Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 43, 2023 - Issue 6
189
Views
1
CrossRef citations to date
0
Altmetric
Comment

Tailoring MOFs to Biomedical Applications: A Chimera or a Concrete Reality? The Case Study of Fe-BTC by bio-friendly Mechanosynthesis

, , , & ORCID Icon

References

  • Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013, 341(6149), 12304444. DOI: 10.1126/science.1230444.
  • Wang, X.; Lan, P. C.; Ma, S. Metal-Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS Cent. Sci. 2020, 6(9), 1497–1506. DOI: 10.1021/acscentsci.0c00687.
  • Raja, D. S.; Liu, W. L.; Huang, H. Y.; Lin, C. H. Immobilization of Protein on Nanoporous Metal-Organic Framework Materials. Comments Inorg. Chem. 2015, 35(6), 331–349. DOI: 10.1080/02603594.2015.1059827.
  • Chen, Y.; Han, S.; Li, X.; Zhang, Z.; Ma, S. Why Does Enzyme Not Leach from Metal-Organic Frameworks (Mofs)? Unveiling the Interactions between an Enzyme Molecule and a MOF. Inorg. Chem. 2014, 53(19), 10006–10008. DOI: 10.1021/ic501062r.
  • Xia, H.; Li, N.; Zhong, X.; Jiang, Y. Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications. Front. Bioeng. Biotechnol. 2020, 8, 1–16. DOI: 10.3389/fbioe.2020.00695.
  • Liang, W.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C. K.; Falcaro, P.; Doonan, C. J. Metal-Organic Framework-Based Enzyme Biocomposites. Chem. Rev. 2021, 121(3), 1077–1129. DOI: 10.1021/acs.chemrev.0c01029.
  • Dong, S.; Peng, L.; Wei, W.; Huang, T. Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance. ACS Appl. Mater. Interfaces. 2018, 10(17), 14665–14672. DOI: 10.1021/acsami.8b00702.
  • Zhong, X.; Xia, H.; Huang, W.; Li, Z.; Jiang, Y. Biomimetic Metal-Organic Frameworks Mediated Hybrid Multi-Enzyme Mimic for Tandem Catalysis. Chem. Eng. J. 2020, 381, 122758. DOI: 10.1016/j.cej.2019.122758.
  • Badoei-dalfard, A.; Sohrabi, N.; Karami, Z.; Sargazi, G. Fabrication of an Efficient and Sensitive Colorimetric Biosensor Based on Uricase/ Th-MOF for Uric Acid Sensing in Biological Samples. Biosens. Bioelectron. 2019, 141, 111420. DOI: 10.1016/j.bios.2019.111420.
  • Zhang, T.; Wang, L.; Gao, C.; Zhao, C.; Wang, Y.; Wang, J. Hemin Immobilized into Metal-Organic Frameworks as an Electrochemical Biosensor for 2,4,6-Trichlorophenol. Nanotechnology. 2018, 29(7), 74003. DOI: 10.1088/1361-6528/aaa26e.
  • Liu, W. L.; Yang, N. S.; Chen, Y. T.; Lirio, S.; Wu, C. Y.; Lin, C. H.; Huang, H. Y. Lipase-Supported Metal-Organic Framework Bioreactor Catalyzes Warfarin Synthesis. Chem. A Eur. J. 2015, 21(1), 115–119. DOI: 10.1002/chem.201405252.
  • Cao, Y.; Wu, Z.; Wang, T.; Xiao, Y.; Huo, Q.; Liu, Y. Immobilization Of: Bacillus Subtilis Lipase on A Cu-BTC Based Hierarchically Porous Metal-Organic Framework Material: A Biocatalyst for Esterification. Dalt. Trans. 2016, 45(16), 6998–7003. DOI: 10.1039/c6dt00677a.
  • Li, P.; Moon, S. Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal-Organic Framework Engenders Thermal and Long-Term Stability. J. Am. Chem. Soc. 2016, 138(26), 8052–8055. DOI: 10.1021/jacs.6b03673.
  • Lian, X.; Huang, Y.; Zhu, Y.; Fang, Y.; Zhao, R.; Joseph, E.; Li, J.; Pellois, J. P.; Zhou, H. C. Enzyme-MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angew. Chemie - Int. Ed. 2018, 57(20), 5725–5730. DOI: 10.1002/anie.201801378.
  • Zhao, M.; Li, Y.; Ma, X.; Xia, M.; Zhang, Y. Talanta Adsorption of Cholesterol Oxidase and Entrapment of Horseradish Peroxidase in Metal-Organic Frameworks for the Colorimetric Biosensing of Cholesterol. Talanta. 2019, 200, 293–299. DOI: 10.1016/j.talanta.2019.03.060.
  • Ren, S.; Feng, Y.; Wen, H.; Li, C.; Sun, B.; Cui, J.; Jia, S. Immobilized Carbonic Anhydrase on Mesoporous Cruciate Flower-like Metal Organic Framework for Promoting CO2 Sequestration. Int. J. Biol. Macromol. 2018, 117, 189–198. DOI: 10.1016/j.ijbiomac.2018.05.173.
  • Chen, Y.; Li, P.; Modica, J. A.; Drout, R. J.; Farha, O. K. Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. J. Am. Chem. Soc. 2018, 140(17), 5678–5681. DOI: 10.1021/jacs.8b02089.
  • Drout, R. J.; Robison, L.; Farha, O. K. Catalytic Applications of Enzymes Encapsulated in Metal–Organic Frameworks. Coord. Chem. Rev. 2019, 381, 151–160. DOI: 10.1016/j.ccr.2018.11.009.
  • Wang, S.; McGuirk, C. M.; Ross, M. B.; Wang, S.; Chen, P.; Xing, H.; Liu, Y.; Mirkin, C. A. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles. J. Am. Chem. Soc. 2017, 139(29), 9827–9830. DOI: 10.1021/jacs.7b05633.
  • He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cisplatin and Pooled SiRNAs to Enhance Therapeutic Efficacy in Drug-Resistant Ovarian Cancer Cells. J. Am. Chem. Soc. 2014, 136(14), 5181–5184. DOI: 10.1021/ja4098862.
  • Feng, Y.; Wang, H.; Zhang, S.; Zhao, Y.; Gao, J.; Zheng, Y.; Zhao, P.; Zhang, Z.; Zaworotko, M. J.; Cheng, P., et al. Antibodies@MOFs: An in Vitro Protective Coating for Preparation and Storage of Biopharmaceuticals. Adv. Mater. 2019, 31(2), 1–7. DOI: 10.1002/adma.201805148.
  • Li, X.; Semiramoth, N.; Hall, S.; Tafani, V.; Josse, J.; Laurent, F.; Salzano, G.; Foulkes, D.; Brodin, P.; Majlessi, L., et al. Compartmentalized Encapsulation of Two Antibiotics in Porous Nanoparticles: An Efficient Strategy to Treat Intracellular Infections. Part. Part. Syst. Charact. 2019, 36(3), 1–9. DOI: 10.1002/ppsc.201800360.
  • Riccò, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan, C.; Falcaro, P. Metal-Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano. 2018, 12(1), 13–23. DOI: 10.1021/acsnano.7b08056.
  • Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (Metal-Organic Framework) Composites. Chem. Soc. Rev. 2017, 46(11), 3386–3401. DOI: 10.1039/c7cs00058h.
  • Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K. H.; Deep, A. Recent Advances in Enzyme Immobilization Techniques: Metal-Organic Frameworks as Novel Substrates. Coord. Chem. Rev. 2016, 322, 30–40. DOI: 10.1016/j.ccr.2016.05.007.
  • Asunción Molina, M.; Gascón-Pérez, V.; Sánchez-Sánchez, M.; Blanco, R. M. Sustainable One-Pot Immobilization of Enzymes in/on Metal-Organic Framework Materials. Catalysts. 2021, 11(8), 1002. DOI: 10.3390/catal11081002.
  • Wu, X.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Facile Synthesis of Multiple Enzyme-Containing Metal–Organic Frameworks in a Biomolecule- Friendly Environment. Chem. Commun. 2015, 51(69), 13408–13411. DOI: 10.1039/C5CC05136C.
  • Lyu, F.; Zhang, Y.; Zare, R. N.; Ge, J.; Liu, Z. One-Pot Synthesis of Protein-Embedded Metal − Organic Frameworks with Enhanced Biological Activities. Nano Lett. 2014, 14(10), 5761–5765. DOI: 10.1021/nl5026419.
  • Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C. W., et al. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal-Organic Framework Microcrystals. J. Am. Chem. Soc. 2015, 137(13), 4276–4279. DOI: 10.1021/ja513058h.
  • Cao, S. L.; Yue, D. M.; Li, X. H.; Smith, T. J.; Li, N.; Zong, M. H.; Wu, H.; Ma, Y. Z.; Lou, W. Y. Novel Nano-/Micro-Biocatalyst: Soybean Epoxide Hydrolase Immobilized on UiO-66-NH2 MOF for Efficient Biosynthesis of Enantiopure (R)-1, 2-Octanediol in Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2016, 4(6), 3586–3595. DOI: 10.1021/acssuschemeng.6b00777.
  • Patra, S.; Hidalgo Crespo, T.; Permyakova, A.; Sicard, C.; Serre, C.; Chaussé, A.; Steunou, N.; Legrand, L. Design of Metal Organic Framework-Enzyme Based Bioelectrodes as a Novel and Highly Sensitive Biosensing Platform. J. Mater. Chem. B. 2015, 3(46), 8983–8992. DOI: 10.1039/c5tb01412c.
  • Bikiaris, N. D.; Ainali, N. M.; Christodoulou, E.; Kostoglou, M.; Kehagias, T.; Papasouli, E.; Koukaras, E. N.; Nanaki, S. G. Dissolution Enhancement and Controlled Release of Paclitaxel Drug via a Hybrid Nanocarrier Based on Mpeg-Pcl Amphiphilic Copolymer and Fe-Btc Porous Metal-Organic Framework. Nanomaterials. 2020, 10(12), 1–30. DOI: 10.3390/nano10122490.
  • Lajevardi, A.; Hossaini Sadr, M.; Badiei, A.; Armaghan, M. Synthesis and Characterization of Fe3O4@SiO2@MIL-100(Fe) Nanocomposite: A Nanocarrier for Loading and Release of Celecoxib. J. Mol. Liq. 2020, 307, 112996. DOI: 10.1016/j.molliq.2020.112996.
  • Wei, T. H.; Wu, S. H.; Huang, Y. D.; Lo, W. S.; Williams, B. P.; Chen, S. Y.; Yang, H. C.; Hsu, Y. S.; Lin, Z. Y.; Chen, X. H., et al. Rapid Mechanochemical Encapsulation of Biocatalysts into Robust Metal–Organic Frameworks. Nat. Commun. 2019, 10(1), 5002. DOI: 10.1038/s41467-019-12966-0.
  • Quijia, C. R.; Lima, C.; Silva, C.; Alves, R. C.; Frem, R.; Chorilli, M. Application of MIL-100(Fe) in Drug Delivery and Biomedicine. J. Drug Deliv. Sci. Technol. 2021, 61, 102217. DOI: 10.1016/j.jddst.2020.102217.
  • Shi, J.; Hei, S.; Liu, H.; Fu, Y.; Zhang, F.; Zhong, Y.; Zhu, W. Synthesis of MIL-100(Fe) at Low Temperature and Atmospheric Pressure. J. Chem. 2013, 32, 1–4. DOI: 10.1155/2013/792827.
  • Bezverkhyy, I.; Weber, G.; Bellat, J. P. Degradation of Fluoride-Free MIL-100(Fe) and MIL-53(Fe) in Water: Effect of Temperature and PH. Micropor. Mesopor. Mater. 2016, 219, 117–124. DOI: 10.1016/j.micromeso.2015.07.037.
  • Yoon, J. W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E., et al. Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angew. Chemie - Int. Ed. 2010, 49(34), 5949–5952. DOI: 10.1002/anie.201001230.
  • Zhang, J. W.; Zhang, H. T.; Du, Z. Y.; Wang, X.; Yu, S. H.; Jiang, H. L. Water-Stable Metal–Organic Frameworks with Intrinsic Peroxidase-like Catalytic Activity as a Colorimetric Biosensing Platform. Chem. Commun. 2014, 50(9), 1092–1094. DOI: 10.1039/c3cc48398c.
  • Nagarjun, N.; Dhakshinamoorthy, A. Liquid Phase Aerobic Oxidation of Cyclic and Linear Hydrocarbons Using Iron Metal Organic Frameworks as Solid Heterogeneous Catalyst. Mol. Catal. 2019, 463, 54–60. DOI: 10.1016/j.mcat.2018.11.012.
  • Zhang, Q.; Lei, D.; Luo, Q.; Wang, J.; Deng, T.; Zhang, Y.; Ma, P. Efficient Biodiesel Production from Oleic Acid Using Metal-Organic Framework Encapsulated Zr-Doped Polyoxometalate Nano-Hybrids. RSC Adv. 2020, 10(15), 8766–8772. DOI: 10.1039/d0ra00141d.
  • Hu, X.; Lou, X.; Li, C.; Ning, Y.; Liao, Y.; Chen, Q.; Mananga, E. S.; Shen, M.; Hu, B. Facile Synthesis of the Basolite F300-like Nanoscale Fe-BTC Framework and Its Lithium Storage Properties. RSC Adv. 2016, 6(115), 114483–114490. DOI: 10.1039/C6RA22738D.
  • Chen, X.; Zhang, Y.; Kong, X.; Yu, B.; Wang, S.; Xu, W.; Fang, Z.; Zhang, J.; Yao, K.; Liu, Y. Coating Metal-Organic Frameworks on Plasmonic Ag/AgCl Nanowire for Boosting Visible Light Photodegradation of Organic Pollutants. RSC Adv. 2022, 12(5), 3119–3127. DOI: 10.1039/d1ra08576j.
  • Wu, D.; Jiang, J.; Tian, N.; Wang, M.; Huang, J.; Yu, D.; Wu, M.; Ni, H.; Ye, P. Highly Efficient Heterogeneous Photo-Fenton BiOCl/MIL-100(Fe) Nanoscaled Hybrid Catalysts Prepared by Green One-Step Coprecipitation for Degradation of Organic Contaminants. RSC Adv. 2021, 11(51), 32383–32393. DOI: 10.1039/d1ra06549a.
  • Nabais, A. R.; Ribeiro, R. P. P. L.; Mota, J. P. B.; Alves, V. D.; Esteves, I. A. A. C.; Neves, L. A. CO2/N2 Gas Separation Using Fe(BTC)-Based Mixed Matrix Membranes: A View on the Adsorptive and Filler Properties of Metal-Organic Frameworks. Sep. Purif. Technol. 2018, 202, 174–184. DOI: 10.1016/j.seppur.2018.03.028.
  • Msahel, A.; Galiano, F.; Pilloni, M.; Russo, F.; Hafiane, A.; Castro-Muñoz, R.; Kumar, V. B.; Gedanken, A.; Ennas, G.; Porat, Z., et al. Exploring the Effect of Iron Metal-Organic Framework Particles in Polylactic Acid Membranes for the Azeotropic Separation of Organic/Organic Mixtures by Pervaporation. Membranes. 2021, 11(1), 1–18. DOI: 10.3390/membranes11010065.
  • Ji, L.; Peng, L.; Chen, T.; Li, X.; Zhu, X.; Hu, P. Facile Synthesis of Fe-BTC and Electrochemical Enhancement Effect for Sunset Yellow Determination. Talanta Open. 2022, 5, 100084. DOI: 10.1016/j.talo.2022.100084.
  • Thakur, B.; Karve, V. V.; Sun, D. T.; Semrau, A. L.; Weiß, L. J. K.; Grob, L.; Fischer, R. A.; Queen, W. L.; Wolfrum, B. An Investigation into the Intrinsic Peroxidase-Like Activity of Fe-MOFs and Fe-MOFs/Polymer Composites. Adv. Mater. Technol. 2021, 6(5), 2001048. DOI: 10.1002/admt.202001048.
  • Yang, J.; Li, J.; Ng, D. H. L.; Yang, P.; Yang, W.; Liu, Y. Micromotor-Assisted Highly Efficient Fenton Catalysis by a Laccase/Fe-BTC-NiFe2O4nanozyme Hybrid with a 3D Hierarchical Structure. Environ. Sci. Nano. 2020, 7(9), 2573–2583. DOI: 10.1039/c9en01443h.
  • Jing, Y.; Li, J.; Zhang, X.; Sun, M.; Lei, Q.; Li, B.; Yang, J.; Li, H.; Li, C.; Yang, X., et al. Catalase-Integrated Metal-Organic Framework with Synergetic Catalytic Activity for Colorimetric Sensing. Environ. Res. 2022, 207, 112147. DOI: 10.1016/j.envres.2021.112147.
  • Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Synthesis and Catalytic Properties of MIL-100(Fe), an Iron(III) Carboxylate with Large Pores. Chem. Commun. 2007, 27, 2820–2822. doi: 10.1039/b704325b.
  • Simon, M. A.; Anggraeni, E.; Soetaredjo, F. E.; Santoso, S. P.; Irawaty, W.; Thanh, T. C.; Hartono, S. B.; Yuliana, M.; Ismadji, S. Hydrothermal Synthesize of HF-Free MIL-100(Fe) for Isoniazid-Drug Delivery. Sci. Rep. 2019, 9(1), 16907. DOI: 10.1038/s41598-019-53436-3.
  • Duan, S.; Li, J.; Liu, X.; Wang, Y.; Zeng, S.; Shao, D.; Hayat, T. HF-Free Synthesis of Nanoscale Metal-Organic Framework NMIL-100(Fe) as an Efficient Dye Adsorbent. ACS Sustain. Chem. Eng. 2016, 4(6), 3368–3378. DOI: 10.1021/acssuschemeng.6b00434.
  • Guesh, K.; Caiuby, C. A. D.; Mayoral, Á.; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Cryst. Growth Des. 2017, 17(4), 1806–1813. DOI: 10.1021/acs.cgd.6b01776.
  • Tannert, N.; Gökpinar, S.; Hastürk, E.; Nießing, S.; Janiak, C. Microwave-Assisted Dry-Gel Conversion-a New Sustainable Route for the Rapid Synthesis of Metal-Organic Frameworks with Solvent Re-Use. Dalt. Trans. 2018, 47(29), 9850–9860. DOI: 10.1039/c8dt02029a.
  • Tao, C. A.; Wang, J. F. Synthesis of Metal Organic Frameworks by Ball-Milling. Crystals. 2021, 11(1), 15. DOI: 10.3390/cryst11010015.
  • Ennas, G.; Gedanken, A.; Mannias, G.; Kumar, V. B.; Scano, A.; Porat, Z.; Pilloni, M. Formation of Iron (III) Trimesate Xerogel by Ultrasonic Irradiation. Eur. J. Inorg. Chem. No. Iii. 2022, doi:10.1002/ejic.202101082
  • Sciortino, L.; Alessi, A.; Messina, F.; Buscarino, G.; Gelardi, F. M. Structure of the FeBTC Metal-Organic Framework: A Model Based on the Local Environment Study. J. Phys. Chem. C. 2015, 119(14), 7826–7830. DOI: 10.1021/acs.jpcc.5b01336.
  • Dhakshinamoorthy, A.; Alvaro, M.; Horcajada, P.; Gibson, E.; Vishnuvarthan, M.; Vimont, A.; Grenèche, J. M.; Serre, C.; Daturi, M.; Garcia, H. Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) as Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catal. 2012, 2(10), 2060–2065. DOI: 10.1021/cs300345b.
  • Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial Metal–Organic Frameworks as Heterogeneous Catalysts. Chem. Commun. 2012, 48(92), 11275–11288. DOI: 10.1039/c2cc34329k.
  • Martínez, F.; Leo, P.; Orcajo, G.; Díaz-García, M.; Sanchez-Sanchez, M.; Calleja, G. Sustainable Fe-BTC Catalyst for Efficient Removal of Mehylene Blue by Advanced Fenton Oxidation. Catal. Today. 2018, 313, 6–11. DOI: 10.1016/j.cattod.2017.10.002.
  • Chen, D.; Zhao, J.; Zhang, P.; Dai, S. Mechanochemical Synthesis of Metal–Organic Frameworks. Polyhedron. 2019, 162, 59–64. DOI: 10.1016/j.poly.2019.01.024.
  • Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L. Synthesis by Extrusion: Continuous, Large-Scale Preparation of MOFs Using Little or No Solvent. Chem. Sci. 2015, 6(3), 1645–1649. DOI: 10.1039/c4sc03217a.
  • Chaplin, M. F.; C, B. Enzyme Technology; Cambridge University Press: New York, 1990.
  • Gascón, V.; Jiménez, M. B.; Blanco, R. M.; Sanchez-Sanchez, M. Semi-Crystalline Fe-BTC MOF Material as an Efficient Support for Enzyme Immobilization. Catal. Today. 2018, 304, 119–126. DOI: 10.1016/j.cattod.2017.10.022.
  • Gascón, V.; Carucci, C.; Jiménez, M. B.; Blanco, R. M.; Sánchez-Sánchez, M.; Magner, E. Rapid in Situ Immobilization of Enzymes in Metal–Organic Framework Supports under Mild Conditions. Chem. Cat. Chem. 2017, 9(7), 1182–1186. DOI: 10.1002/cctc.201601342.
  • Zhao, Z.; Pang, J.; Liu, W.; Lin, T.; Ye, F.; Zhao, S. A Bifunctional Metal Organic Framework of Type Fe(III)-BTC for Cascade (Enzymatic and Enzyme-Mimicking) Colorimetric Determination of Glucose. Microchim. Acta. 2019, 186(5), 5. DOI: 10.1007/s00604-019-3416-7.
  • Tocco, D.; Carucci, C.; Todde, D.; Shortall, K.; Otero, F.; Sanjust, E.; Magner, E.; Salis, A. Enzyme Immobilization on Metal Organic Frameworks: Laccase from Aspergillus Sp. Is Better Adapted to ZIF-Zni Rather than Fe-BTC. Colloids Surf. B Biointerfaces. 2021, 208, 112147. DOI: 10.1016/j.colsurfb.2021.112147.
  • Carucci, C.; Bruen, L.; Gascón, V.; Paradisi, F.; Magner, E. Significant Enhancement of Structural Stability of the Hyperhalophilic ADH from Haloferax Volcanii via Entrapment on Metal Organic Framework Support. Langmuir. 2018, 34(28), 8274–8280. DOI: 10.1021/acs.langmuir.8b01037.
  • Pilloni, M.; Padella, F.; Ennas, G.; Lai, S.; Bellusci, M.; Rombi, E.; Sini, F.; Pentimalli, M.; Delitala, C.; Scano, A., et al. Liquid-Assisted Mechanochemical Synthesis of an Iron Carboxylate Metal Organic Framework and Its Evaluation in Diesel Fuel Desulfurization. Micropor. Mesopor. Mater. 2015, 213, 14–21. DOI: 10.1016/j.micromeso.2015.04.005.
  • Bowmaker, G. A Solvent-Assisted Mechanochemistry. Chem. Commun. 2013, 49(4), 334–348. DOI: 10.1039/c2cc35694e.
  • Yang, J.; Zhao, Q.; Li, J.; Dong, J. Synthesis of Metal-Organic Framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and Its Hydrogen-Storage Behavior. Micropor. Mesopor. Mater. 2010, 130(1–3), 174–179. DOI: 10.1016/j.micromeso.2009.11.001.
  • Du, M.; Li, L.; Li, M.; Si, R. Adsorption Mechanism on Metal Organic Frameworks of Cu-BTC, Fe-BTC and ZIF-8 for CO2 Capture Investigated by X-Ray Absorption Fine Structure. RSC Adv. 2016, 6(67), 62705–62716. DOI: 10.1039/c6ra07582g.
  • Bhattacharjee, S.; Matin, M. A. Hydroxylation of Phenol Catalyzed by Iron Metal-Organic Framework (Fe-BTC) with Hydrogen Peroxide. J. Mater. Sci. Chem. Eng. 2020, 8(2), 55–64. DOI: 10.4236/msce.2020.82006.
  • Sapnik, A. F.; Bechis, I.; Collins, S. M.; Johnstone, D. N.; Divitini, G.; Smith, A. J.; Chater, P. A.; Addicoat, M. A.; Johnson, T.; Keen, D. A., et al. Mixed Hierarchical Local Structure in a Disordered Metal–Organic Framework. Nat. Commun. 2021, 12, 2062. DOI: 10.1038/s41467-021-22218-9.
  • Pangkumhang, B.; Jutaporn, P.; Sorachoti, K.; Khamdahsag, P.; Tanboonchuy, V. Applicability of Iron (III) Trimesic (Fe-BTC) to Enhance Lignin Separation from Pulp and Paper Wastewater. Sains Malays. 2019, 48(1), 199–208. DOI: 10.17576/jsm-2019-4801-23.
  • Leclerc, H.; Vimont, A.; Lavalley, J. C.; Daturi, M.; Wiersum, A. D.; Llwellyn, P. L.; Horcajada, P.; Férey, G.; Serre, C. Infrared Study of the Influence of Reducible Iron(Iii) Metal Sites on the Adsorption of CO, CO2, Propane, Propene and Propyne in the Mesoporous Metal-Organic Framework MIL-100. Phys. Chem. Chem. Phys. 2011, 13(24), 11748–11756. DOI: 10.1039/c1cp20502a.
  • Autie-Castro, G.; Autie, M. A.; Rodríguez-Castellón, E.; Aguirre, C.; Reguera, E. Cu-BTC and Fe-BTC Metal-Organic Frameworks: Role of the Materials Structural Features on Their Performance for Volatile Hydrocarbons Separation. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 351–357. DOI: 10.1016/j.colsurfa.2015.05.044.
  • Lestari, W. W.; Hartono, J.; Adreane, M.; Nugrahaningtyas, K. D.; Purnawan, C.; Rahardjo, S. B. Electro-Synthetic Optimization of Host Material Based on MIL-100(Fe). Molekul. 2016, 11(1), 61. DOI: 10.20884/1.jm.2016.11.1.195.
  • Moradi, S. E.; Dadfarnia, S.; Haji Shabani, A. M.; Emami, S. Removal of Congo Red from Aqueous Solution by Its Sorption onto the Metal Organic Framework MIL-100(Fe): Equilibrium, Kinetic and Thermodynamic Studies. Desalin. Water Treat. 2015, 56(3), 709–721. DOI: 10.1080/19443994.2014.947328.
  • Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient Degradation of High Concentration Azo-Dye Wastewater by Heterogeneous Fenton Process with Iron-Based Metal-Organic Framework. J. Mol. Catal. A Chem. 2015, 400, 81–89. DOI: 10.1016/j.molcata.2015.02.007.
  • Kuzminova, A.; Dmitrenko, M.; Mazur, A.; Ermakov, S.; Penkova, A. Novel Pervaporation Membranes Based on Biopolymer Sodium Alginate Modified by FeBTC for Isopropanol Dehydration. Sustainability. 2021, 13(11), 6092. DOI: 10.3390/su13116092.
  • Salazar-Aguilar, A. D.; Vega, G.; Casas, J. A.; Vega-Díaz, S. M.; Tristan, F.; Meneses-Rodríguez, D.; Belmonte, M.; Quintanilla, A. Direct Hydroxylation of Phenol to Dihydroxybenzenes by H2O2 and Fe-Based Metal-Organic Framework Catalyst at Room Temperature. Catalysts. 2020, 10(2), 172. DOI: 10.3390/catal10020172.
  • Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids; Elsevier: Amsterdam, 1999.
  • Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Lee, U. H.; Hwang, Y. K.; Jun, C. H.; Horcajada, P.; Serre, C.; Chang, J. S. Large Scale Fluorine-Free Synthesis of Hierarchically Porous Iron(III) Trimesate MIL-100(Fe) with a Zeolite MTN Topology. Micropor. Mesopor. Mater. 2012, 157, 137–145. DOI: 10.1016/j.micromeso.2012.02.027.
  • Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J. M.; Lefebvre, F.; Chang, J. S., et al. Stable Polyoxometalate Insertion within the Mesoporous Metal Organic Framework MIL-100(Fe). J. Mater. Chem. 2011, 21(4), 1226–1233. DOI: 10.1039/c0jm02381g.
  • Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J., et al. Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules. Nat. Commun. 2015, 6(1), 1–8. DOI: 10.1038/ncomms8240.
  • Taherzade, S. D.; Soleimannejad, J.; Tarlani, A. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline. Nanomaterials. 2017, 7(8), 8. DOI: 10.3390/nano7080215.
  • Marcos-Almaraz, M. T.; Gref, R.; Agostoni, V.; Kreuz, C.; Clayette, P.; Serre, C.; Couvreur, P.; Horcajada, P. Towards Improved HIV-Microbicide Activity through the Co-Encapsulation of NRTI Drugs in Biocompatible Metal Organic Framework Nanocarriers. J. Mater. Chem. B. 2017, 5(43), 8563–8569. DOI: 10.1039/c7tb01933e.
  • Rezaei, M.; Abbasi, A.; Varshochian, R.; Dinarvand, R.; Jeddi-Tehrani, M. NanoMIL-100(Fe) Containing Docetaxel for Breast Cancer Therapy. Artif. Cells, Nanomedicine Biotechnol. 2018, 46(7), 1390–1401. DOI: 10.1080/21691401.2017.1369425.
  • Mao, D.; Hu, F.; Kenry Ji, S.; Wu, W.; Ding, D.; Kong, D.; Liu, B. Metal–Organic-Framework-Assisted in Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy. Adv. Mater. 2018, 30(18), 1–7. DOI: 10.1002/adma.201706831.
  • Hidalgo, T.; Alonso-Nocelo, M.; Bouzo, B. L.; Reimondez-Troitiño, S.; Abuin-Redondo, C.; De La Fuente, M.; Horcajada, P. Biocompatible Iron(Iii) Carboxylate Metal-Organic Frameworks as Promising RNA Nanocarriers. Nanoscale. 2020, 12(8), 4839–4845. DOI: 10.1039/c9nr08127e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.