Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 44, 2024 - Issue 2
704
Views
3
CrossRef citations to date
0
Altmetric
Comment

Structural and Redox Interconversions of Sulfur Ligands of Transition Metal Complexes

&

References

  • Meyer, J. Iron–Sulfur Protein Folds, Iron–Sulfur Chemistry, and Evolution. J. Biol. Inorg. Chem. 2008, 13(2), 157–170. DOI: 10.1007/s00775-007-0318-7.
  • Wächtershäuser, G. From Volcanic Origins of Chemoautotrophic Life to Bacteria, Archaea and Eukarya. Phil. Trans. R. Soc. B. 2006, 361(1474), 1787–1808. DOI: 10.1098/rstb.2006.1904.
  • Pietri, R.; Román-Morales, E.; López-Garriga, J. Hydrogen Sulfide and Hemeproteins: Knowledge and Mysteries. Antioxid. Redox Signal. 2010, 15(2), 393–404. DOI: 10.1089/ars.2010.3698.
  • Bostelaar, T.; Vitvitsky, V.; Kumutima, J.; Lewis, B. E.; Yadav, P. K.; Brunold, T. C.; Filipovic, M.; Lehnert, N.; Stemmler, T. L.; Banerjee, R. Hydrogen Sulfide Oxidation by Myoglobin. J. Am. Chem. Soc. 2016, 138(27), 8476–8488. DOI: 10.1021/jacs.6b03456.
  • Román-Morales, E.; Pietri, R.; Ramos-Santana, B.; Vinogradov, S. N.; Lewis-Ballester, A.; López-Garriga, J. Structural Determinants for the Formation of Sulfheme protein Complexes. Biochem. Biophys. Res. Commun. 2010, 400(4), 489–492. DOI: 10.1016/j.bbrc.2010.08.068.
  • Zhang, B.; Crack, J. C.; Subramanian, S.; Green, J.; Thomson, A. J.; Le Brun, N. E.; Johnson, M. K. Reversible Cycling Between Cysteine Persulfide-Ligated [2Fe-2S] and Cysteine-Ligated [4Fe-4S] Clusters in the FNR Regulatory Protein. Proc. Natl. Acad. Sci. USA. 2012, 109(39), 15734–15739. DOI: 10.1073/pnas.1208787109.
  • Lange, M.; Ok, K.; Shimberg, G. D.; Bursac, B.; Markó, L.; Ivanović-Burmazović, I.; Michel, S. L. J.; Filipovic, M. R. Direct Zinc Finger Protein Persulfidation by H2S is Facilitated by Zn2+. Angew. Chem. Int. Ed. 2019, 58(24), 7997–8001. DOI: 10.1002/anie.201900823.
  • Stiefel, E. I. Transition Metal Sulfur Chemistry: Biological and Industrial Significance and Key Trends. In Transition Metal Sulfur Chemistry: Biological and Industrial Significance; Stiefel, E. I. Matsumoto, K., Eds.; American Chemical Society: Washington, DC, 1996; Vol. 652, pp. 2–39.
  • Parkin, G. Terminal Chalcogenido Complexes of the Transition Metals. Prog. Inorg. Chem. 1997, 47, 1–165.
  • Zhdanov, S. I. Selenium, Tellurium, and Polonium. In Standard Potentials in Aqueous Solution; Bard, A. J., Ed.; Routledge: New York, 1985; pp. 93–126.
  • Solomon, E. I.; Hedman, B.; Hodgson, K. O.; Dey, A.; Szilagyi, R. K. Ligand K-Edge X-Ray Absorption Spectroscopy: Covalency of Ligand–Metal Bonds. Coord. Chem. Rev. 2005, 249(1–2), 97–129. DOI: 10.1016/j.ccr.2004.03.020.
  • Vineyard, B. D. Mercaptan—Sulfur Reaction. Alkyl Trisulfides. J. Org. Chem. 1966, 31(2), 601–602. DOI: 10.1021/jo01340a511.
  • Pringle, D. L. The Nature of the Polysulfide Anion; Iowa State University, 1967.
  • Vineyard, B. D. Versatility and the Mechanism of the n-Butyl-Amine-Catalyzed Reaction of Thiols with Sulfur. J. Org. Chem. 1967, 32(12), 3833–3836. DOI: 10.1021/jo01287a024.
  • Olsen, F. P.; Sasaki, Y. Reactions of Sulfur with Benzylamine. J. Am. Chem. Soc. 1970, 92(12), 3812–3813. DOI: 10.1021/ja00715a059.
  • Koppenol, W. H.; Bounds, P. L. Signaling by Sulfur-Containing Molecules. Quantitative Aspects. Arch. Biochem. Biophys. 2017, 617, 3–8. DOI: 10.1016/j.abb.2016.09.012.
  • Cuevasanta, E.; Lange, M.; Bonanata, J.; Coitiño, E. L.; Ferrer-Sueta, G.; Filipovic, M. R.; Alvarez, B. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide. J. Biol. Chem. 2015, 290(45), 26866–26880. DOI: 10.1074/jbc.M115.672816.
  • Benchoam, D.; Semelak, J. A.; Cuevasanta, E.; Mastrogiovanni, M.; Grassano, J. S.; Ferrer-Sueta, G.; Zeida, A.; Trujillo, M.; Möller, M. N.; Estrin, D. A., et al. Acidity and Nucleophilic Reactivity of Glutathione Persulfide. J. Biol. Chem. 2020, 295(46), 15466–15481. DOI: 10.1074/jbc.RA120.014728.
  • Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical Biology of H2S Signaling Through Persulfidation. Chem. Rev. 2018, 118(3), 1253–1337. DOI: 10.1021/acs.chemrev.7b00205.
  • Seo, W. T. M.; Ballesteros, M., II; Tsui, E. Y. Sulfane Decreases the Nucleophilic Reactivity of Zinc Thiolates: Implications for Biological Reactive Sulfur Species. J. Am. Chem. Soc. 2022, 144(45), 20630–20640. DOI: 10.1021/jacs.2c07380.
  • Fehér, F. SECTION 7 - Sulfur, Selenium, Tellurium. In Handbook of Preparative Inorganic Chemistry (Second Edition); Brauer, G., Ed.; New York: Academic Press, 1963; pp. 341–456.
  • Hartle, M. D.; Pluth, M. D. A Practical Guide to Working with H2S at the Interface of Chemistry and Biology. Chem. Soc. Rev. 2016, 45(22), 6108–6117. DOI: 10.1039/C6CS00212A.
  • Hartle, M. D.; Meininger, D. J.; Zakharov, L. N.; Tonzetich, Z. J.; Pluth, M. D. NBu4SH Provides a Convenient Source of HS− Soluble in Organic Solution for H2S and Anion-Binding Research. Dalton Trans. 2015, 44(46), 19782–19785. DOI: 10.1039/C5DT03355A.
  • Callahan, K. P.; Durand, P. J. Reactions of the Vanadyl Group: Synthesis of VS2+ and VBr22+ from VO2+ Complexes. Inorg. Chem. 1980, 19(11), 3211–3217. DOI: 10.1021/ic50213a002.
  • Bristow, S.; Collison, D.; Garner, C. D.; Clegg, W. Crystal Structure of the Complex cis-Oxobis[piperidine N-oxido(1–)-NO]thiomolybdenum(VI), Containing a cis-MoOS2+ Group. J. Chem. Soc. Dalton Trans. 1983, 1983(11), 2495–2499. DOI: 10.1039/DT9830002495.
  • Young, C. G.; Collison, D.; Mabbs, F. E.; Enemark, J. H. The First Mononuclear Molybdenum(V) Complex with a Terminal Sulfido Ligand: Dichloro[hydrotris(3,5- Dimethyl-1-Pyrazolyl)borato]sulfidomolybdenum. Inorg. Chem. 1987, 26(18), 2925–2927. DOI: 10.1021/ic00265a001.
  • Donahue, J. P. Thermodynamic Scales for Sulfur Atom Transfer and Oxo-For-Sulfido Exchange Reactions. Chem. Rev. 2006, 106(11), 4747–4783. DOI: 10.1021/cr050044w.
  • Matulenko, M. A.; Degl’innocenti, A.; Capperucci, A. Bis(trimethylsilyl) Sulfide. Encyclopedia Of Reagents for Organic Synthesis.
  • Liu, H.; Liu, Y.; Wang, Z.; He, P. Facile Synthesis of Monodisperse, Size-Tunable SnS Nanoparticles Potentially for Solar Cell Energy Conversion. Nanotechnology. 2010, 21(10), 105707. DOI: 10.1088/0957-4484/21/10/105707.
  • Smith, D. K.; Luther, J. M.; Semonin, O. E.; Nozik, A. J.; Beard, M. C. Tuning the Synthesis of Ternary Lead Chalcogenide Quantum Dots by Balancing Precursor Reactivity. ACS Nano. 2011, 5(1), 183–190. DOI: 10.1021/nn102878u.
  • Glaser, P.; Stewart, O., Jr; Atif, R.; Asuigui, D. R. C.; Swanson, J.; Biacchi, A. J.; Hight Walker, A. R.; Morrison, G.; zur Loye, H. -C.; Stoll, S. L. Synthesis of Mixed-Valent Lanthanide Sulfide Nanoparticles. Angew. Chem. Int. Ed. 2021, 60(43), 23134–23141. DOI: 10.1002/anie.202108993.
  • Boulegue, J. Solubility of Elemental Sulfur in Water at 298 K. Phosphorus Sulfur Relat. Elem. 1978, 5(1), 127–128. DOI: 10.1080/03086647808069875.
  • Wang, R.; Shen, B.; Sun, H.; Zhao, J. Measurement and Correlation of the Solubilities of Sulfur S8 in 10 Solvents. J. Chem. Eng, Data. 2018, 63(3), 553–558. DOI: 10.1021/acs.jced.7b00699.
  • Ren, Y.; Shui, H.; Peng, C.; Liu, H.; Hu, Y. Solubility of Elemental Sulfur in Pure Organic Solvents and Organic Solvent–Ionic Liquid Mixtures from 293.15 to 353.15K. Fluid Ph. Equilibria. 2011, 312, 31–36. DOI: 10.1016/j.fluid.2011.09.012.
  • Bolton, S. G.; Pluth, M. D. Modified Cyclodextrins Solubilize Elemental Sulfur in Water and Enable Biological Sulfane Sulfur Delivery. Chem. Sci. 2020, 11(43), 11777–11784. DOI: 10.1039/D0SC04137H.
  • Garcia, A. C.; Zakharov, L. N.; Pluth, M. D. Supramolecular Activation of S8 by Cucurbiturils in Water and Mechanism of Reduction to H2S by Thiols: Insights into Biological Sulfane Sulfur Trafficking. J. Am. Chem. Soc. 2022, 144(33), 15324–15332. DOI: 10.1021/jacs.2c06332.
  • Steudel, R.; Holdt, G. Solubilization of Elemental Sulfur in Water by Cationic and Anionic Surfactants. Angew. Chem. Int. Ed. Engl. 1988, 27(10), 1358–1359. DOI: 10.1002/anie.198813581.
  • Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction Between Elemental Sulfur and NaOtBu. Org. Lett. 2014, 16(23), 6156–6159. DOI: 10.1021/ol503015b.
  • Chivers, T.; Elder, P. J. W. Ubiquitous Trisulfur Radical Anion: Fundamentals and Applications in Materials Science, Electrochemistry, Analytical Chemistry and Geochemistry. Chem. Soc. Rev. 2013, 42(14), 5996–6005. DOI: 10.1039/c3cs60119f.
  • Tobishima, S. -I.; Yamamoto, H.; Matsuda, M. Study on the Reduction Species of Sulfur by Alkali Metals in Nonaqueous Solvents. Electrochim. Acta. 1997, 42(6), 1019–1029. DOI: 10.1016/S0013-4686(96)00281-2.
  • Coucouvanis, D.; Kanatzidis, M.; Simhon, E.; Baenziger, N. C. S. Molecular Structure, and Reactions of Bis(tetraphenylphosphonium) Hexakis(µ-Thiophenolato)-Tetrachlorotetraferrate(II), (Ph4P)2[Fe4(SPh)6Cl4]. Its Reactions with Dibenzyl Trisulfide and the Synthesis of the [Fe4S4Cl4]2- and [Fe4S4(Cl)2(SC6H5)2]2- “Cubane”-Type Clusters. J. Am. Chem. Soc. 1982, 104, 1874–1882.
  • Hartmann, N. J.; Wu, G.; Hayton, T. W. Synthesis of a “Masked” Terminal Nickel(II) Sulfide by Reductive Deprotection and Its Reaction with Nitrous Oxide. Angew. Chem. Int. Ed. 2015, 54(49), 14956–14959. DOI: 10.1002/anie.201508232.
  • Cha, M.; Shoner, S. C.; Kovacs, J. A. Nickel-Promoted Reductive Carbon-Sulfur Bond Cleavage: A Model for the First Step in the Reaction Promoted by Methyl Coenzyme M Reductase. Inorg. Chem. 1993, 32(9), 1860–1863. DOI: 10.1021/ic00061a052.
  • Rhodes, J. M.; Jones, C. A.; Thal, L. B.; Macdonald, J. E. Phase-Controlled Colloidal Syntheses of Iron Sulfide Nanocrystals via Sulfur Precursor Reactivity and Direct Pyrite Precipitation. Chem. Mater. 2017, 29(19), 8521–8530. DOI: 10.1021/acs.chemmater.7b03550.
  • Brutchey, R. L. Diorganyl Dichalcogenides as Useful Synthons for Colloidal Semiconductor Nanocrystals. Acc. Chem. Res. 2015, 48(11), 2918–2926. DOI: 10.1021/acs.accounts.5b00362.
  • Treichel, P. M.; Nakagaki, P. C. New Synthetic Strategies for Organometallic Complexes with Thiolate Ligands. Organometallics. 1986, 5(4), 711–716. DOI: 10.1021/om00135a014.
  • Boustany, K. S.; Sullivan, A. B. Chemistry of Sulfur Compounds-VI. A Novel Method for the Preparation of Disulfides. Tetrahedron Lett. 1970, 11(41), 3547–3549. DOI: 10.1016/S0040-4039(01)98524-7.
  • Dirican, D.; Pfister, N.; Wozniak, M.; Braun, T. Reactivity of Binary and Ternary Sulfur Halides Towards Transition-Metal Compounds. Chem. Eur. J. 2020, 26(31), 6945–6963. DOI: 10.1002/chem.201904493.
  • Wagler, T. A.; Daunch, W. A.; Rinaldi, P. L.; Palmer, A. R. Solid State 33S NMR of Inorganic Sulfides. J. Mag. Res. 2003, 161(2), 191–197. DOI: 10.1016/S1090-7807(03)00046-6.
  • Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Transition Metal Thiometalates: Properties and Significance in Complex and Bioinorganic Chemistry. Angew. Chem. Int. Ed. Engl. 1981, 20(11), 934–955. DOI: 10.1002/anie.198109341.
  • Bastian, E. J., Jr.; Martin, R. B. Disulfide Vibrational Spectra in the Sulfur-Sulfur and Carbon-Sulfur Stretching Region. J. Phys. Chem. 1973, 77(9), 1129–1133. DOI: 10.1021/j100628a010.
  • El Jaroudi, O.; Picquenard, E.; Demortier, A.; Lelieur, J. -P.; Corset, J. Polysulfide Anions. I. Structure and Vibrational Spectra of the S22- and S32- Anions. Influence of the Cations on Bond Length and Angle. Inorg. Chem. 1999, 38(10), 2394–2401. DOI: 10.1021/ic9811143.
  • El Jaroudi, O.; Picquenard, E.; Demortier, A.; Lelieur, J. -P.; Corset, J. Polysulfide Anions II: Structure and Vibrational Spectra of the S42- and S52- Anions. Influence of the Cations on Bond Length, Valence, and Torsion Angle. Inorg. Chem. 2000, 39(12), 2593–2603. DOI: 10.1021/ic991419x.
  • Steudel, R.; Chivers, T. The Role of Polysulfide Dianions and Radical Anions in the Chemical, Physical and Biological Sciences, Including Sulfur-Based Batteries. Chem. Soc. Rev. 2019, 48(12), 3279–3319. DOI: 10.1039/C8CS00826D.
  • Sherbow, T. J.; Zakharov, L.; Pluth, M. D. Synthesis of Terminal Bis(hydrosulfido) and Disulfido Complexes of Ni(II) from a Geometrically Frustrated Tetrahedral Ni(II) Chloride Complex. Inorg. Chem. 2021, 60(11), 8135–8142. DOI: 10.1021/acs.inorgchem.1c00787.
  • Morton, M. S.; Lachicotte, R. J.; Vicic, D. A.; Jones, W. D. Insertion of Elemental Sulfur and SO2 into the Metal−hydride and Metal−carbon Bonds of Platinum Compounds. Organometallics. 1999, 18(2), 227–234. DOI: 10.1021/om980772s.
  • Vicic, D. A.; Jones, W. D. Modeling the Hydrodesulfurization Reaction at Nickel. Unusual Reactivity of Dibenzothiophenes Relative to Thiophene and Benzothiophene. J. Am. Chem. Soc. 1999, 121(33), 7606–7617. DOI: 10.1021/ja9905997.
  • Pluth, M. D.; Tonzetich, Z. J. Hydrosulfide Complexes of the Transition Elements: Diverse Roles in Bioinorganic, Cluster, Coordination, and Organometallic Chemistry. Chem. Soc. Rev. 2020, 49(12), 4070–4134. DOI: 10.1039/C9CS00570F.
  • Tonzetich, Z. J. H2S and Bioinorganic Metal Complexes. Hydrogen Sulfide. 2022, 103–141 doi:10.1002/9780470842898.rb222.pub2.
  • Parkin, G. Synthetic Analogues Relevant to the Structure and Function of Zinc Enzymes. Chem. Rev. 2004, 104(2), 699–768. DOI: 10.1021/cr0206263.
  • Rombach, M.; Vahrenkamp, H. Pyrazolylborate−zinc−hydrosulfide Complexes and Their Reactions. Inorg. Chem. 2001, 40, 6144–6150.
  • Shaver, A.; McCall, J. M. Preparation and Variable-Temperature NMR Studies of the Metallocyclosulfanes Cp2MS5 and (Me5Cp)2MS3, Where M = Ti, Zr and Hf. Organometallics. 1984, 3(12), 1823–1829. DOI: 10.1021/om00090a008.
  • Mukherjee, R. N.; Stack, T. D. P.; Holm, R. H. Angle Dependence of the Properties of the [Fe2X]4+ Bridge Unit (X = O, S): Structures, Antiferromagnetic Coupling, and Properties in Solution. J. Am. Chem. Soc. 1988, 110(6), 1850–1861. DOI: 10.1021/ja00214a030.
  • Ott, V. R.; Swieter, D. S.; Schultz, F. A. Di-μ-Oxo, μ-Oxo-μ-Sulfido, and di-μ-Sulfido Complexes of Molybdenum(V) with EDTA, Cysteine, and Cysteine Ester Ligands. Preparation and Electrochemical and Spectral Properties. Inorg. Chem. 1977, 16(10), 2538–2545. DOI: 10.1021/ic50176a024.
  • Igarashi, R. Y.; Laryukhin, M.; Dos Santos, P. C.; Lee, H.-I.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. Trapping H− Bound to the Nitrogenase FeMo-Cofactor Active Site During H2 Evolution: Characterization by ENDOR Spectroscopy. J. Am. Chem. Soc. 2005, 127(17), 6231–6241. DOI: 10.1021/ja043596p.
  • Rathnayaka, S. C.; Islam, S. M.; DiMucci, I. M.; MacMillan, S. N.; Lancaster, K. M.; Mankad, N. P. Probing the Electronic and Mechanistic Roles of the μ4-Sulfur Atom in a Synthetic CuZ Model System. Chem. Sci. 2020, 11(13), 3441–3447. DOI: 10.1039/C9SC06251C.
  • Benson, M. T.; Cundari, T. R.; Lim, S. J.; Nguyen, H. D.; Pierce-Beaver, K. An Effective Core Potential Study of Transition-Metal Chalcogenides. 1. Molecular Structure. J. Am. Chem. Soc. 1994, 116(9), 3955–3966. DOI: 10.1021/ja00088a035.
  • Howard, W. A.; Parkin, G. Terminal Oxo, Sulfido, Selenido, and Tellurido Complexes of Zirconium, (η5-C5Me4R)2Zr(E)(NC5H5): Comparison of Terminal Zr-E Single and Zr=E Double-Bond Lengths. J. Am. Chem. Soc. 1994, 116(2), 606–615. DOI: 10.1021/ja00081a022.
  • Trnka, T. M.; Parkin, G. A Survey of Terminal Chalcogenido Complexes of the Transition Metals: Trends in Their Distribution and the Variation of Their ME Bond Lengths. Polyhedron. 1997, 16(7), 1031–1045. DOI: 10.1016/S0277-5387(96)00411-1.
  • Carney, M. J.; Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Generation of the Highly Reactive Intermediates Cp*2Zr=O and Cp*2Zr=S: Trapping Reactions with Alkynes, Nitriles, and Dative Ligands. Organometallics. 1992, 11(2), 761–777. DOI: 10.1021/om00038a040.
  • Sweeney, Z. K.; Polse, J. L.; Andersen, R. A.; Bergman, R. G. Cycloaddition and Nucleophilic Substitution Reactions of the Monomeric Titanocene Sulfido Complex (η5-C5Me5)2(C5H5N)TiS. J. Am. Chem. Soc. 1998, 120(31), 7825–7834. DOI: 10.1021/ja980877m.
  • Laurie, S. H. Thiomolybdates — Simple but Very Versatile Reagents. Eur. J. Inorg. Chem. 2000, 2000(12), 2443–2450. DOI: 10.1002/1099-0682(200012)2000:12<2443:AID-EJIC2443>3.0.CO;2-I.
  • Diemann, E.; Müller, A. Thio and Seleno Compounds of the Transition Metals with the d0 Configuration. Coord. Chem. Rev. 1973, 10(1–2), 79–122. DOI: 10.1016/S0010-8545(00)80232-5.
  • Young, C. G.; Roberts, S. A.; Ortega, R. B.; Enemark, J. H. Mononuclear Oxo- and Sulfidomolybdenum(IV) Complexes: Syntheses and Crystal Structures of [HB(Me2C3N2H)3]MoE(S2CNEt2) (E = O, S) and Related Complexes. J. Am. Chem. Soc. 1987, 109(10), 2938–2946. DOI: 10.1021/ja00244a015.
  • Rabinovich, D.; Parkin, G. The Syntheses, Structures, and Reactivity of Monomeric Tungsten(IV) and Tungsten(VI) Bis(sulfido) Complexes: Facile Elimination of Hydrogen from Hydrogen Sulfide. J. Am. Chem. Soc. 1991, 113(15), 5904–5905. DOI: 10.1021/ja00015a078.
  • Goodman, J. T.; Rauchfuss, T. B. Binding of Alkenes to ReS4−. J. Am. Chem. Soc. 1999, 121(21), 5017–5022. DOI: 10.1021/ja9843775.
  • Dopke, J. A.; Wilson, S. R.; Rauchfuss, T. B. Influence of H2S and Thiols on the Binding of Alkenes and Alkynes to ReS4−: The Spectator Sulfide Effect. Inorg. Chem. 2000, 39(22), 5014–5021. DOI: 10.1021/ic0001661.
  • Schwarz, D. E.; Rauchfuss, T. B. The Addition of Isocyanides to ReS4−: [3 + 1] Cycloaddition to S=M=S. Chem. Commun. 2000, 13, 1123–1124. DOI: 10.1039/b000932f.
  • Goodman, J. T.; Inomata, S.; Rauchfuss, T. B. Addition of Alkynes and Alkenes to ReS4−: Reactivity Akin to OsO4. J. Am. Chem. Soc. 1996, 118(46), 11674–11675. DOI: 10.1021/ja962701v.
  • Chiu, W. H.; Zhang, Q. F.; Williams, I. D.; Leung, W. H. Addition of Dimethyl Acetylenedicarboxylate to the WSe4(2-) Anion. Organometallics. 2010, 29(11), 2631–2633. DOI: 10.1021/om100142d.
  • Drew, M. G. B.; Mitchell, P. C. H.; Pygall, C. F. Reaction Between Molybdate(VI), Cyanide, and Hydrogen Sulfide. Angew. Chem. Int. Ed. Engl. 1976, 15(12), 784–785. DOI: 10.1002/anie.197607841.
  • Baeza Cinco, M. Á.; Hayton, T. W. Progress Toward the Isolation of Late Metal Terminal Sulfides. Eur. J. Inorg. Chem. 2020, 2020(38), 3613–3626. DOI: 10.1002/ejic.202000600.
  • Vicic, D. A.; Jones, W. D. Evidence for the Existence of a Late-Metal Terminal Sulfido Complex. J. Am. Chem. Soc. 1999, 121(16), 4070–4071. DOI: 10.1021/ja984136x.
  • Shanahan, J. P.; Vicic, D. A.; Brennessel, W. W.; Jones, W. D. Trapping of a Late-Metal Terminal Sulfido Intermediate with Phenyl Isothiocyanate. Organometallics. 2022, 41(22). DOI: 10.1021/acs.organomet.2c00435.
  • Larsen, P. L.; Gupta, R.; Powell, D. R.; Borovik, A. S. Chalcogens as Terminal Ligands to Iron: Synthesis and Structure of Complexes with FeIII−S and FeIII−Se Motifs. J. Am. Chem. Soc. 2004, 126(21), 6522–6523. DOI: 10.1021/ja049118w.
  • Baeza Cinco, M. Á.; Wu, G.; Kaltsoyannis, N.; Hayton, T. W. Synthesis of a “Masked” Terminal Zinc Sulfide and Its Reactivity with Brønsted and Lewis Acids. Angew. Chem. Int. Ed. 2020, 59(23), 8947–8951. DOI: 10.1002/anie.202002364.
  • Hossain, K.; Majumdar, A. Polysulfido Chain in Binuclear Zinc(II) Complexes. Inorg. Chem. 2022, 61(16), 6295–6310. DOI: 10.1021/acs.inorgchem.2c00555.
  • Draganjac, M.; Rauchfuss, T. B. Transition Metal Polysulfides: Coordination Compounds with Purely Inorganic Chelate Ligands. Angew. Chem. Int. Ed. Engl. 1985, 24(9), 742–757. DOI: 10.1002/anie.198507421.
  • Rauchfuss, T. B. Research on Soluble Metal Sulfides: From Polysulfido Complexes to Functional Models for the Hydrogenases. Inorg. Chem. 2004, 43(1), 14–26. DOI: 10.1021/ic0343760.
  • Hofmann, K. A.; Höchtlen, F. Krystallisirte Polysulflde von Schwermetallen. Ber. Dtsch. Chem. Ges. 1903, 36(3), 3090–3092. DOI: 10.1002/cber.19030360382.
  • Wickenden, A. E.; Krause, R. A. Polysulfide Chelates II. Desulfuration of PtS152- and the Synthesis of PtS102-. Inorg. Chem. 1969, 8(4), 779–783. DOI: 10.1021/ic50074a016.
  • Coucouvanis, D.; Patil, P. R.; Kanatzidis, M. G.; Detering, B.; Baenziger, N. C. Synthesis and Reactions of Binary Metal Sulfides. Structural Characterization of the [(S4)2Zn]2-, [(S4)2Ni]2-, [(S5)Mn(S6)]2-, and [(CS4)2Ni]2- Anions. Inorg. Chem. 1985, 24(1), 24–31. DOI: 10.1021/ic00195a007.
  • Verma, A. K.; Rauchfuss, T. B.; Wilson, S. R. Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, Sans Explosion. Inorg. Chem. 1995, 34(11), 3072–3078. DOI: 10.1021/ic00115a038.
  • Pafford, R. J.; Rauchfuss, T. B. Effect of Ancillary Ligands on the Reactivity and Structure of Zinc Polysulfido Complexes. Inorg. Chem. 1998, 37(8), 1974–1980. DOI: 10.1021/ic971564f.
  • Verma, A. K.; Rauchfuss, T. B. Chalcogenospecific Synthesis of 1,2-Se2S6 Using ZnS6(TMEDA). Inorg. Chem. 1995, 34(24), 6199–6201. DOI: 10.1021/ic00128a035.
  • Pan, W. H.; Harmer, M. A.; Halbert, T. R.; Stiefel, E. I. Induced Internal Redox Processes in Molybdenum-Sulfur Chemistry: Conversion of MoS42- to Mo2S82- by Organic Disulfides. J. Am. Chem. Soc. 1984, 106(2), 459–460. DOI: 10.1021/ja00314a054.
  • Zhang, F. J.; Zhang, J.; Zhou, X. G. Facile Construction of Yttrium Pentasulfides from Yttrium Alkyl Precursors: Synthesis, Mechanism, and Reactivity. Inorg. Chem. 2017, 56(4), 2070–2077. DOI: 10.1021/acs.inorgchem.6b02747.
  • Sherbow, T. J.; Zakharov, L. N.; Johnson, D. W.; Pluth, M. D. Hydrosulfide Oxidation at a Molybdenum Tetrasulfido Complex. Inorg. Chem. 2020, 59(21), 15574–15578. DOI: 10.1021/acs.inorgchem.0c02622.
  • Sweeney, Z. K.; Polse, J. L.; Bergman, R. G.; Andersen, R. A. Dihydrogen Activation by Titanium Sulfide Complexes. Organometallics. 1999, 18(26), 5502–5510. DOI: 10.1021/om9907876.
  • Iluc, V. M.; Laskowski, C. A.; Brozek, C. K.; Harrold, N. D.; Hillhouse, G. L. Monomeric and Dimeric Disulfide Complexes of Nickel(II). Inorg. Chem. 2010, 49(15), 6817–6819. DOI: 10.1021/ic101242c.
  • Yao, S. A.; Martin-Diaconescu, V.; Infante, I.; Lancaster, K. M.; Götz, A. W.; DeBeer, S.; Berry, J. F. Electronic Structure of Ni2E2 Complexes (E = S, Se, Te) and a Global Analysis of M2E2 Compounds: A Case for Quantized E2n– Oxidation Levels with n = 2, 3, or 4. J. Am. Chem. Soc. 2015, 137(15), 4993–5011. DOI: 10.1021/ja511607j.
  • Coucouvanis, D.; Draganjac, M. E.; Koo, S. M.; Toupadakis, A.; Hadjikyriacou, A. I. Reactivity of the Molybdenum-Polysulfide Functional Groups in Thio- and Oxothiomolybdate Complexes Toward Carbon Disulfide. Synthesis and Reactivity of Trithio- and Perthiocarbonate Complexes of Mo(IV) and Mo(V) and Structural Characterization of trans-[Ph4P]2[Mo(S)(CS4)2]∙DMF (I), cis-[Ph4P][Et4N][Mo(S)(CS4)2] (II), cis-syn-[Ph4P]2[Mo2(S)2(μ-S)2(CS4)2]∙1/2DMF (III), syn-[Ph4P]2[Mo2(S)2(μ-S)2(CS3)2] (IV), and syn-[Et4N]2(Mo2(O)2(μ-S)2(CS4)(CS3)] (V). Inorg. Chem. 1992, 31, 1186–1196.
  • Coucouvanis, D.; Draganjac, M. The Formation of Perthiocarbonate Ligands Following the Addition of CS2 to Binary Molybdenum-Sulfur Complexes. The Crystal and Molecular Structures of the (Ph4P)2[(CS4)2MoS]∙DMF and (Ph4P)2[(CS4)Mo2S4(CS4)]∙1/2DMF Complexes. J. Am. Chem. Soc. 1982, 104(24), 6820–6822. DOI: 10.1021/ja00388a075.
  • Shaver, A.; Lai, R. D. Synthesis and Characterization of the Disulfanoplatinum Complexes cis-(PPh3)2Pt(phth)SSR, Where phth = Phthalimido and R = CH2Ph, CH2CH2CH3, CHMe2, p-C6H4Me, phth. Inorg. Chem. 1988, 27(25), 4664–4668. DOI: 10.1021/ic00298a031.
  • Shaver, A.; McCall, J. M.; Bird, P. H.; Ansari, N. Preparation and Structure of (η-C5H5)2Ti(SPh)(SSSPh): The Product of a Sulfur Catenation Reaction. Organometallics. 1983, 2(12), 1894–1896. DOI: 10.1021/om50006a039.
  • Shaver, A.; Morris, S. Disulfanido Ligands: Preparation and Reactions of Cp2Ti(SSR)X, Where X = SR, Phthalimido, and Cl and R = Alkyl and Aryl Groups. Inorg. Chem. 1991, 30(8), 1926–1930. DOI: 10.1021/ic00008a046.
  • Galardon, E.; Deschamps, P.; Tomas, A.; Roussel, P.; Artaud, I. An Alternate Route to Disulfanido Complexes by Nucleophilic Attack of Thiolates on Ruthenium-Bound Thiosulfonato Ligands. Inorg. Chem. 2010, 49(20), 9119–9121. DOI: 10.1021/ic101795s.
  • Haines, R. J.; De Beer, J. A.; Greatrex, R. Reactions of Metal Carbonyl Derivatives: XVII. Tri- as Well as Di-Nuclear Products from the Reactions of Bis(dicarbonyl-η-Cyclopentadienyliron) with Various Dialkyl Disulphides. J. Organomet. Chem. 1975, 85(1), 89–99. DOI: 10.1016/S0022-328X(00)89492-9.
  • Aubart, M. A.; Bergman, R. G. Reaction of Organic Disulfides with Cobalt-Centered Metal Radicals. Use of the E- and C-Based Dual-Parameter Substituent Model and Quantitative Solvent Effect Analyses to Compare Outer-Sphere and Inner-Sphere Electron-Transfer Processes. J. Am. Chem. Soc. 1998, 120(34), 8755–8766. DOI: 10.1021/ja980878e.
  • Liaw, W. -F.; Chen, C. -H.; Lee, G. -H.; Peng, S. -M. Iron Pyridine-2-thiolate Complexes:  Interconversion of [Fe0(CO)4(SC5H4N)]−, cis-[FeII(CO)2(SC5H4N)2], and [FeII(SC5H4N)3]. Organometallics. 1998, 17(11), 2370–2372. DOI: 10.1021/om971004o.
  • Galardon, E.; Tomas, A.; Selkti, M.; Roussel, P.; Artaud, I. S. Characterization, and Reactivity of Alkyldisulfanido Zinc Complexes. Inorg. Chem. 2009, 48(13), 5921–5927. DOI: 10.1021/ic900238v.
  • Benaïchouche, M.; Bosser, G.; Paris, J.; Auger, J.; Plichon, V. Formation of Stable Aryldisulphide Ions in Dimethylacetamide from the Reaction of Sulphur with Thiolate Ions. J. Chem. Soc. Perkin Trans. 1990, 2(1), 31–36. DOI: 10.1039/P29900000031.
  • Benaïchouche, M.; Bosser, G.; Paris, J.; Plichon, V. Relative Nucleophilicities of Aryldisulphide and Thiolate Ions in Dimethylacetamide Estimated from Their Reaction Rates with Alkyl Halides. J. Chem. Soc. Perkin Trans. 1990, 2(8), 1421–1424. DOI: 10.1039/P29900001421.
  • Bosser, G.; Benaichouche, M.; Coudert, R.; Paris, J. Nucleophilic Displacement of the Nitro-Group of Dinitrobenzenes by Electrogenerated Polysulfide Ions in Dimethylacetamide. New. J. Chem. 1994, 18, 511–517.
  • Robert, J.; Anouti, M.; Bosser, G.; Parrain, J. L.; Paris, J. Displacement of Aromatic Nitro-Groups by Anionic Sulfur Nucleophiles - Reactivity of Aryl Disulfide and Thiolate Ions Towards Dinitrobenzenes in N,N-Dimethylacetamide. J. Chem. Soc. Perkin Trans. 1995, 2(8), 1639–1644. DOI: 10.1039/p29950001639.
  • Bosser, G.; Anouti, M.; Paris, J. Formation and Scission of the Sulfur–Sulfur Bond: A New Approach to Reactions Between Sulfur/Polysulfide Ions and Thiolate Ions/Disulfides in N,N-Dimethylacetamide. J. Chem. Soc. Perkin Trans. 1996, 2(9), 1993–1999. DOI: 10.1039/P29960001993.
  • Krautscheid, U.; Dev, S.; Krautscheid, H.; Paul, P. P.; Wilson, S. R.; Rauchfuss, T. B. N-Methylimidazole Mediated Chemistry of Transition Metal Phenylthiolates. The Isolation of the Perthiolate Salts [M(N-MeIm)6](S2Ph)2. Z. Naturforsch. B. 1993, 48(5), 653–658. DOI: 10.1515/znb-1993-0515.
  • Jungen, S.; Paenurk, E.; Chen, P. S. Spectroscopic, and Structural Characterization of Organyl Disulfanides and a Tetrasulfanide. Inorg. Chem. 2020, 59(17), 12322–12336. DOI: 10.1021/acs.inorgchem.0c01426.
  • Bauer, A.; Capps, K. B.; Wixmerten, B.; Abboud, K. A.; Hoff, C. D. The Enthalpy of Insertion of Sulfur into the Metal−hydrogen Bond. Synthetic, Structural, and Calorimetric Study of the Complexes HS−M(CO)3C5R5 [M = Cr, Mo, W; R= H, Me]. Inorg. Chem. 1999, 38(9), 2136–2142. DOI: 10.1021/ic981221x.
  • Fackler, J. P., Jr.; Coucouvanis, D.; Fetchin, J. A.; Seidel, W. C. Sulfur Chelates. VIII. Oxidative Addition of Sulfur to Dithioaryl Acid Complexes of Nickel(II) and Zinc(II). J. Am. Chem. Soc. 1968, 90(11), 2784–2788. DOI: 10.1021/ja01013a009.
  • Fackler, J. P., Jr.; Fetchin, J. A.; Fries, D. C. Sulfur Chelates. XV. Sulfur Addition and Abstraction Reactions of Dithioaryl Acid Complexes of Zinc(II), Nickel(II), Palladium(II), and Platinum(II) and the X-Ray Crystal Structures of Bis(trithioperoxycumato)zinc(II) and Dithiocumato(trithioperoxycumato)nickel(II). J. Am. Chem. Soc. 1972, 94, 7323–7333.
  • Legzdins, P.; Sanchez, L. Insertion of Elemental Sulfur into Tungsten-Carbon Bonds. J. Am. Chem. Soc. 1985, 107(19), 5525–5526. DOI: 10.1021/ja00305a034.
  • Ji, X.; Yang, D.; Tong, P.; Li, J.; Wang, B.; Qu, J. C–H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-Like Cp* Ligand. Organometallics. 2017, 36(8), 1515–1521. DOI: 10.1021/acs.organomet.7b00091.
  • Wu, X.; Bose, K. S.; Sinn, E.; Averill, B. A. Isolation and X-Ray Structure of an Intermediate in the Reaction of (μ-S)2Fe2(CO)6 with Thiolates: The [(μ-S)(μ-S2-tert-Bu)Fe2(CO)6]− Ion. Organometallics. 1989, 8(1), 251–253. DOI: 10.1021/om00103a035.
  • Brunner, H.; Graßl, R.; Wachter, J.; Nuber, B.; Ziegler, M. L. Synthese und strukturelle charakterisierung von bis(pentamethylcyclopentadienylmolybdän-μ-sulfido)-komplexen mit μ,η1-SSR-liganden. J. Organomet. Chem. 1992, 427(1), 57–62. DOI: 10.1016/0022-328X(92)83205-V.
  • Song, L. -C.; Lu, G. -L.; Hu, Q. -M.; Sun, J. Synthesis of Double and Quadruple Butterfly Fe/S Cluster Complexes via a Novel Type of Reaction of Anions (μ-RS)(μ-S)[Fe2(CO)6]2(μ4-S) with Succinyl Chloride. Organometallics. 1999, 18(26), 5429–5431. DOI: 10.1021/om9907019.
  • Alper, H.; Sibtain, F.; Einstein, F. W. B.; Willis, A. C. Remarkable Phase-Transfer-Catalyzed Reactions Involving Sulfur. Organometallics. 1985, 4(3), 604–606. DOI: 10.1021/om00122a033.
  • Manotti Lanfredi, A. M.; Tiripicchio, A.; Marsich, N.; Camus, A. Perthiocarboxylate Complex. Synthesis, Structure and Spectroscopic Characterization of the Tetrameric Copper(I) o-Tolylperthiocarboxylate, [Cu(S)SSCC7H7]4. Inorg. Chim. Acta. 1988, 142(2), 269–275. DOI: 10.1016/S0020-1693(00)81571-6.
  • Coucouvanis, D.; Kanodia, S.; Swenson, D.; Chen, S. J.; Stuedemann, T.; Baenziger, N. C.; Pedelty, R.; Chu, M. Mixed-Valence Coinage Metal Clusters with 1,1-Thioperthio Ligands. Syntheses and Molecular Structures of the Copper and Gold [Cu4L3]2-, [Cu5L4]−, and [AuCu4L4]− Anions (L = 1,1-Dicarbo-Tert-Butoxyethylene-2,2-Thioperthiolate). A Geometrically-Locked, Charge-Separated Valence State in the [Cu5L4]− Anion. J. Am. Chem. Soc. 1993, 11271–11278. 115(24), DOI: 10.1021/ja00077a028.
  • Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Syntheses and X-Ray Structures of a Series of Chalcogen-Containing Manganese Carbonylates [E2Mn3(CO)9]−, [E8C2Mn2(CO)6]2-, and [E2Mn4(CO)12]2- (E = Se, S). Inorg. Chem. 1997, 36(20), 4421–4425. DOI: 10.1021/ic961482b.
  • Zhao, P.; Gray, D. L.; Rauchfuss, T. B. Rational Synthesis of the Carbonyl(perthiolato)diiron [Fe2(S3CPh2)(CO)6] and Related Complexes. Eur. J. Inorg. Chem. 2016, 2016(17), 2681–2683. DOI: 10.1002/ejic.201600366.
  • Rao, C. E.; Barik, S. K.; Yuvaraj, K.; Bakthavachalam, K.; Roisnel, T.; Dorcet, V.; Halet, J. -F.; Ghosh, S. Reactivity of CS2 – Syntheses and Structures of Transition-Metal Species with Dithioformate and Methanedithiolate Ligands. Eur. J. Inorg. Chem. 2016, 2016(30), 4913–4920. DOI: 10.1002/ejic.201600823.
  • Beltrán, T. F.; Zaragoza, G.; Delaude, L. Small Iron–Carbonyl Clusters Bearing Imidazolium-2-Trithioperoxycarboxylate Ligands. Dalton Trans. 2017, 46(38), 13002–13009. DOI: 10.1039/C7DT03202A.
  • Maheu, L. J.; Pignolet, L. H. X-Ray Crystal and Molecular Structure of Tris(N,N-Diethyldithiocarbamato)-bis[μ-(N,N-Diethyltrithiocarbamato)]-Diosmium(III) Tetraphenylborate. The First Example of a Sulfur-Rich Dithiocarbamate. Inorg. Chem. 1979, 18(12), 3626–3629. DOI: 10.1021/ic50202a073.
  • Troyano, J.; Corral, I.; Castillo, O.; Zamora, F.; Mas-Ballesté, R.; Delgado, S. S–S Bond Activation in Multi-Copper-Aggregates Containing Perthiocarboxylato Ligands. Eur. J. Inorg. Chem. 2015, 2015(24), 4044–4054. DOI: 10.1002/ejic.201500494.
  • Mallick, S.; Garu, P.; Chowdhury, J.; Saha, R.; Chattopadhyay, S. Dirhenium(III,III) Trithiocarbamato Complexes: Experimental and Theoretical Investigation. Transition Met. Chem. 2021, 46(8), 583–591. DOI: 10.1007/s11243-021-00477-1.
  • Wei, L.; Halbert, T. R.; Murray, H. H., III; Stiefel, E. I. Induced Internal Electron Transfer Reactiviy of Tetrathioperrhenate(VII): Synthesis of the Interconvertible Dimers Re2(μ-S)2(S2CNR2)4 and [Re2(μ-SS2CNR2)2(S2CNR2)3][O3SCF3] (R = Me, iso-Bu). J. Am. Chem. Soc. 1990, 112(17), 6431–6433. DOI: 10.1021/ja00173a060.
  • Tzeng, B.-C.; Chao, A.; Banik, M. Ligand-Coupling Assembly of Re(I)-Thiolate Complexes. Dalton Trans. 2014, 43(30), 11510–11515. DOI: 10.1039/C4DT00791C.
  • Hossain, M. I.; Ghosh, S.; Hogarth, G.; Kabir, S. E. Reactions of M2(CO)9L (M = Re, Mn; L = CO, MeCN) with Thioacetamide and Thiobenzamide: Facile Metal-Mediated Nitrogen-Hydrogen Bond Activation and Subsequent Carbon-Nitrogen or Sulfur-Sulfur Bond Formation. J. Organomet. Chem. 2013, 737, 53–58. DOI: 10.1016/j.jorganchem.2013.03.011.
  • Giolando, D. M.; Rauchfuss, T. B.; Wilson, S. R. Rearrangement of the Titanocene Derivative (C5H5)2TiS5 Involving Migration of the Organic Fragment from Metal to Sulfur. J. Am. Chem. Soc. 1984, 106(21), 6455–6456. DOI: 10.1021/ja00333a078.
  • Giolando, D. M.; Rauchfuss, T. B. Alkylidenebis(perthiolates): A New Class of Organosulfur Ligands Prepared from (RC5H4)2TiS5. Organometallics. 1984, 3(3), 487–489. DOI: 10.1021/om00081a026.
  • Shaver, A.; Plouffe, P. -Y. Polysulfanido Ligands: The Preparation and Structures of Complexes of the Type CpRu(PPh3)(CO)SxR, Possessing Disulfanido (x = 2) and Trisulfanido (x = 3) Ligands. Inorg. Chem. 1994, 33(19), 4327–4333. DOI: 10.1021/ic00097a020.
  • Shaver, A.; Hartgerink, J. The Preparation and Characterization of Polysulfanotungsten Complexes of the Type (η5-C5H5)W(CO)3SxR, Where x = 2, 3 and (η5-C5H5)W(CO)3SS(O)R, Where R = CH2C6H5, p-C6H4CH3. Can. J. Chem. 1987, 65(6), 1190–1194. DOI: 10.1139/v87-199.
  • Ballesteros, M.; Tsui, E. Y. Reactivity of Zinc Thiolate Bonds: Oxidative Organopolysulfide Formation and S3 Insertion. Inorg. Chem. 2019, 58, 10501–10507. DOI: 10.1021/acs.inorgchem.9b01074.
  • Ballesteros, M. T.; Tsui, E. Y. Sulfur Transfer Reactions of a Zinc Tetrasulfanido Complex. Dalton Trans. 2020, 49(45), 16305–16311. DOI: 10.1039/D0DT01384F.
  • Mas-Ballesté, R.; Guijarro, A.; González-Prieto, R.; Castillo, Ó.; Sanz Miguel, P. J.; Zamora, F. S–S Bond Reactivity in Metal-Perthiocarboxylato Compounds. Dalton Trans. 2010, 39(6), 1511–1518. DOI: 10.1039/B915518J.
  • Yu, S. -B.; Holm, R. H. Tetrahedral and Square-Pyramidal Sulphur-Rich Complexes of Manganese(II). Polyhedron. 1993, 12(2), 263–266. DOI: 10.1016/S0277-5387(00)81637-X.
  • Zigler, D. F.; Tordin, E.; Wu, G.; Iretskii, A.; Cariati, E.; Ford, P. C. Mononuclear Copper(I) Complexes of O-t-Butyl-1,1-Dithiooxalate and of O-t-Butyl-1-Perthio-1-Thiooxalate. Inorg. Chim. Acta. 2011, 374(1), 261–268. DOI: 10.1016/j.ica.2011.02.037.
  • McConnachie, C. A.; Stiefel, E. I. Ligand and Tetrathiometalate Effects in Induced Internal Electron Transfer Reactions. Inorg. Chem. 1999, 38(5), 964–972. DOI: 10.1021/ic980674z.
  • Heinrich, D. D.; Fackler, J. P. Synthesis and Structure of [Au(CH2)2PPh2]2[SSC(NPh)(NHPh)]2, a Gold(II) Ylide Dimer Containing the First Example of a Sulphur-Rich Thiourea. J. Chem. Soc. Chem. Commun. 1987, 16, 1260–1262. DOI: 10.1039/c39870001260.
  • John, E.; Bharadwaj, P. K.; Krogh-Jespersen, K.; Potenza, J. A.; Schugar, H. J. Molecular and Electronic Structure of Cu(tet-b)SSCH2CO2·3CH3OH, a Novel Copper(II) Alkyl Persulfide Complex. J. Am. Chem. Soc. 1986, 108(16), 5015–5017. DOI: 10.1021/ja00276a057.
  • Kanney, J.; Noll, B. C.; Rakowski DuBois, M. Reactions of Thiiranes and a Thietane with a High Valent Metal Chloride. Organometallics. 2000, 19(23), 4925–4928. DOI: 10.1021/om000511u.
  • Hong, M.; Cao, R.; Kawaguchi, H.; Tatsumi, K. Synthesis and Reactions of Group 6 Metal Half-Sandwich Complexes of 2,2-Dicyanoethylene-1,1-Dichalcogenolates [(Cp*)M{E2CC(CN)2}2]− (M = Mo, W; E = S, Se). Inorg. Chem. 2002, 41(18), 4824–4833. DOI: 10.1021/ic025609a.
  • Shaver, A.; Hartgerink, J.; Lai, R. D.; Bird, P.; Ansari, N. Catenated Sulfur Ligands: The Synthesis of Metal Disulfanes and the Structures of cis-(PPh3)2Pt(C8H4NO2)SSCH(CH3)2 and (η5-C5H5)W(CO)3SS-p-C6H4CH3. Organometallics. 1983, 2(7), 938–940. DOI: 10.1021/om50001a034.
  • Hill, J. P.; Laughlin, L. J.; Gable, R. W.; Young, C. G. Degree and Influence of MoS··S Interactions in Oxo−Molybdenum(VI,V,IV) Complexes. Inorg. Chem. 1996, 35(12), 3447–3448. DOI: 10.1021/ic951645g.
  • Belaj, F.; Dupe, A.; Mösch-Zanetti, N. C. CSD Communication. 2022. DOI: 10.5517/ccdc.csd.cc2cwq00.
  • Sousa-Pedrares, A.; Durán-Carril, M. L.; Romero, J.; García-Vázquez, J. A.; Sousa, A. Synthesis and Characterization of Homoleptic Chromium(III) Complexes Containing Pyridine-2-Thionato Ligands and of the Co-Crystal (1:1) Bis(pyridine-2-Thionato)(pyridine-2-Dithionato) Chromium(III) Tris(pyridine-2-Thionato) Chromium(III). Polyhedron. 2013, 62, 278–285. DOI: 10.1016/j.poly.2013.06.048.
  • Zhu, H. -B.; Wu, Y. -F.; Zhao, Y.; Hu, J. Unprecedented Metal-Mediated in situ Reactions of Heterocyclic Disulfide of Di[4-(Pyridin-2-Yl)pyrimidinyl]disulfide. Dalton Trans. 2014, 43(45), 17156–17162. DOI: 10.1039/C4DT02322F.
  • Ganguly, T.; Majumdar, A. Comparative Study for the Cobalt(II)- and Iron(II)-Mediated Desulfurization of Disulfides Demonstrating That the C–S Bond Cleavage Step Precedes the S–S Bond Cleavage Step. Inorg. Chem. 2020, 59(6), 4037–4048. DOI: 10.1021/acs.inorgchem.0c00007.
  • Schuerman, J. A.; Fronczek, F. R.; Selbin, J. Crystal and Molecular Structures of Tetranuclear Metal Clusters of Copper(I) Trithioperoxybenzoates. Inorg. Chim. Acta. 1988, 148(2), 177–183. DOI: 10.1016/S0020-1693(00)87498-8.
  • Hordvik, A.; Grjotheim, K.; Krohn, C.; Motzfeldt, K.; Williams, D. H.; Bunnenberg, E.; Djerassi, C.; Records, R. Bond-Length/dihedral-Angle and Bond-Length/bond-Order Relationships for Sulphur(II)-Sulphur(II) Bonds. Acta Chem. Scand. 1966, 20, 1885–1891. DOI: 10.3891/acta.chem.scand.20-1885.
  • Otto, A. H.; Steudel, R. The Gas Phase Acidities of the Sulfanes H2Sn (n = 1–4). Eur. J. Inorg. Chem. 1999, 1999, 2057–2061. DOI: 10.1002/(SICI)1099-0682(199911)1999:11<2057:AID-EJIC2057>3.0.CO;2-P.
  • Thomas, S.; Eagle, A. A.; Sproules, S. A.; Hill, J. P.; White, J. M.; Tiekink, E. R. T.; George, G. N.; Young, C. G. Redox Interplay of Oxo−thio−tungsten Centers with Sulfur-Donor Co-Ligands. Inorg. Chem. 2003, 42(19), 5909–5916. DOI: 10.1021/ic030095g.
  • Abe, K.; Kimura, H. The Possible Role of Hydrogen Sulfide as an Endogenous Neuromodulator. J. Neurosci. 1996, 16(3), 1066. DOI: 10.1523/JNEUROSCI.16-03-01066.1996.
  • Wang, R. Gasotransmitters: Growing Pains and Joys. Trends Biochem. Sci. 2014, 39(5), 227–232. DOI: 10.1016/j.tibs.2014.03.003.
  • Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Módis, K.; Panopoulos, P.; Asimakopoulou, A.; Gerö, D.; Sharina, I.; Martin, E., et al. Hydrogen Sulfide and Nitric Oxide are Mutually Dependent in the Regulation of Angiogenesis and Endothelium-Dependent Vasorelaxation. Proc. Natl. Acad. Sci. USA. 2012, 109(23), 9161–9166. DOI: 10.1073/pnas.1202916109.
  • Filipovic, M. R.; Miljkovic, J. L.; Nauser, T.; Royzen, M.; Klos, K.; Shubina, T.; Koppenol, W. H.; Lippard, S. J.; Ivanović-Burmazović, I. Chemical Characterization of the Smallest S-Nitrosothiol, HSNO; Cellular Cross-Talk of H2S and S-Nitrosothiols. J. Am. Chem. Soc. 2012, 134(29), 12016–12027. DOI: 10.1021/ja3009693.
  • Marcolongo, J. P.; Venâncio, M. F.; Rocha, W. R.; Doctorovich, F.; Olabe, J. A. NO/H2S “Crosstalk” Reactions. The Role of Thionitrites (SNO–) and Perthionitrites (SSNO–). Inorg. Chem. 2019, 58(22), 14981–14997. DOI: 10.1021/acs.inorgchem.9b01978.
  • Cortese-Krott, M. M.; Butler, A. R.; Woollins, J. D.; Feelisch, M. Inorganic Sulfur–Nitrogen Compounds: From Gunpowder Chemistry to the Forefront of Biological Signaling. Dalton Trans. 2016, 45(14), 5908–5919. DOI: 10.1039/C5DT05034K.
  • Seel, F.; Wagner, M. Über die Umsetzung von Polysulfiden mit Stickstoffmonoxid in nichtwäßrigen Lösungsmitteln — Nitrosodisulfide / The Reaction of Polysulfides with Nitrogen Monoxide in Non-Aqueous Solvents — Nitrosodisulfides. Z. Naturforsch. B. 1985, 40b(6), 762–764. DOI: 10.1515/znb-1985-0612.
  • Jordan, A. J.; Walde, R. K.; Schultz, K. M.; Bacsa, J.; Sadighi, J. P. Nitrosonium Reactivity of (NHC)copper(I) Sulfide Complexes. Inorg. Chem. 2019, 58(15), 9592–9596. DOI: 10.1021/acs.inorgchem.9b01676.
  • Zhang, S.; Melzer, M. M.; Sen, S. N.; Çelebi-Ölçüm, N.; Warren, T. H. A Motif for Reversible Nitric Oxide Interactions in Metalloenzymes. Nat. Chem. 2016, 8(7), 663–669. DOI: 10.1038/nchem.2502.
  • Tian, S.; Liu, J.; Cowley, R. E.; Hosseinzadeh, P.; Marshall, N. M.; Yu, Y.; Robinson, H.; Nilges, M. J.; Blackburn, N. J.; Solomon, E. I., et al. Reversible S-Nitrosylation in an Engineered Azurin. Nat. Chem. 2016, 8(7), 670–677. DOI: 10.1038/nchem.2489.
  • Sherbow, T. J.; Fu, W.; Tao, L.; Zakharov, L. N.; Britt, R. D.; Pluth, M. D. Thionitrite (SNO−) and Perthionitrite (SSNO−) are Simple Synthons for Nitrosylated Iron Sulfur Clusters. Angew. Chem. Int. Ed. 2022, 61(30), e202204570. DOI: 10.1002/anie.202204570.
  • Kim, Y.; Sridharan, A.; Suess, D. L. M. The Elusive Mononitrosylated [Fe4S4] Cluster in Three Redox States. Angew. Chem. Int. Ed. 2022, 61(47), e202213032. DOI: 10.1002/anie.202213032.
  • Eremenko, I. L.; Pasynskii, A. A.; Kalinnikov, V. T.; Struchkov, Y. T.; Aleksandrov, G. G. Nitrosylation of Dicyclopentadienyldi(μ-tert-butylthiolato)(μ-Sulfido)dichromium Giving tert-Butylsulfanic Group. Molecular Structures of the Binuclear Complex Cp(NO)Cr(μ-SCMe3)(μ-S-SCMe3)Cr(NO)Cp and Monomer CpCr(NO)2(ONO). Inorg. Chim. Acta. 1981, 52, 107–111. DOI: 10.1016/S0020-1693(00)88582-5.
  • Perissinotti, L. L.; Estrin, D. A.; Leitus, G.; Doctorovich, F. A Surprisingly Stable S-Nitrosothiol Complex. J. Am. Chem. Soc. 2006, 128(8), 2512–2513. DOI: 10.1021/ja0565976.
  • Perissinotti, L. L.; Leitus, G.; Shimon, L.; Estrin, D.; Doctorovich, F. A Unique Family of Stable and Water-Soluble S-Nitrosothiol Complexes. Inorg. Chem. 2008, 47(11), 4723–4733. DOI: 10.1021/ic7024999.
  • Cortese-Krott, M. M.; Kuhnle, G. G. C.; Dyson, A.; Fernandez, B. O.; Grman, M.; DuMond, J. F.; Barrow, M. P.; McLeod, G.; Nakagawa, H.; Ondrias, K., et al. Key Bioactive Reaction Products of the NO/H2S Interaction are S/N-Hybrid Species, Polysulfides, and Nitroxyl. Proc. Natl. Acad. Sci. USA. 2015, 112(34), E4651–4660. DOI: 10.1073/pnas.1509277112.
  • Hosseininasab, V.; Bertke, J. A.; Warren, T. H. Thionitrite and Perthionitrite in NO Signaling at Zinc. Angew. Chem. Int. Ed. 2021, 60(39), 21184–21188. DOI: 10.1002/anie.202104906.
  • Dobbek, H.; Gremer, L.; Kiefersauer, R.; Huber, R.; Meyer, O. Catalysis at a Dinuclear [CuSMo(O)OH] Cluster in a CO Dehydrogenase Resolved at 1.1-Å Resolution. Proc. Natl. Acad. Sci. USA. 2002, 99(25), 15971–15976. DOI: 10.1073/pnas.212640899.
  • Farrell, W. S.; Zavalij, P. Y.; Sita, L. R. Metal-Catalyzed “On-Demand” Production of Carbonyl Sulfide from Carbon Monoxide and Elemental Sulfur. Angew. Chem. Int. Ed. 2015, 54(14), 4269–4273. DOI: 10.1002/anie.201410353.
  • Farrell, W. S.; Zavalij, P. Y.; Sita, L. R. Catalytic Production of Isothiocyanates via a Mo(II)/Mo(IV) Cycle for the “Soft” Sulfur Oxidation of Isonitriles. Organometallics. 2016, 35, 2361–2366. DOI: 10.1021/acs.organomet.6b00302.
  • Hartmann, N. J.; Wu, G.; Hayton, T. W. Reactivity of a Nickel Sulfide with Carbon Monoxide and Nitric Oxide. J. Am. Chem. Soc. 2016, 138(38), 12352–12355. DOI: 10.1021/jacs.6b08084.
  • Thomson, J. W.; Nagashima, K.; Macdonald, P. M.; Ozin, G. A. From Sulfur−amine Solutions to Metal Sulfide Nanocrystals: Peering into the Oleylamine−sulfur Black Box. J. Am. Chem. Soc. 2011, 133(13), 5036–5041. DOI: 10.1021/ja1109997.
  • Hendricks, M. P.; Campos, M. P.; Cleveland, G. T.; Jen-La Plante, I.; Owen, J. S. A Tunable Library of Substituted Thiourea Precursors to Metal Sulfide Nanocrystals. Science. 2015, 348(6240), 1226–1230. DOI: 10.1126/science.aaa2951.
  • Hamachi, L. S.; Jen-La Plante, I.; Coryell, A. C.; De Roo, J.; Owen, J. S. Kinetic Control Over CdS Nanocrystal Nucleation Using a Library of Thiocarbonates, Thiocarbamates, and Thioureas. Chem. Mater. 2017, 29(20), 8711–8719. DOI: 10.1021/acs.chemmater.7b02861.
  • Rosales, B. A.; White, M. A.; Vela, J. Solution-Grown Sodium Bismuth Dichalcogenides: Toward Earth-Abundant, Biocompatible Semiconductors. J. Am. Chem. Soc. 2018, 140, 3736–3742. DOI: 10.1021/jacs.7b12873.
  • Zilevu, D.; Creutz, S. E. Shape-Controlled Synthesis of Colloidal Nanorods and Nanoparticles of Barium Titanium Sulfide. Chem. Mater. 2021, 33(13), 5137–5146. DOI: 10.1021/acs.chemmater.1c01193.
  • Campos, M. P.; De Roo, J.; Greenberg, M. W.; McMurtry, B. M.; Hendricks, M. P.; Bennett, E.; Saenz, N.; Sfeir, M. Y.; Abécassis, B.; Ghose, S. K., et al. Growth Kinetics Determine the Polydispersity and Size of PbS and PbSe Nanocrystals. Chem. Sci. 2022, 13(16), 4555–4565. DOI: 10.1039/D1SC06098H.
  • Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable Lithium–Sulfur Batteries. Chem. Rev. 2014, 114(23), 11751–11787. DOI: 10.1021/cr500062v.
  • Banerjee, S.; Han, X.; Siegler, M. A.; Miller, E. M.; Bedford, N. M.; Bukowski, B. C.; Thoi, V. S. Flexible 2D Boron Imidazolate Framework for Polysulfide Adsorption in Lithium–Sulfur Batteries. Chem. Mater. 2022, 34(23), 10451–10458. DOI: 10.1021/acs.chemmater.2c02324.
  • Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous Hollow Carbon@sulfur Composites for High-Power Lithium–Sulfur Batteries. Angew. Chem. Int. Ed. 2011, 50(26), 5904–5908. DOI: 10.1002/anie.201100637.
  • Yuan, Z.; Peng, H.-J.; Hou, T.-Z.; Huang, J.-Q.; Chen, C.-M.; Wang, D.-W.; Cheng, X.-B.; Wei, F.; Zhang, Q. Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Lett. 2016, 16(1), 519–527. DOI: 10.1021/acs.nanolett.5b04166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.