Rezvani, M.; Aghmasheh, M. Synthesis of a Nanocomposite Based on Chitosan and Modified Heteropolyanion as a Nanocatalyst for Oxidative Desulfurization of Real and Thiophenic Model Fuels. J. Coord. Chem. 2020, 73, 1407–1424. DOI: 10.1080/00958972.2020.1789916.
  • Borges, M. E.; Díaz, L. Recent Developments on Heterogeneous Catalysts for Biodiesel Production by Oil Esterification and Transesterification Reactions: A Review. Renewable Sustainable Energy Rev. 2012, 16, 2839–2849. DOI: 10.1016/j.rser.2012.01.071.
  • Tariq, M.; Ali, S.; Khalid, N. Activity of Homogeneous and Heterogeneous Catalysts, Spectroscopic and Chromatographic Characterization of Biodiesel: A Review. Renewable Sustainable Energy Rev. 2012, 16, 6303–6316. DOI: 10.1016/j.rser.2012.07.005.
  • Lam, M. K.; Lee, K. T.; Mohamed, A. R. Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification of High Free Fatty Acid Oil (Waste Cooking Oil) to Biodiesel: A Review. Biotechnol. Adv. 2010, 28, 500–518. DOI: 10.1016/j.biotechadv.2010.03.002.
  • Rizwanul Fattah, I.; Ong, H.; Mahlia, T.; Mofijur, M.; Silitonga, A.; Rahman, S.; Ahmad, A. State of the Art of Catalysts for Biodiesel Production. Front. Energy Res. 2020, 8, 101. DOI: 10.3389/fenrg.2020.00101.
  • Qadeer, M. U.; Ayoub, M.; Komiyama, M.; Daulatzai, M. U. K.; Mukhtar, A.; Saqib, S.; Ullah, S.; Qyyum, M. A.; Asif, S.; Bokhari, A. Review of Biodiesel Synthesis Technologies, Current Trends, Yield Influencing Factors and Economical Analysis of Supercritical Process. J. Cleaner Prod. 2021, 127388. doi:10.1016/j.jclepro.2021.127388.
  • Tadele, K.; Verma, S.; Gonzalez, M. A.; Varma, R. S. A Sustainable Approach to Empower the bio-based Future: Upgrading of Biomass via Process Intensification. Green Chem. 2017, 19, 1624–1627. DOI: 10.1039/C6GC03568J.
  • Duan, X.; Liu, Y.; Zhao, Q.; Wang, X.; Li, S. Water-tolerant Heteropolyacid on Magnetic Nanoparticles as Efficient Catalysts for Esterification of Free Fatty Acid. RSC Adv. 2013, 3, 13748–13755. DOI: 10.1039/c3ra40219c.
  • Feyzi, M.; Nourozi, L.; Zakarianezhad, M. Preparation and Characterization of Magnetic CsH2PW12O40/Fe–SiO2 Nanocatalysts for Biodiesel Production. Mater. Res. Bull. 2014, 60, 412–420. DOI: 10.1016/j.materresbull.2014.09.005.
  • Alcañiz-Monge, J.; El Bakkali, B.; Trautwein, G.; Reinoso, S. Zirconia-supported Tungstophosphoric Heteropolyacid as Heterogeneous Acid Catalyst for Biodiesel Production. Appl. Catal. B Environ. 2018, 224, 194–203. DOI: 10.1016/j.apcatb.2017.10.066.
  • Zhang, Q.; Lei, D.; Luo, Q.; Yang, X.; Wu, Y.; Wang, J.; Zhang, Y. MOF-derived zirconia-supported Keggin Heteropoly Acid Nanoporous Hybrids as a Reusable Catalyst for Methyl Oleate Production. RSC Adv. 2021, 11, 8117–8123. DOI: 10.1039/D1RA00546D.
  • Morschbacker, A. Bio-ethanol Based Ethylene. J. Macromol. Sci. Part C: Polym. Rev. 2009, 49, 79–84.
  • Goldemberg, J. Ethanol for a Sustainable Energy Future. science. 2007, 315, 808–810. DOI: 10.1126/science.1137013.
  • Ripamonti, D.; Tripodi, A.; Conte, F.; Robbiano, A.; Ramis, G.; Rossetti, I. Feasibility Study and Process Design of a Direct Route from Bioethanol to Ethylene Oxide. J. Environ. Chem. Eng. 2021, 9, 105969. DOI: 10.1016/j.jece.2021.105969.
  • Golay, S.; Kiwi-Minsker, L.; Doepper, R.; Renken, A. Influence of the Catalyst acid/base Properties on the Catalytic Ethanol Dehydration under Steady State and Dynamic Conditions. In Situ Surface and gas-phase Analysis. Chem. Eng. Sci. 1999, 54, 3593–3598. DOI: 10.1016/S0009-2509(98)00521-1.
  • Chen, G.; Li, S.; Jiao, F.; Yuan, Q. Catalytic Dehydration of Bioethanol to Ethylene over TiO2/γ-Al2O3 Catalysts in Microchannel Reactors. Catal. Today. 2007, 125, 111–119. DOI: 10.1016/j.cattod.2007.01.071.
  • Zhang, X.; Wang, R.; Yang, X.; Zhang, F. Comparison of Four Catalysts in the Catalytic Dehydration of Ethanol to Ethylene. Microporous Mesoporous Mater. 2008, 116, 210–215. DOI: 10.1016/j.micromeso.2008.04.004.
  • Kang, T. H.; Choi, J. H.; Choi, J. S.; Song, I. K. Dehydration of Glycerin to Acrolein over Heteropolyacid Nano-Catalysts Supported on Silica–Alumina. J. Nanosci. Nanotechnol. 2015, 15, 8324–8329. DOI: 10.1166/jnn.2015.11247.
  • Shen, L.; Yin, H.; Wang, A.; Feng, Y.; Shen, Y.; Wu, Z.; Jiang, T. Liquid Phase Dehydration of Glycerol to Acrolein Catalyzed by Silicotungstic, Phosphotungstic, and Phosphomolybdic Acids. Chem. Eng. J. 2012, 180, 277–283. DOI: 10.1016/j.cej.2011.11.058.
  • Martinuzzi, I.; Azizi, Y.; Zahraa, O.; Leclerc, J.-P. Deactivation Study of a Heteropolyacid Catalyst for Glycerol Dehydration to Form Acrolein. Chem. Eng. Sci. 2015, 134, 663–670. DOI: 10.1016/j.ces.2015.05.060.
  • Almohalla, M.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. Comparative Study of Three Heteropolyacids Supported on Carbon Materials as Catalysts for Ethylene Production from Bioethanol. Catal. Sci. Technol. 2017, 7, 1892–1901. DOI: 10.1039/C7CY00155J.
  • Kim, Y. J.; Varma, R. S. Tetrahaloindate (Iii)-based Ionic Liquids in the Coupling Reaction of Carbon Dioxide and Epoxides to Generate Cyclic Carbonates: H-bonding and Mechanistic Studies. J. Org. Chem. 2005, 70, 7882–7891. DOI: 10.1021/jo050699x.
  • Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chem. Rev. 2007, 107, 2365–2387. DOI: 10.1021/cr068357u.
  • Besse, V.; Camara, F.; Voirin, C.; Auvergne, R.; Caillol, S.; Boutevin, B. Synthesis and Applications of Unsaturated Cyclocarbonates. Polym. Chem. 2013, 4, 4545–4561. DOI: 10.1039/c3py00343d.
  • Pescarmona, P. P.; Taherimehr, M. Challenges in the Catalytic Synthesis of Cyclic and Polymeric Carbonates from Epoxides and CO 2. Catal. Sci. Technol. 2012, 2, 2169–2187. DOI: 10.1039/c2cy20365k.
  • Appaturi, J. N.; Ramalingam, R.; Gnanamani, M. K.; Periyasami, G.; Arunachalam, P.; Adnan, R.; Adam, F.; Wasmiah, M. D.; Al-Lohedan, H. A. Review on Carbon Dioxide Utilization for Cycloaddition of Epoxides by Ionic Liquid-Modified Hybrid Catalysts: Effect of Influential Parameters and Mechanisms Insight. Catalysts. 2021, 11, 4. DOI: 10.3390/catal11010004.
  • Calabrese, C.; Giacalone, F.; Aprile, C. Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates. Catalysts. 2019, 9, 325. DOI: 10.3390/catal9040325.
  • Schaffner, B.; Schaffner, F.; Verevkin, S. P.; Borner, A. Organic Carbonates as Solvents in Synthesis and Catalysis. Chem. Rev. 2010, 110, 4554–4581. DOI: 10.1021/cr900393d.
  • Shaikh, -A.-A. G.; Sivaram, S. Organic Carbonates. Chem. Rev. 1996, 96, 951–976. DOI: 10.1021/cr950067i.
  • Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, L. E.; Sneddon, H. F. Updating and Further Expanding GSK’s Solvent Sustainability Guide. Green Chem. 2016, 18, 3879–3890. DOI: 10.1039/C6GC00611F.
  • Philipp, M.; Bhandary, R.; Groche, F. J.; Schönhoff, M.; Rieger, B. Structure-property Relationship and Transport Properties of Structurally Related Silyl Carbonate Electrolytes. Electrochim. Acta. 2015, 173, 687–697. DOI: 10.1016/j.electacta.2015.05.108.
  • Sonnati, M. O.; Amigoni, S.; de Givenchy, E. P. T.; Darmanin, T.; Choulet, O.; Guittard, F. Glycerol Carbonate as a Versatile Building Block for Tomorrow: Synthesis, Reactivity, Properties and Applications. Green Chem. 2013, 15, 283–306. DOI: 10.1039/C2GC36525A.
  • Sadeghzadeh, S. M. A heteropolyacid-based Ionic Liquid Immobilized onto Fibrous nano-silica as an Efficient Catalyst for the Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides. Green Chem. 2015, 17, 3059–3066. DOI: 10.1039/C5GC00377F.
  • Sadeghzadeh, S. M. A heteropolyacid-based Ionic Liquid Immobilized onto Fe 3 O 4/SiO 2/Salen/Mn as an Environmentally Friendly Catalyst for Synthesis of Cyclic Carbonate. Res. Chem. Intermed. 2016, 42, 2317–2328. DOI: 10.1007/s11164-015-2151-x.
  • Li, H.; Zhang, C.; Pang, C.; Li, X.; Gao, X. The Advances in the Special Microwave Effects of the Heterogeneous Catalytic Reactions. Front. Chem. 2020, 8, 355. DOI: 10.3389/fchem.2020.00355.
  • Roy, S.; Humoud, M. S.; Intrchom, W.; Mitra, S. Microwave-induced Desalination via Direct Contact Membrane Distillation. ACS Sustainable Chem. Eng. 2018, 6, 626–632. DOI: 10.1021/acssuschemeng.7b02950.
  • Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Microwave-assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014, 47, 1338–1348. DOI: 10.1021/ar400309b.
  • Strauss, C. R., and Varma, R. S. Microwaves in Green and Sustainable Chemistry. Microwave Methods in Org. Synth. 266 2006, 199–231.
  • Gorjizadeh, M.; Afshari, M.; Nazari, S. Microwave-assisted one-step Synthesis of 2, 5-disubstituted-1, 3, 4-oxadiazoles Using 1, 4-bis (Triphenylphosphonium)-2-butene Peroxodisulfate. Orient. J. Chem. 2013, 29, 1627–1630. DOI: 10.13005/ojc/290448.
  • Bamoharram, F. F.; Heravi, M. M.; Ebrahimi, J.; Ahmadpour, A.; Zebarjad, M. Catalytic Performance of nano-SiO2-supported Preyssler Heteropolyacid in Esterification of Salicylic Acid with Aliphatic and Benzylic Alcohols. Chin. J. Catal. 2011, 32, 782–788. DOI: 10.1016/S1872-2067(10)60219-7.
  • Esmaeilpour, M.; Javidi, J.; Zandi, M. One-pot Synthesis of Multisubstituted Imidazoles under solvent-free Conditions and Microwave Irradiation Using Fe 3 O 4@ SiO 2–imid–PMA N Magnetic Porous Nanospheres as a Recyclable Catalyst. New J. Chem. 2015, 39, 3388–3398. DOI: 10.1039/C5NJ00050E.
  • Kareem, Y. S.; Ammar, S. H.; Darwash, R. A. Microwave-induced Catalytic Oxidative Desulfurization of Gasoil Fraction over Phosphotungstic acid-based Magnetic Silica (Ni@ SiO2\PWA) Nanocatalyst. Catal. Commun. 2020, 136, 105926. DOI: 10.1016/j.catcom.2020.105926.
  • Papaconstantinou, E., and Hiskia, A. Photochemistry and Photocatalysis by Polyoxometalates. In Borrás-Almenar, J.J., Coronado, E., Müller, A., Pope, M. (eds) Polyoxometalate Molecular Science 98. NATO Science Series: Springer, Dordrecht. 2003; pp 381–416. doi:10.1007/978-94-010-0091-8_13.
  • Vandevivere, P. C.; Bianchi, R.; Verstraete, W. Treatment and Reuse of Wastewater from the Textile Wet‐processing Industry: Review of Emerging Technologies. J. Chem. Technol. Biotechnol. 1998, 72, 289–302.
  • Barragán, B. E.; Costa, C.; Marquez, M. C. Biodegradation of Azo Dyes by Bacteria Inoculated on Solid Media. Dyes Pigm. 2007, 75, 73–81. DOI: 10.1016/j.dyepig.2006.05.014.
  • Liu, Y.; Li, C.; Bao, J.; Wang, X.; Yu, W.; Shao, L. Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation. Water. 2022, 14, 123. DOI: 10.3390/w14010123.
  • Rafiee, E.; Pami, N.; Zinatizadeh, A. A.; Eavani, S. A New polyoxometalate-TiO2 Nanocomposite for Efficient Visible Photodegradation of Dye from Wastewater, Liquorice and Yeast Extract: Photoelectrochemical, Electrochemical, and Physical Investigations. J. Photochem. Photobiol. A Chem. 2020, 386, 112145. DOI: 10.1016/j.jphotochem.2019.112145.
  • Tang, M.; Xu, R.; Gong, Y.; Zhang, H.; He, J.; Wu, P.; Liu, C.; Jiang, W. Treatment of Variable Complex Mixed Dye Wastewater by Photodegradation with a Photocatalyst Gradation Strategy. Ind. Eng. Chem. Res. 2021, 60, 17520–17533. DOI: 10.1021/acs.iecr.1c03958.
  • Zare, E. N.; Iftekhar, S.; Park, Y.; Joseph, J.; Srivastava, V.; Khan, M. A.; Makvandi, P.; Sillanpaa, M.; Varma, R. S. An Overview on non-spherical Semiconductors for Heterogeneous Photocatalytic Degradation of Organic Water Contaminants. Chemosphere. 2021, 280, 130907. DOI: 10.1016/j.chemosphere.2021.130907.
  • Orooji, Y.; Mohassel, R.; Amiri, O.; Sobhani, A.; Salavati-Niasari, M. Gd2ZnMnO6/ZnO Nanocomposites: Green sol-gel auto-combustion Synthesis, Characterization and Photocatalytic Degradation of Different Dye Pollutants in Water. J. Alloys Compd. 2020, 835, 155240. DOI: 10.1016/j.jallcom.2020.155240.
  • Bamoharram, F. F.; Heravi, M. M.; Roushani, M.; Toosi, M. R.; Jodeyre, L. Synthesis and Characterization of silica-supported Preyssler Nano Particles and Its Catalytic Activity for Photodegradation of Methyl Orange. Green Chem. Lett. Rev. 2009, 2, 35–41. DOI: 10.1080/17518250902998095.
  • Bamoharram, F. F.; Niknezhad, S. H.; Baharara, J.; Ayati, A.; Ebrahimi, M.; Heravi, M. M. Amine-functionalized nanosilica-supported Dawson Heteropolyacid: An eco-friendly and Reusable Photocatalyst for Photodegradation of Malachite Green. J. Nanostruct. Chem. 2014, 4, 1–6. DOI: 10.1007/s40097-014-0088-z.
  • Yajun, W.; Kecheng, L.; Changgen, F. Influence of Inorganic Anions and Organic Additives on Photocatalytic Degradation of Methyl Orange with Supported Polyoxometalates as Photocatalyst. J. Rare Earths. 2013, 31, 360–365. DOI: 10.1016/S1002-0721(12)60286-5.
  • Ayati, A.; Ahmadpour, A.; Bamoharram, F. F.; Tanhaei, B.; Mänttäri, M.; Lahtinen, M.; Sillanpää, M. Novel Au NPs/Preyssler acid/TiO2 Nanocomposite for the Photocatalytic Removal of Azo Dye. Sep. Purif. Technol. 2014, 133, 415–420. DOI: 10.1016/j.seppur.2014.06.055.
  • Rohani, M.; Bamoharram, F. F.; Khosravi, M.; Baharara, J.; Heravi, M. M. Preparation and Characterisation of Preyssler heteropolyacid-cellulose Acetate Hybrid Nanofibers: A New, Green and Recyclable Nanocatalyst for Photodegradation of Methyl Orange as the Model Dye. J. Exp. Nanosci. 2017, 12, 1–13. DOI: 10.1080/17458080.2016.1246754.
  • Rohani, N.; Bamoharram, F. F.; Marjani, A.; Heravi, M. M. Gold Nanoparticles Wells–Dawson Heteropolyacid Nanocomposite Film as an Effective Nanocatalyst in Photocatalytic Removal of Azo Dyes from Wastewaters. J. Nanostruct. Chem. 2017, 7, 171–178. DOI: 10.1007/s40097-017-0218-5.
  • Bamoharram, F. F.; Mozhdehi, A.; Radfar, A.; Shaker, M.; Mallaeke, H.; Sharifi, A. H. Preyssler-based Nanocomposite as a Magnetic Photocatalyst: Synthesis, Characterisation and Its Photocatalytic Activity for Decolourisation of Rhodamine B. Micro Nano Lett. 2018, 13, 1657–1661. DOI: 10.1049/mnl.2018.5030.
  • Sampurnam, S.; Muthamizh, S.; Dhanasekaran, T.; Latha, D.; Padmanaban, A.; Selvam, P.; Stephen, A.; Narayanan, V. Synthesis and Characterization of Keggin-type polyoxometalate/zirconia nanocomposites—Comparison of Its Photocatalytic Activity Towards Various Organic Pollutants. J. Photochem. Photobiol. A Chem. 2019, 370, 26–40. DOI: 10.1016/j.jphotochem.2018.10.031.
  • Duan, H.; Liu, Y.; Yin, X.; Bai, J.; Qi, J. Degradation of Nitrobenzene by Fenton-like Reaction in a H2O2/schwertmannite System. Chem. Eng. J. 2016, 283, 873–879. DOI: 10.1016/j.cej.2015.08.033.
  • Wang, J.; Kim, J.; Bu, J.; Kim, D.; Kim, S. Y.; Nam, K. T.; Varma, R. S.; Jang, H. W.; Luque, R.; Shokouhimehr, M. MOF-derived NiFe2O4 Nanoparticles on Molybdenum Disulfide: Magnetically Reusable Nanocatalyst for the Reduction of Nitroaromatics in Aqueous Media. J. Ind. Eng. Chem. 2022, 107, 428–435. DOI: 10.1016/j.jiec.2021.12.013.
  • Zhang, K.; Suh, J. M.; Choi, J.-W.; Jang, H. W.; Shokouhimehr, M.; Varma, R. S. Recent Advances in the nanocatalyst-assisted NaBH4 Reduction of Nitroaromatics in Water. ACS omega. 2019, 4, 483–495. DOI: 10.1021/acsomega.8b03051.
  • Shokouhimehr, M.; Hong, K.; Lee, T. H.; Moon, C. W.; Hong, S. P.; Zhang, K.; Suh, J. M.; Choi, K. S.; Varma, R. S.; Jang, H. W. Magnetically Retrievable Nanocomposite Adorned with Pd Nanocatalysts: Efficient Reduction of Nitroaromatics in Aqueous Media. Green Chem. 2018, 20, 3809–3817. DOI: 10.1039/C8GC01240G.
  • Ramírez, J. I. D. L.; Villegas, V. A. R.; Sicairos, S. P.; Guevara, E. H.; Brito Perea, M. D. C.; Sánchez, B. L. Synthesis and Characterization of Zinc Peroxide Nanoparticles for the Photodegradation of Nitrobenzene Assisted by UV-light. Catalysts. 2020, 10, 1041. DOI: 10.3390/catal10091041.
  • Hu, W.; Wu, F.; Liu, W. Facile Synthesis of Z-scheme Bi2O3/Bi2WO6 Composite for Highly Effective visible-light-driven Photocatalytic Degradation of Nitrobenzene. Chem. Phys. 2022, 552, 111377. DOI: 10.1016/j.chemphys.2021.111377.
  • Ayati, A.; Tanhaei, B.; Bamoharram, F. F.; Ahmadpour, A.; Maydannik, P.; Sillanpää, M. Photocatalytic Degradation of Nitrobenzene by Gold Nanoparticles Decorated Polyoxometalate Immobilized TiO2 Nanotubes. Sep. Purif. Technol. 2016, 171, 62–68. DOI: 10.1016/j.seppur.2016.07.015.
  • Orooji, Y.; Tanhaei, B.; Ayati, A.; Tabrizi, S. H.; Alizadeh, M.; Bamoharram, F. F.; Karimi, F.; Salmanpour, S.; Rouhi, J.; Afshar, S. Heterogeneous UV-Switchable Au Nanoparticles Decorated Tungstophosphoric acid/TiO2 for Efficient Photocatalytic Degradation Process. Chemosphere. 2021, 281, 130795. DOI: 10.1016/j.chemosphere.2021.130795.
  • Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Zhang, M.; Wei, G.; Khan, E.; Ng, Y. H.; Ok, Y. S. Recent Advances in Photodegradation of Antibiotic Residues in Water. Chem. Eng. J. 2021, 405, 126806. DOI: 10.1016/j.cej.2020.126806.
  • Du, C.; Zhang, Z.; Yu, G.; Wu, H.; Chen, H.; Zhou, L.; Zhang, Y.; Su, Y.; Tan, S.; Yang, L. A Review of Metal Organic Framework (Mofs)-based Materials for Antibiotics Removal via Adsorption and Photocatalysis. Chemosphere. 2021, 272, 129501. DOI: 10.1016/j.chemosphere.2020.129501.
  • Xing, W.; Ni, L.; Liu, X.; Luo, Y.; Lu, Z.; Yan, Y.; Huo, P. Effect of Metal Ion (Zn2+, Bi3+, Cr3+, and Ni2+)-doped CdS/halloysite Nanotubes (Hnts) Photocatalyst for the Degradation of Tetracycline under Visible Light. Desalin. Water Treat. 2015, 53, 794–805. DOI: 10.1080/19443994.2013.844082.
  • Bhattacharyya, P.; Basak, S.; Chakrabarti, S. Advancement Towards Antibiotic Remediation: Heterostructure and Composite Materials. ChemistrySelect. 2021, 6, 7323–7345. DOI: 10.1002/slct.202100436.
  • Malakotian, M.; Asadzadeh, S. N.; Khatami, M.; Ahmadian, M.; Heidari, M. R.; Karimi, P.; Firouzeh, N.; Varma, R. S. Protocol Encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the Removal of Tetracycline Antibiotics from Aqueous Environments. Clean Technol. Environ. Policy. 2019, 21, 1665–1674. DOI: 10.1007/s10098-019-01733-w.
  • Orooji, Y.; Han, N.; Nezafat, Z.; Shafiei, N.; Shen, Z.; Nasrollahzadeh, M.; Karimi-Maleh, H.; Luque, R.; Bokhari, A.; Klemeš, J. J. Valorisation of Nuts Biowaste: Prospects in Sustainable Bio (Nano) Catalysts and Environmental Applications. J. Cleaner Prod. 2022, 131220. doi:10.1016/j.jclepro.2022.131220.
  • Yu, K.-F.; Li, P.; Li, H.; Zhang, B.; Yang, J.; Huang, F.-Y.; Li, R.; He, Y. Potential of Coagulation to Remove particle-associated and free-living Antibiotic Resistome from Wastewater. J. Hazard. Mater. 2021, 406, 124295. DOI: 10.1016/j.jhazmat.2020.124295.
  • Hashemikia, S.; Hemmatinejad, N.; Ahmadi, E.; Montazer, M. Optimization of Tetracycline Hydrochloride Adsorption on Amino Modified SBA-15 Using Response Surface Methodology. J. Colloid Interface Sci. 2015, 443, 105–114. DOI: 10.1016/j.jcis.2014.11.020.
  • Labella, A.; Molero, R.; Leiva-Rebollo, R.; Pérez-Recuerda, R.; Borrego, J. J. Identification, Resistance to Antibiotics and Biofilm Formation of Bacterial Strains Isolated from a Reverse Osmosis System of a Drinking Water Treatment Plant. Sci. Total Environ. 2021, 774, 145718. DOI: 10.1016/j.scitotenv.2021.145718.
  • Rooklidge, S. J. Environmental Antimicrobial Contamination from Terraccumulation and Diffuse Pollution Pathways. Sci. Total Environ. 2004, 325, 1–13. DOI: 10.1016/j.scitotenv.2003.11.007.
  • Gu, H.; Lang, J.; Ma, Y.; Gu, H.; Song, Y.; Chai, Z.; Li, G.; Wang, X. Phosphotungstic Acid Binding in Situ to K 4 Nb 6 O 17 for the Effective adsorption-photocatalytic Removal of Tetracycline. J. Nanopart. Res. 2018, 20, 1–16. DOI: 10.1007/s11051-018-4229-z.
  • Wang, J.; Chen, Y.; Cheng, N.; Feng, L.; Gu, B.-H.; Liu, Y. Multivalent Supramolecular self-assembly between β-Cyclodextrin Derivatives and Polyoxometalate for Photodegradation of Dyes and Antibiotics. ACS Appl Bio Mater. 2019, 2, 5898–5904. DOI: 10.1021/acsabm.9b00845.
  • Beni, F. A.; Gholami, A.; Ayati, A.; Shahrak, M. N.; Sillanpää, M. UV-switchable Phosphotungstic Acid Sandwiched between ZIF-8 and Au Nanoparticles to Improve Simultaneous Adsorption and UV Light Photocatalysis toward Tetracycline Degradation. Microporous Mesoporous Mater. 2020, 303, 110275. DOI: 10.1016/j.micromeso.2020.110275.
  • Sisi, A. J.; Fathinia, M.; Khataee, A.; Orooji, Y. Systematic Activation of Potassium Peroxydisulfate with ZIF-8 via sono-assisted Catalytic Process: Mechanism and Ecotoxicological Analysis. J. Mol. Liq. 2020, 308, 113018. DOI: 10.1016/j.molliq.2020.113018.
  • Yadav, H. M.; Kim, J.-S.; Pawar, S. H. Developments in Photocatalytic Antibacterial Activity of Nano TiO 2: A Review. Korean J. Chem. Eng. 2016, 33, 1989–1998. DOI: 10.1007/s11814-016-0118-2.
  • Ng, T. W.; Zhang, L.; Liu, J.; Huang, G.; Wang, W.; Wong, P. K. Visible-light-driven Photocatalytic Inactivation of Escherichia Coli by Magnetic Fe2O3–AgBr. Water Res. 2016, 90, 111–118. DOI: 10.1016/j.watres.2015.12.022.
  • Ammar, S. H.; Attia, H. G., and Affat, A.-K. D. Extraction of Metal Ions Mixture Cadmium, Iron, Zinc and Copper from Aqueous Solutions Using Emulsion Liquid Membrane Technique, 2012. First National Conference for engineering sciences (FNCES 2012) Baghdad, Iraq, IEEE, 2012, pp. 1–10.
  • Shekhawat, S. S.; Kulshreshtha, N. M.; Vivekanand, V.; Gupta, A. B. Impact of Combined Chlorine and UV Technology on the Bacterial Diversity, Antibiotic Resistance Genes and Disinfection by-products in Treated Sewage. Bioresour. Technol. 2021, 339, 125615. DOI: 10.1016/j.biortech.2021.125615.
  • An, T.; Zhao, H., and Wong, P. K. Advances in Photocatalytic Disinfection; Berlin: Springer, 2017.
  • Lalley, J.; Dionysiou, D. D.; Varma, R. S.; Shankara, S.; Yang, D. J.; Nadagouda, M. N. Silver-based Antibacterial Surfaces for Drinking Water disinfection—an Overview. Curr. Opin. Chem. Eng. 2014, 3, 25–29. DOI: 10.1016/j.coche.2013.09.004.
  • Orooji, Y.; Ghanbari, M.; Amiri, O.; Salavati-Niasari, M. Facile Fabrication of Silver iodide/graphitic Carbon Nitride Nanocomposites by Notable photo-catalytic Performance through Sunlight and Antimicrobial Activity. J. Hazard. Mater. 2020, 389, 122079. DOI: 10.1016/j.jhazmat.2020.122079.
  • Khudhair, E. M.; Ammar, S. H.; Khadim, H. J. Phosphotungstic Acid Immobilized onto ZnO Coated Zerovalent Iron (Fe@ ZnO/PW) core/shell Magnetic Nanocomposite for Enhanced Photocatalytic Bacterial Inactivation under Visible Light. J. Photochem. Photobiol. A Chem. 2021, 404, 112907. DOI: 10.1016/j.jphotochem.2020.112907.
  • Garcia-Lopez, E. I.; Marci, G.; Pomilla, F. R.; Kirpsza, A.; Micek-Ilnicka, A.; Palmisano, L. Supported H3PW12O40 for 2-propanol (photo-assisted) Catalytic Dehydration in gas-solid Regime: The Role of the Support and of the pseudo-liquid Phase in the (Photo) Activity. Appl. Catal. B Environ. 2016, 189, 252–265. DOI: 10.1016/j.apcatb.2016.02.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.