Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 44, 2024 - Issue 2
193
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Inorganic and Organometallic Polymers as Energy Storage Materials and Enhancing Their Efficiency

, , , , , & show all

References

  • Wang, R.; Shi, M.; Li, L.; Zhao, Y.; Zhao, L.; Yan, C. In-Situ Investigation and Application of Cyano-Substituted Organic Electrode for Rechargeable Aqueous Na-Ion Batteries. Chem. Eng. J. 2023, 451, 138652. DOI: 10.1016/j.cej.2022.138652.
  • Acharya, D.; Pathak, I.; Dahal, B.; Lohani, P. C.; Bhattarai, R. M.; Muthurasu, A.; Kim, T.; Ko, T. H.; Chhetri, K.; Kim, H. Y. Immoderate Nanoarchitectures of Bimetallic MOF Derived Ni–Fe–O/NPC on Porous Carbon Nanofibers as Freestanding Electrode for Asymmetric Supercapacitors. Carbon. 2023, 201, 12–23. DOI: 10.1016/j.carbon.2022.08.091.
  • Arshad, N.; Usman, M.; Adnan, M.; Ahsan, M. T.; Rehman, M. R.; Javed, S.; Ali, Z.; Akram, M. A.; Demopoulos, G. P.; Mahmood, A. Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER). Nanomaterials. 2023, 13(1), 99. DOI: 10.3390/nano13010099.
  • Mondal, M.; Goswami, D. K.; Bhattacharyya, T. K. High Performing Asymmetric Supercapacitor Fabricated by Defect Induced Cathodic MnV2o7 and Biowaste Derive Anodic Activated Carbon. J. Energy Storage. 2023, 57, 106177. DOI: 10.1016/j.est.2022.106177.
  • Gaikwad, N.; Gadekar, P.; Kandasubramanian, B.; Kaka, F. Advanced Polymer-Based Materials and Mesoscale Models to Enhance the Performance of Multifunctional Supercapacitors. J. Energy Storage. 2023, 58, 106337. DOI: 10.1016/j.est.2022.106337.
  • Mevada, D.; Panchal, H.; Ahmadein, M.; Zayed, M. E.; Alsaleh, N. A.; Djuansjah, J.; Moustafa, E. B.; Elsheikh, A. H.; Sadasivuni, K. K. Investigation and Performance Analysis of Solar Still with Energy Storage Materials: An Energy-Exergy Efficiency Analysis. Case Stud. Therm. Eng. 2022, 29, 101687. DOI: 10.1016/j.csite.2021.101687.
  • Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced Materials for Energy Storage. Adv. Mater. 2010, 22(8), E28–E62. DOI: 10.1002/adma.200903328.
  • Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z. X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv Sci. 2018, 5(1), 1700322. DOI: 10.1002/advs.201700322.
  • Kouchachvili, L.; Yaïci, W.; Entchev, E. Hybrid Battery/Supercapacitor Energy Storage System for the Electric Vehicles. J. Power Sources. 2018, 374, 237–248. DOI: 10.1016/j.jpowsour.2017.11.040.
  • Tang, H.; Miao, Y.; Hu, Z.; Ma, L.; Sui, Y.; Qi, J.; Wei, F.; Zhang, W.; Cao, P.; Dang, F., et al. Design of in-Situ Grown Copper-Based Bimetallic Phosphide Electrode Materials for Efficient Energy Storage. J. Energy Storage. 2023, 59, 106398. DOI: 10.1016/j.est.2022.106398.
  • Agarwal, A.; Majumder, S.; Sankapal, B. R. Ni3P2O8 Nanodots Anchored Multiwalled Carbon Nanotubes Composite for Flexible All-Solid-State Symmetric Supercapacitor. J. Energy Storage. 2023, 58, 106396. DOI: 10.1016/j.est.2022.106396.
  • Potham, S.; Ramanujam, K. A Novel Hierarchical Porous Activated Carbon-Organic Composite Cathode Material for High Performance Aqueous Zinc-Ion Hybrid Supercapacitors. J. Power Sources. 2023, 557, 232551. DOI: 10.1016/j.jpowsour.2022.232551.
  • Aleithan, S. H.; Ansari, S. A.; Perdana, M. Y.; Alam, K.; Alhashem, Z.; Al-Amer, K. The Controllable Ratio of the Polyaniline-Needle-Shaped Manganese Dioxide for the High-Performance Supercapacitor Application. Nanomaterials. 2023, 13(1), 101. DOI: 10.3390/nano13010101.
  • Larcher, D.; Tarascon, J. M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7(1), 19–29. DOI: 10.1038/nchem.2085.
  • Horwitz, N. E.; Xie, J.; Filatov, A. S.; Papoular, R. J.; Shepard, W. E.; Zee, D. Z.; Grahn, M. P.; Gilder, C.; Anderson, J. S. Redox-Active 1D Coordination Polymers of Iron–Sulfur Clusters. J. Am. Chem. Soc. 2019, 141(9), 3940–3951. DOI: 10.1021/jacs.8b12339.
  • Wang, X.; Zhang, W.; Zhou, Q.; Ran, F. Integrating Supercapacitor with Sodium Hyaluronate Based Hydrogel as a Novel All-In-One Wound Dressing: Self-Powered Electronic Stimulation. Chem. Eng. J. 2023, 452, 139491. DOI: 10.1016/j.cej.2022.139491.
  • Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14(3), 271–279. DOI: 10.1038/nmat4170.
  • Yan, B.; Feng, L.; Zheng, J.; Zhang, Q.; Dong, Y.; Ding, Y.; Yang, W.; Han, J.; Jiang, S.; He, S. Nitrogen-Doped Carbon Layer on Cellulose Derived Free-Standing Carbon Paper for High-Rate Supercapacitors. Appl. Surf. Sci. 2023, 608, 155144. DOI: 10.1016/j.apsusc.2022.155144.
  • Chen, X.; Luo, B.; Ding, J.; Yang, Q.; Xu, D.; Zhou, P.; Ying, Y.; Li, L.; Liu, Y. Kinetics-Favorable Heterojunctional CNTs@ CuCo-LDH/BPQD Electrode with Boosted Charge Storage Capability for Supercapacitor. Appl. Surf. Sci. 2023, 609, 155287. DOI: 10.1016/j.apsusc.2022.155287.
  • Afroze, J. D.; Tong, L.; Abden, M. J.; Chen, Y. Multifunctional Hierarchical Graphene-Carbon Fiber Hybrid Aerogels for Strain Sensing and Energy Storage. Adv. Compos. Hybrid Mater. 2023, 6(1), 1–13. DOI: 10.1007/s42114-022-00594-0.
  • Zhao, K.; Sun, X.; Fu, H.; Guo, H.; Wang, L.; Li, D.; Liu, J. In situ Construction of Metal-Organic Frameworks on Chitosan-Derived Nitrogen Self-Doped Porous Carbon for High-Performance Supercapacitors. J. Colloid. Interface. Sci. 2023, 632, 249–259. DOI: 10.1016/j.jcis.2022.11.038.
  • Chen, X.; Li, Y.; Li, L.; Zhu, Q.; Liang, B.; Zhao, J.; Zhang, W. Co/Zn Bimetallic Organic Framework Nanoparticles on Carbon Fibers as Cathode for a High-Performance Rechargeable Aqueous Zn-Ion Hybrid Supercapacitor. Scr. Mater. 2023, 225, 115171. DOI: 10.1016/j.scriptamat.2022.115171.
  • Zhang, X.; Alvarado-Ávila, M. I.; Liu, Y.; Yu, D.; Ye, F.; Dutta, J. Self-Sacrificial Growth of Hierarchical P (Ni, Co, Fe) for Enhanced Asymmetric Supercapacitors and Oxygen Evolution Reactions. Electrochim. Acta. 2023, 438, 141582. DOI: 10.1016/j.electacta.2022.141582.
  • Cao, W.; Xiong, C.; Chen, N.; Zhao, W.; Du, G.; Li, W.; Tang, L. Heterogeneous Mn-Ni (OH) 2/NiO@ C Hierarchical Porous Nanosheets for High Energy Density Hybrid Supercapacitors. J. Alloys Compd. 2023, 934, 167790. DOI: 10.1016/j.jallcom.2022.167790.
  • Park, S. J.; Seo, M. K. Composite Characterization. Interface Sci. Technol. 2011, 18, 631–738. DOI: 10.1016/B978-0-12-375049-5.00008-6.
  • Park, S. J.; Seo, M. K. Types of Composites. Interface Sci. Technol. 2011, 18, 501–629. DOI: 10.1016/B978-0-12-375049-5.00007-4.
  • Conder, J.; Fic, K.; Ghimbeu, C. M. Supercapacitors (electrochemical capacitors). In Char and Carbon Materials Derived from Biomass, Elsevier: Netherlands, 2019; pp. 383–427. DOI: 10.1016/B978-0-12-814893-8.00010-9.
  • Kado, Y.; Soneda, Y.; Hatori, H.; Kodama, M. Advanced Carbon Electrode for Electrochemical Capacitors. J. Solid State Electrochem. 2019, 23(4), 1061–1081. DOI: 10.1007/s10008-019-04211-x.
  • Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche (Schluss.). Annu. Rev. Phys. Chem. 1853, 165(6), 211–233. DOI: 10.1002/andp.18531650702.
  • Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Sci. 2014, 343(6176), 1210–1211. DOI: 10.1126/science.1249625.
  • Miller, J. R.; Simon, P. Electrochemical Capacitors for Energy Management. Science. 2008, 321(5889), 651–652. DOI: 10.1126/science.1158736.
  • Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Acc. Chem. Res. 2013, 46(5), 1094–1103. DOI: 10.1021/ar200306b.
  • Beguin, F.; Frackowiak, E. Supercapacitors: Materials, Systems and Applications; Wiley-VCH: Germany, 2013.
  • Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer: USA, 1999.
  • Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R. M.; Nadeem, M.; Muhammad, N.; Lu, X. Metal-Organic Frameworks for Energy Storage Devices: Batteries and Supercapacitors. J. Energy Storage. 2019, 21, 632–646. DOI: 10.1016/j.est.2018.12.025.
  • Bagarti, T.; Jayannavar, A. M. Storage of Electrical Energy. Reson. 2020, 25(7), 963–980. DOI: 10.1007/s12045-020-1012-0.
  • Wang, Y.; Sun, Z.; Chen, Z. Energy Management Strategy for Battery/Supercapacitor/Fuel Cell Hybrid Source Vehicles Based on Finite State Machine. Appl. Energy. 2019, 254, 113707. DOI: 10.1016/j.apenergy.2019.113707.
  • Titirici, M. M. Hydrothermal Carbons: Synthesis, Characterization, and Applications. In Novel Carbon Adsorbents; Elsevier: UK, 2012; pp. 351–399.
  • Wang, Y.; Song, Y.; Xia, Y. Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications. Chem. Soc. Rev. 2016, 45(21), 5925–5950. DOI: 10.1039/C5CS00580A.
  • Miller, J. R.; Butler, S. M. Electrical Characteristics of Large State-Of-The-Art Electrochemical Capacitors. Electrochim. Acta. 2019, 307, 564–572. DOI: 10.1016/j.electacta.2019.03.021.
  • Shukla, A. K.; Sampath, S.; Vijayamohanan, K. Electrochemical Supercapacitors: Energy Storage Beyond Batteries. Curr. Sci. 2000, 79, 1656–1661.
  • Baptista, J. M.; Sagu, J. S.; KG, U. W.; Lobato, K. State-Of-The-Art Materials for High Power and High Energy Supercapacitors: Performance Metrics and Obstacles for the Transition from Lab to Industrial Scale – a Critical Approach. Chem. Eng. J. 2019, 374, 1153–1179. DOI: 10.1016/j.cej.2019.05.207.
  • Rajendran, S.; Naushad, M.; Raju, K.; Boukherroub, R.; Rajendran, S.; Naushad, M.; Raju, K.; Boukherroub, R. Emerging Nanostructured Materials for Energy and Environmental Science, Springer International Publishing:Switzerland, 2019.10.1007/978-3-030-04474-9
  • Geng, D.; Cheng, Y.; Zhang, G. Layered Materials for Energy Storage and Conversion. 1st Royal Society of Chemistry; 2019. 10.1039/9781788016193
  • Conway, B. E. Electrochemical Supercapacitors, Kluwer Academic/Plenum Press:New York, 1999.10.1007/978-1-4757-3058-6
  • Wu, M. S.; Chiang, P. C. J. Fabrication of Nanostructured Manganese Oxide Electrodes for Electrochemical Capacitors. Electrochem. Solid-State Lett. 2004, 7(6), A123. DOI: 10.1149/1.1695533.
  • Sugimoto, W.; Iwata, H.; Murakami, Y.; Takasu, Y. Electrochemical Capacitor Behavior of Layered Ruthenic Acid Hydrate. J. Electrochem. Soc. 2004, 151(8), A1181. DOI: 10.1149/1.1765681.
  • Dong, X.; Shen, W.; Gu, J.; Xiong, L.; Zhu, Y.; Li, H.; Shi, J. MnO2-Embedded-In-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors. J. Phys. Chem B. 2006, 110(12), 6015–6019. DOI: 10.1021/jp056754n.
  • Chang, J. K.; Tsai, W. T. Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors. J. Electrochem. Soc. 2003, 150(10), A1333–A1338. DOI: 10.1149/1.1605744.
  • Be´langer, D.; Brousse, T.; Long, J. W. Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors. Electrochem. Soc. Interface. 2008, 17(1), 49–52. DOI: 10.1149/2.F07081IF.
  • Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nat. Nanotechnol. 2011, 6(4), 232–236. DOI: 10.1038/nnano.2011.13.
  • Shekurov, R.; Miluykov, V.; Kataeva, O.; Krivolapov, D.; Sinyashin, O.; Gerasimova, T.; Katsyuba, S.; Kovalenko, V.; Krupskaya, Y.; Kataev, V., et al. Reversible Water-Induced Structural and Magnetic Transformations and Selective Water Adsorption Properties of Poly (Manganese 1,1′-Ferrocenediyl-Bis (H-Phosphinate)). Cryst. Growth Des. 2016, 16(9), 5084–5090. DOI: 10.1021/acs.cgd.6b00681.
  • Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H. C. Luminescent Sensors Based on Metal-Organic Frameworks. Coord. Chem. Rev. 2018, 354, 28–45. DOI: 10.1016/j.ccr.2017.06.007.
  • Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1330–1352. DOI: 10.1039/B802352M.
  • Kurmoo, M. Magnetic Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1353–1379. DOI: 10.1039/B804757J.
  • Chen, S.; Wen, L.; Svec, F.; Tan, T.; Lv, Y. Magnetic Metal–Organic Frameworks as Scaffolds for Spatial Co-Location and Positional Assembly of Multi-Enzyme Systems Enabling Enhanced Cascade Biocatalysis. R.S.C. Adv. 2017, 7(34), 21205–21213. DOI: 10.1039/C7RA02291C.
  • Nandasiri, M. I.; Jambovane, S. R.; McGrail, B. P.; Schaef, H. T.; Nune, S. K. Adsorption, Separation, and Catalytic Properties of Densified Metal-Organic Frameworks. Coord. Chem. Rev. 2016, 311, 38–52. DOI: 10.1016/j.ccr.2015.12.004.
  • Shekurov, R.; Khrizanforova, V.; Gilmanova, L.; Khrizanforov, M.; Miluykov, V.; Kataeva, O.; Yamaleeva, Z.; Burganov, T.; Gerasimova, T.; Khamatgalimov, A., et al. Zn and Co Redox Active Coordination Polymers as Efficient Electrocatalysts. Dalton Trans. 2019, 48(11), 3601–3609. DOI: 10.1039/C8DT04618B.
  • Genna, D. T.; Wong-Foy, A. G.; Matzger, A. J.; Sanford, M. S. Heterogenization of Homogeneous Catalysts in Metal–Organic Frameworks via Cation Exchange. J. Am. Chem. Soc. 2013, 135(29), 10586–10589. DOI: 10.1021/ja402577s.
  • Ma, L.; Abney, C.; Lin, W. Enantioselective Catalysis with Homochiral Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1248–1256. DOI: 10.1039/B807083K.
  • García, H.; Navalón, S.; García, H.; Navalón, S. Metal-Organic Frameworks: Applications in Separations and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA:Germany, 2018.10.1002/9783527809097
  • Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Paz, F. A. A. Multifunctional Metal–Organic Frameworks: From Academia to Industrial Applications. Chem. Soc. Rev. 2015, 44(19), 6774–6803. DOI: 10.1039/C5CS00307E.
  • Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P., et al. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30(37), 1704303. DOI: 10.1002/adma.201704303.
  • Bosch, M.; Yuan, S.; Rutledge, W.; Zhou, H. C. Stepwise Synthesis of Metal–Organic Frameworks. Acc. Chem. Res. 2017, 50(4), 857–865. DOI: 10.1021/acs.accounts.6b00457.
  • Kang, Z.; Fan, L.; Sun, D. Recent Advances and Challenges of Metal–Organic Framework Membranes for Gas Separation. J. Mater. Chem. A. 2017, 5(21), 10073–10091. DOI: 10.1039/C7TA01142C.
  • Bon, V. Metal-Organic Frameworks for Energy-Related Applications. Curr. Opin. Green Sustain. Chem. 2017, 4, 44–49. DOI: 10.1016/j.cogsc.2017.02.005.
  • Zhang, H.; Liu, X.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang, J. MOF-Derived Nanohybrids for Electrocatalysis and Energy Storage: Current Status and Perspectives. Chem. Commun. 2018, 54(42), 5268–5288. DOI: 10.1039/C8CC00789F.
  • Zheng, S.; Xue, H.; Pang, H. Supercapacitors Based on Metal Coordination Materials. Coord. Chem. Rev. 2018, 373, 2–21. DOI: 10.1016/j.ccr.2017.07.002.
  • Wang, H.; Zhu, Q. L.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem. 2017, 2(1), 52–80. DOI: 10.1016/j.chempr.2016.12.002.
  • Zhao, Y.; Song, Z.; Li, X.; Sun, Q.; Cheng, N.; Lawes, S.; Sun, X. Metal Organic Frameworks for Energy Storage and Conversion. Energy Storage Mater. 2016, 2, 35–62. DOI: 10.1016/j.ensm.2015.11.005.
  • Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z.; Zhang, X.; Zhou, Z.; Bu, X. H. Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochem. Energy Rev. 2019, 2(1), 29–104. DOI: 10.1007/s41918-018-0024-x.
  • Kaskel, S.; Kaskel, S. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, Wiley-VCH Verlag GmbH & Co. KGaA:Germany, 2016.10.1002/9783527693078
  • Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal–Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49(3), 483–493. DOI: 10.1021/acs.accounts.5b00530.
  • Chen, L. J.; Yang, H. B. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. Acc. Chem. Res. 2018, 51(11), 2699–2710. DOI: 10.1021/acs.accounts.8b00317.
  • Han, J.; Zhang, M.; Chen, G.; Zhang, Y.; Wei, Q.; Zhuo, Y.; Xie, G.; Yuan, R.; Chen, S. Ferrocene Covalently Confined in Porous MOF as Signal Tag for Highly Sensitive Electrochemical Immunoassay of Amyloid-β. J. Mater. Chem. B. 2017, 5(42), 8330–8336. DOI: 10.1039/C7TB02240A.
  • Lan, G.; Li, Z.; Veroneau, S. S.; Zhu, Y. Y.; Xu, Z.; Wang, C.; Lin, W. Photosensitizing Metal–Organic Layers for Efficient Sunlight-Driven Carbon Dioxide Reduction. J. Am. Chem. Soc. 2018, 140(39), 12369–12373. DOI: 10.1021/jacs.8b08357.
  • Liao, P. Q.; Shen, J. Q.; Zhang, J. P. Metal–Organic Frameworks for Electrocatalysis. Coord. Chem. Rev. 2018, 373, 22–48. DOI: 10.1016/j.ccr.2017.09.001.
  • Khrizanforov, M.; Shekurov, R.; Miluykov, V.; Gilmanova, L.; Kataeva, O.; Yamaleeva, Z.; Gerasimova, T.; Ermolaev, V.; Gubaidullin, A.; Laskin, A., et al. Excellent Supercapacitor and Sensor Performance of Robust Cobalt Phosphinate Ferrocenyl Organic Framework Materials Achieved by Intrinsic Redox and Structure Properties. Dalton Trans. 2019, 48(45), 16986–16992. DOI: 10.1039/C9DT03592C.
  • Fernandez-Garcia, M.; Rodriguez, J. A. Metal Oxide Nanoparticles; Brookhaven National Laboratory, BNL-79479-2007-BC, 2007.
  • Murugesan, K.; Sivakumar, P.; Palanisamy, P. N. An Overview on Synthesis of Metal Oxide Nanoparticles. South Asian J. Eng. Tech. 2016, 2, 58–66.
  • Akbari, A.; Amini, M.; Tarassoli, A.; Eftekhari-Sis, B.; Ghasemian, N.; Jabbari, E. Transition Metal Oxide Nanoparticles as Efficient Catalysts in Oxidation Reactions. Nano-Struct. Nano-Objects. 2018, 14, 19–48. DOI: 10.1016/j.nanoso.2018.01.006.
  • Thota, S.; Crans, D. C. Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences, Wiley-VCH Verlag GmbH & Co. KGaA:Germany, 2018.10.1002/9783527807093
  • Karimi-Maleh, H.; Karimi, F.; FallahShojaei, A.; Tabatabaeian, K.; Arshadi, M.; Rezapour, M. Metal-Based Nanoparticles as Conductive Mediators in Electrochemical Sensors: A Mini Review. Curr. Anal. Chem. 2019, 15(2), 136–142. DOI: 10.2174/1573411014666180319152126.
  • Wu, F.; Wang, C.; Hu, H. Y.; Pan, M.; Li, H. F.; Xie, N.; Zeng, Z.; Deng, S.; Wu, M. H.; Vinodgopal, K., et al. One-Step Synthesis of Hierarchical Metal Oxide Nanosheet/Carbon Nanotube Composites by Chemical Vapor Deposition. J. Mater. Sci. 2019, 54(2), 1291–1303. DOI: 10.1007/s10853-018-2889-9.
  • Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B. 2018, 229, 206–217. DOI: 10.1016/j.mseb.2017.12.036.
  • Hu, X.; Li, C.; Lou, X.; Yang, Q.; Hu, B. Hierarchical CuO Octahedra Inherited from Copper Metal–Organic Frameworks: High-Rate and High-Capacity Lithium-Ion Storage Materials Stimulated by Pseudocapacitance. J. Mater. Chem. A. 2017, 5(25), 12828–12837. DOI: 10.1039/C7TA02953E.
  • Li, Y.; Xu, Y.; Yang, W.; Shen, W.; Xue, H.; Pang, H. MOF‐Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small. 2018, 14(25), 1704435. DOI: 10.1002/smll.201704435.
  • Mahmood, A.; Zou, R.; Wang, Q.; Xia, W.; Tabassum, H.; Qiu, B.; Zhao, R. Nanostructured Electrode Materials Derived from Metal–Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces. 2016, 8(3), 2148–2157. DOI: 10.1021/acsami.5b10725.
  • Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Metal–Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion. Energy Environ. Sci. 2015, 8(7), 1837–1866. DOI: 10.1039/C5EE00762C.
  • Chen, S.; Xue, M.; Li, Y.; Pan, Y.; Zhu, L.; Zhang, D.; Fang, Q.; Qiu, S. Porous ZnCo2o4 Nanoparticles Derived from a New Mixed-Metal Organic Framework for Supercapacitors. Inorg. Chem. Front. 2015, 2(2), 177–183. DOI: 10.1039/C4QI00167B.
  • Chen, S.; Xue, M.; Li, Y.; Pan, Y.; Zhu, L.; Qiu, S. Rational Design and Synthesis of Ni X Co 3−x O 4 Nanoparticles Derived from Multivariate MOF-74 for Supercapacitors. J. Mater. Chem. A. 2015, 3(40), 20145–20152. DOI: 10.1039/C5TA02557E.
  • Li, G. C.; Liu, P. F.; Liu, R.; Liu, M.; Tao, K.; Zhu, S. R.; Wu, M. K.; Yi, F. Y.; Han, L. MOF-Derived Hierarchical Double-Shelled NiO/ZnO Hollow Spheres for High-Performance Supercapacitors. Dalton Trans. 2016, 45(34), 13311–13316. DOI: 10.1039/C6DT01791F.
  • Lu, Y.; Yu, L.; Wu, M.; Wang, Y.; Lou, X. W. Construction of Complex Co 3 O 4 @co 3 V 2 O 8 Hollow Structures from Metal-Organic Frameworks with Enhanced Lithium Storage Properties. Adv. Mater. 2018, 30(1), 1702875. DOI: 10.1002/adma.201702875.
  • Fang, G.; Zhou, J.; Liang, C.; Pan, A.; Zhang, C.; Tang, Y.; Tan, X.; Liu, J.; Liang, S. MOFs Nanosheets Derived Porous Metal Oxide-Coated Three-Dimensional Substrates for Lithium-Ion Battery Applications. Nano. Energy. 2016, 26, 57–65. DOI: 10.1016/j.nanoen.2016.05.009.
  • Kang, W.; Zhang, Y.; Fan, L.; Zhang, L.; Dai, F.; Wang, R.; Sun, D. Metal–Organic Framework Derived Porous Hollow Co3O4/N–C Polyhedron Composite with Excellent Energy Storage Capability. ACS Appl. Mater. Interfaces. 2017, 9(12), 10602–10609. DOI: 10.1021/acsami.6b15000.
  • Wei, X.; Li, Y.; Peng, H.; Gao, D.; Ou, Y.; Yang, Y.; Hu, J.; Zhang, Y.; Xiao, P. A Novel Functional Material of Co3O4/Fe2O3 Nanocubes Derived from a MOF Precursor for High-Performance Electrochemical Energy Storage and Conversion Application. Chem. Eng. J. 2019, 355, 336–340. DOI: 10.1016/j.cej.2018.08.009.
  • Sambandam, B.; Soundharrajan, V.; Mathew, V.; Song, J.; Kim, S.; Jo, J.; Tung, D. P.; Kim, S.; Kim, J. Metal–Organic Framework-Combustion: A New, Cost-Effective and One-Pot Technique to Produce a Porous Co3V2O8 Microsphere Anode for High Energy Lithium Ion Batteries. J. Mater. Chem. A. 2016, 4(38), 14605–14613. DOI: 10.1039/C6TA05919H.
  • Zhang, H.; Qiao, H.; Wang, H.; Zhou, N.; Chen, J.; Tang, Y.; Li, J.; Huang, C. Nickel Cobalt Oxide/Carbon Nanotubes Hybrid as a High-Performance Electrocatalyst for Metal/Air Battery. Nanoscale. 2014, 6(17), 10235–10242. DOI: 10.1039/C4NR02125H.
  • Naveen, A. N.; Selladurai, S. Novel Low Temperature Synthesis and Electrochemical Characterization of Mesoporous Nickel Cobaltite-Reduced Graphene Oxide (RGO) Composite for Supercapacitor Application. Electrochim. Acta. 2015, 173, 290–301. DOI: 10.1016/j.electacta.2015.05.072.
  • Ding, R.; Qi, L.; Wang, H. An Investigation of Spinel NiCo2o4 as Anode for Na-Ion Capacitors. Electrochim. Acta. 2013, 114, 726–735. DOI: 10.1016/j.electacta.2013.10.113.
  • Zheng, C.; Cao, C.; Chang, R.; Hou, J.; Zhai, H. Hierarchical Mesoporous NiCo2O4 Hollow Nanocubes for Supercapacitors. Phys. Chem. Chem. Phys. 2016, 18(8), 6268–6274. DOI: 10.1039/C5CP07997G.
  • Jayakumar, A.; Antony, R. P.; Wang, R.; Lee, J. M. MOF-Derived Hollow Cage Ni X Co 3− X O 4 and Their Synergy with Graphene for Outstanding Supercapacitors. Small. 2017, 13(11), 1603102. DOI: 10.1002/smll.201603102.
  • Guan, C.; Liu, X.; Ren, W.; Li, X.; Cheng, C.; Wang, J. Rational Design of Metal-Organic Framework Derived Hollow NiCo 2 O 4 Arrays for Flexible Supercapacitor and Electrocatalysis. Adv. Energy Mater. 2017, 7(12), 1602391. DOI: 10.1002/aenm.201602391.
  • Lee, G.; Varanasi, C. V.; Liu, J. Effects of Morphology and Chemical Doping on Electrochemical Properties of Metal Hydroxides in Pseudocapacitors. Nanoscale. 2015, 7(7), 3181–3188. DOI: 10.1039/C4NR06997H.
  • Li, H.; Gao, Y.; Wang, C.; Yang, G. A Simple Electrochemical Route to Access Amorphous Mixed‐Metal Hydroxides for Supercapacitor Electrode Materials. Adv. Energy Mater. 2015, 5(6), 1401767. DOI: 10.1002/aenm.201401767.
  • Yang, S.; Cheng, K.; Ye, K.; Li, Y.; Qu, J.; Yin, J.; Wang, G.; Cao, D. A Novel Asymmetric Supercapacitor with Buds-Like Co(oh)2 Used as Cathode Materials and Activated Carbon as Anode Materials. J. Electroanal. Chem. 2015, 741, 93–99. DOI: 10.1016/j.jelechem.2015.01.011.
  • He, S.; Li, Z.; Wang, J.; Wen, P.; Gao, J.; Ma, L.; Yang, Z.; Yang, S. MOF-Derived NixCo1−x(oh)2 Composite Microspheres for High-Performance Supercapacitors. R.S.C. Adv. 2016, 6(55), 49478–49486. DOI: 10.1039/C6RA03992H.
  • Zhao, B.; Zhang, L.; Zhang, Q.; Chen, D.; Cheng, Y.; Deng, X.; Chen, Y.; Murphy, R.; Xiong, X.; Song, B., et al. Rational Design of Nickel Hydroxide‐Based Nanocrystals on Graphene for Ultrafast Energy Storage. Adv. Energy Mater. 2018, 8(9), 1702247. DOI: 10.1002/aenm.201702247.
  • Cheng, M.; Duan, S.; Fan, H.; Su, X.; Cui, Y.; Wang, R. Core@shell CoO@co3o4 Nanocrystals Assembling Mesoporous Microspheres for High Performance Asymmetric Supercapacitors. Chem. Eng. J. 2017, 327, 100–108. DOI: 10.1016/j.cej.2017.06.042.
  • Peng, S.; Li, L.; Wu, H. B.; Madhavi, S.; Lou, X. W. D. Controlled Growth of NiMoo4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Adv. Energy Mater. 2015, 5(2), 1401172. DOI: 10.1002/aenm.201401172.
  • Morsali, A.; Hashemi, L. Main Group Metal Coordination Polymers. Structures and Nanostructures; Wiley, USA, 2017.
  • Zhang, W.; Quan, B.; Lee, C.; Park, S. K.; Li, X.; Choi, E.; Diao, G.; Piao, Y. One-Step Facile Solvothermal Synthesis of Copper Ferrite–Graphene Composite as a High-Performance Supercapacitor Material. ACS Appl. Mater. Interfaces. 2015, 7(4), 2404–2414. DOI: 10.1021/am507014w.
  • Zhou, M.; Lu, F.; Shen, X.; Xia, W.; He, H.; Zeng, X. One-Pot Construction of Three Dimensional CoMoO4/Co3O4 Hybrid Nanostructures and Their Application in Supercapacitors. J. Mater. Chem. A. 2015, 3(42), 21201–21210. DOI: 10.1039/C5TA05658F.
  • Wen, P.; Gong, P.; Sun, J.; Wang, J.; Yang, S. Design and Synthesis of Ni-MOF/CNT Composites and rGO/Carbon Nitride Composites for an Asymmetric Supercapacitor with High Energy and Power Density. J. Mater. Chem. A. 2015, 3(26), 13874–13883. DOI: 10.1039/C5TA02461G.
  • Cetinkaya, T.; Dryfe, R. A. W. Electrical Double Layer Supercapacitors Based on Graphene Nanoplatelets Electrodes in Organic and Aqueous Electrolytes: Effect of Binders and Scalable Performance. J. Power Sources. 2018, 408, 91–104. DOI: 10.1016/j.jpowsour.2018.10.072.
  • Zhang, F.; Zhang, G.; Yao, H.; Gao, Z.; Chen, X.; Yang, Y. Scalable in-Situ Growth of Self-Assembled Coordination Supramolecular Network Arrays: A Novel High-Performance Energy Storage Material. Chem. Eng. J. 2018, 338, 230–239. DOI: 10.1016/j.cej.2018.01.003.
  • Gou, L.; Hao, L. M.; Shi, Y. X.; Ma, S. L.; Fan, X. Y.; Xu, L.; Li, D. L.; Wang, K. One-Pot Synthesis of a Metal–Organic Framework as an Anode for Li-Ion Batteries with Improved Capacity and Cycling Stability. J. Solid State Chem. 2014, 210(1), 121–124. DOI: 10.1016/j.jssc.2013.11.014.
  • Wang, P.; Lou, X.; Li, C.; Hu, X.; Yang, Q.; Hu, B. One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability. Nano-Micro Lett. 2018, 10(2), 19. DOI: 10.1007/s40820-017-0177-x.
  • Maiti, S.; Pramanik, A.; Manju, U.; Mahanty, S. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal–Organic Framework with High Capacity and Rate Performance. ACS Appl. Mater. Interfaces. 2015, 7(30), 16357–16363. DOI: 10.1021/acsami.5b03414.
  • Lin, Y.; Zhang, Q.; Zhao, C.; Li, H.; Kong, C.; Shen, C.; Chen, L. An Exceptionally Stable Functionalized Metal–Organic Framework for Lithium Storage. Chem. Commun. 2015, 51(4), 697–699. DOI: 10.1039/C4CC07149B.
  • An, T.; Wang, Y.; Tang, J.; Wang, Y.; Zhang, L.; Zheng, G. A Flexible Ligand-Based Wavy Layered Metal–Organic Framework for Lithium-Ion Storage. J. Colloid. Interface. Sci. 2015, 445, 320–325. DOI: 10.1016/j.jcis.2015.01.012.
  • Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y.; Xu, G. Conductive Metal–Organic Framework Nanowire Array Electrodes for High‐Performance Solid‐State Supercapacitors. Adv. Funct. Mater. 2017, 27(27), 1702067. DOI: 10.1002/adfm.201702067.
  • Liu, X.; Shi, C.; Zhai, C.; Cheng, M.; Liu, Q.; Wang, G. Cobalt-Based Layered Metal–Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. ACS Appl. Mater. Interfaces. 2016, 8(7), 4585–4591. DOI: 10.1021/acsami.5b10781.
  • Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dinca, M. High Electrical Conductivity in Ni3(2,3,6,7,10,11-Hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue. J. Am. Chem. Soc. 2014, 136(25), 8859–8862. DOI: 10.1021/ja502765n.
  • Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao‐Horn, Y.; Dincă, M. Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nat. Mater. 2017, 16(2), 220–224. DOI: 10.1038/nmat4766.
  • Tang, J.; Yamauchi, Y. Carbon Materials: MOF Morphologies in Control. Nature Chem. 2016, 8(7), 638–639. DOI: 10.1038/nchem.2548.
  • Torad, N. L.; Salunkhe, R. R.; Li, Y.; Hamoudi, H.; Imura, M.; Sakka, Y.; Hu, C. C.; Yamauchi, Y. Electric Double‐Layer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIF‐67. Chem. Eur. J. 2014, 20(26), 7895–7900. DOI: 10.1002/chem.201400089.
  • Qu, C.; Jiao, Y.; Zhao, B.; Chen, D.; Zou, R.; Walton, K. S.; Liu, M. Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study. Nano. Energy. 2016, 26, 66–73. DOI: 10.1016/j.nanoen.2016.04.003.
  • Yan, Y.; Gu, P.; Zheng, S.; Zheng, M.; Pang, H.; Xue, H. Facile Synthesis of an Accordion-Like Ni-MOF Superstructure for High-Performance Flexible Supercapacitors. J. Mater. Chem. A. 2016, 4(48), 19078–19085. DOI: 10.1039/C6TA08331E.
  • Zhang, L.; Zhang, Y.; Huang, S.; Yuan, Y.; Li, H.; Jin, Z.; Wu, J.; Liao, Q.; Hu, L.; Lu, J., et al. Co3O4/Ni-Based MOFs on Carbon Cloth for Flexible Alkaline Battery-Supercapacitor Hybrid Devices and Near-Infrared Photocatalytic Hydrogen Evolution. Electrochim. Acta. 2018, 281, 189–197. DOI: 10.1016/j.electacta.2018.05.162.
  • Gholipour-Ranjbar, H.; Soleimani, M.; Naderi, H. R. Application of Ni/co-Based Metal–Organic Frameworks (MOFs) as an Advanced Electrode Material for Supercapacitors. New. J. Chem. 2016, 40(11), 9187–9193. DOI: 10.1039/C6NJ01449F.
  • Jia, Y.; Chen, G.; Chen, D.; Pei, J.; Hu, Y. Bimetal–Organic Framework Assisted Polymerization of Pyrrole Involving Air Oxidant to Prepare Composite Electrodes for Portable Energy Storage. J. Mater. Chem. A. 2017, 5(45), 23744–23752. DOI: 10.1039/C7TA07464F.
  • Ye, C.; Qin, Q.; Liu, J.; Mao, W.; Yan, J.; Wang, Y.; Cui, J.; Zhang, Q.; Yang, L.; Wu, Y. Coordination Derived Stable Ni–Co MOFs for Foldable All-Solid-State Supercapacitors with High Specific Energy. J. Mater. Chem. A. 2019, 7(9), 4998–5008. DOI: 10.1039/C8TA11948A.
  • Li, X.; Sun, J.; Feng, L.; Zhao, L.; Ye, L.; Zhang, W.; Duan, L. Cactus-Like ZnS/Ni3S2 Hybrid with High Electrochemical Performance for Supercapacitors. J. Alloys Compd. 2018, 753, 508–516. DOI: 10.1016/j.jallcom.2018.04.236.
  • Zhai, Z. B.; Huang, K. J.; Wu, X.; Hu, H.; Xu, Y.; Chai, R. M. Metal–Organic Framework Derived Small Sized Metal Sulfide Nanoparticles Anchored on N-Doped Carbon Plates for High-Capacity Energy Storage. Dalton Trans. 2019, 48(14), 4712–4718. DOI: 10.1039/C9DT00195F.
  • Zeng, W.; Wang, L.; Shi, H.; Zhang, G.; Zhang, K.; Zhang, H.; Gong, F.; Wang, T.; Duan, H. Metal–Organic-framework-derived ZnO@C@NiCo2O4 Core–Shell Structures as an Advanced Electrode for High-Performance Supercapacitors. J. Mater. Chem. A. 2016, 4(21), 8233–8241. DOI: 10.1039/C6TA01510G.
  • Ghasemi, S.; Hosseini, S. R.; Asen, P. Preparation of Graphene/nickel-Iron Hexacyanoferrate Coordination Polymer Nanocomposite for Electrochemical Energy Storage. Electrochim. Acta. 2015, 160, 337–346. DOI: 10.1016/j.electacta.2015.02.002.
  • Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A General Metal‐Organic Framework (MOF)‐Derived Selenidation Strategy for in situ Carbon‐Encapsulated Metal Selenides as High‐Rate Anodes for Na‐Ion Batteries. Adv. Funct. Mater. 2018, 28(16), 1707573. DOI: 10.1002/adfm.201707573.
  • Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Metal–Organic Frameworks for Energy Storage: Batteries and Supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381. DOI: 10.1016/j.ccr.2015.09.002.
  • Hu, L.; Chen, Q. Hollow/Porous Nanostructures Derived from Nanoscale Metal–Organic Frameworks Towards High Performance Anodes for Lithium-Ion Batteries. Nanoscale. 2014, 6(3), 1236–1257. DOI: 10.1039/C3NR05192G.
  • Gong, T.; Lou, X.; Gao, E. Q.; Hu, B. Pillared-Layer Metal–Organic Frameworks for Improved Lithium-Ion Storage Performance. ACS Appl. Mater. Interfaces. 2017, 9(26), 21839–21847. DOI: 10.1021/acsami.7b05889.
  • Zhang, Y. Z.; Wang, Y.; Xie, Y. L.; Cheng, T.; Lai, W. Y.; Pang, H.; Huang, W. Porous Hollow Co3O4 with Rhombic Dodecahedral Structures for High-Performance Supercapacitors. Nanoscale. 2014, 6(23), 14354–14359. DOI: 10.1039/C4NR04782F.
  • Shao, J.; Wan, Z.; Liu, H.; Zheng, H.; Gao, T.; Shen, M.; Qu, Q.; Zheng, H. Metal Organic Frameworks-Derived Co3O4 Hollow Dodecahedrons with Controllable Interiors as Outstanding Anodes for Li Storage. J. Mater. Chem. A. 2014, 2(31), 12194–12200. DOI: 10.1039/C4TA01966K.
  • Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons Toward Supercapacitor Applications. Acc. Chem. Res. 2016, 49(12), 2796–2806. DOI: 10.1021/acs.accounts.6b00460.
  • Yilmaz, G.; Yam, K. M.; Zhang, C.; Fan, H. J.; Ho, G. W. In situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance. Adv. Mater. 2017, 29(26), 1606814. DOI: 10.1002/adma.201606814.
  • Zhou, D.; Ni, J.; Li, L. Self-Supported Multicomponent CPO-27 MOF Nanoarrays as High-Performance Anode for Lithium Storage. Nano. Energy. 2019, 57, 711–717. DOI: 10.1016/j.nanoen.2019.01.010.
  • Zou, G.; Hou, H.; Zhao, G.; Ge, P.; Yin, D.; Ji, X. N-Rich Carbon Coated CoSno3 Derived from In Situ Construction of a Co–MOF with Enhanced Sodium Storage Performance. J. Mater. Chem. A. 2018, 6(11), 4839–4847. DOI: 10.1039/C7TA10448K.
  • Xia, S. B.; Yu, S. W.; Yao, L. F.; Li, F. S.; Li, X.; Cheng, F. X.; Shen, X.; Sun, C. K.; Guo, H.; Liu, J. J. Robust Hexagonal Nut-Shaped Titanium (IV) MOF with Porous Structure for Ultra-High Performance Lithium Storage. Electrochim. Acta. 2019, 296, 746–754. DOI: 10.1016/j.electacta.2018.11.135.
  • Cook, J. B.; Kim, H. S.; Yan, Y.; Ko, J. S.; Robbennolt, S.; Dunn, B.; Tolbert, S. H. Mesoporous MoS2 as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li and Na-Ion Charge Storage. Adv. Energy Mater. 2016, 6(9), 1501937. DOI: 10.1002/aenm.201501937.
  • Zhang, F.; Tang, Y.; Liu, H.; Ji, H.; Jiang, C.; Zhang, J.; Zhang, X.; Lee, C. S. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors. ACS Appl. Mater. Interfaces. 2016, 8(7), 4691–4699. DOI: 10.1021/acsami.5b11705.
  • Wang, R.; Jin, D.; Zhang, Y.; Wang, S.; Lang, J.; Yan, X.; Zhang, L. Engineering Metal Organic Framework Derived 3D Nanostructures for High Performance Hybrid Supercapacitors. J. Mater. Chem. A. 2017, 5(1), 292–302. DOI: 10.1039/C6TA09143A.
  • Meng, F.; Fang, Z.; Li, Z.; Xu, W.; Wang, M.; Liu, Y.; Zhang, J.; Wang, W.; Zhao, D.; Guo, X. Porous Co3O4 Materials Prepared by Solid-State Thermolysis of a Novel Co-MOF Crystal and Their Superior Energy Storage Performances for Supercapacitors. J. Mater. Chem. A. 2013, 1(24), 7235–7241. DOI: 10.1039/C3TA11054K.
  • Pang, H.; Shi, Y.; Du, J.; Ma, Y.; Li, G.; Chen, J.; Zhang, J.; Zheng, H.; Yuan, B. Porous Nickel Oxide Microflowers Synthesized by Calcination of Coordination Microflowers and Their Applications as Glutathione Electrochemical Sensor and Supercapacitors. Electrochim. Acta. 2012, 85, 256–262. DOI: 10.1016/j.electacta.2012.08.057.
  • Pang, H.; Gao, F.; Chen, Q.; Liu, R.; Lu, Q. Dendrite-Like Co3O4 Nanostructure and Its Applications in Sensors, Supercapacitors and Catalysis. Dalton Trans. 2012, 41(19), 5862–5868. DOI: 10.1039/C2DT12494G.
  • Pang, H.; Zhang, B.; Du, J.; Chen, J.; Zhang, J.; Li, S. Porous Nickel Oxide Nanospindles with Huge Specific Capacitance and Long-Life Cycle. R.S.C. Adv. 2012, 2(6), 2257–2261. DOI: 10.1039/C2RA00949H.
  • Meng, W.; Chen, W.; Zhao, L.; Huang, Y.; Zhu, M.; Huang, Y.; Fu, Y.; Geng, F.; Yu, J.; Chen, X., et al. Porous Fe3O4/Carbon Composite Electrode Material Prepared from Metal-Organic Framework Template and Effect of Temperature on Its Capacitance. Nano. Energy. 2014, 8, 133–140. DOI: 10.1016/j.nanoen.2014.06.007.
  • Hu, M. L.; Abbasi‐Azad, M.; Habibi, B.; Rouhani, F.; Moghanni‐Bavil‐Olyaei, H.; Liu, K. G.; Morsali, A. Electrochemical Applications of Ferrocene‐Based Coordination Polymers. Chem. Pluschem. 2020, 85(11), 2397–2418. DOI: 10.1002/cplu.202000584.
  • Halls, J. E.; Hernán-Gómez, A.; Burrows, A. D.; Marken, F. Metal–Organic Frameworks Post-Synthetically Modified with Ferrocenyl Groups: Framework Effects on Redox Processes and Surface Conduction. Dalton Trans. 2012, 41(5), 1475–1480. DOI: 10.1039/C1DT10734H.
  • Wei, K. J.; Ni, J.; Liu, Y. Heterobimetallic Metal-Complex Assemblies Constructed from the Flexible Arm-Like Ligand 1, 1′-Bis [(3-Pyridylamino) Carbonyl] Ferrocene: Structural Versatility in the Solid State. Inorg. Chem. 2010, 49(4), 1834–1848. DOI: 10.1021/ic9021855.
  • Carson, I.; Healy, M. R.; Doidge, E. D.; Love, J. B.; Morrison, C. A.; Tasker, P. A. Metal-Binding Motifs of Alkyl and Aryl Phosphinates; Versatile Mono and Polynucleating Ligands. Coord. Chem. Rev. 2017, 335, 150–171. DOI: 10.1016/j.ccr.2016.11.018.
  • Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary Building Units, Nets and Bonding in the Chemistry of Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1257–1283. DOI: 10.1039/B817735J.
  • Oleshkevich, E.; Vina, S. C.; Romero, I.; Choquesillo-Lazarte, D.; Haukka, M.; Teixidor, F. M-Carboranylphosphinate as Versatile Building Blocks to Design All Inorganic Coordination Polymers. Inorg. Chem. 2017, 56(10), 5502–5505. DOI: 10.1021/acs.inorgchem.7b00610.
  • Yang, W.; Wang, H.; Tian, W. G.; Li, J.; Sun, Z. M. The First Family of Actinide Carboxyphosphinates: Two‐And Three‐Dimensional Uranyl Coordination Polymers. Eur. J. Inorg. Chem. 2014, 2014(31), 5378–5384. DOI: 10.1002/ejic.201402592.
  • Costantino, F.; Ienco, A.; Midollini, S.; Orlandini, A.; Sorace, L.; Vacca, A. Copper (II) Complexes with Bridging Diphosphinates–The Effect of the Elongation of the Aliphatic Chain on the Structural Arrangements Around the Metal Centres. Eur. J. Inorg. Chem. 2008, 2008(19), 3046–3055. DOI: 10.1002/ejic.200800203.
  • Hynek, J.; Brázda, P.; Rohlìček, J.; Londesborough, M. G. S.; Demel, J. Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angew. Chem. Int. Ed. 2018, 130(18), 5110–5113. DOI: 10.1002/ange.201800884.
  • Lee, D. Y.; Yoon, S. J.; Shrestha, N. K.; Lee, S. H.; Ahn, H.; Han, S. H. Unusual Energy Storage and Charge Retention in Co-Based Metal–Organic-frameworks. Micropor. Mesopor. Mat. 2012, 153, 163–165. DOI: 10.1016/j.micromeso.2011.12.040.
  • Lee, D. Y.; Shinde, D. V.; Kim, E. K.; Lee, W.; Oh, I. W.; Shrestha, N. K.; Lee, J. K.; Han, S. H. Supercapacitive Property of Metal–Organic-frameworks with Different Pore Dimensions and Morphology. Micropor. Mesopor. Mat. 2013, 171, 53–57. DOI: 10.1016/j.micromeso.2012.12.039.
  • Wang, L.; Shao, D.; Guo, J.; Zhang, S.; Lu, Y. Superstable Porous Co-Coordination Polymer as the Electrode Material for Supercapacitor. J. Solid State Chem. 2019, 277, 630–635. DOI: 10.1016/j.jssc.2019.06.039.
  • Shekurov, R.; Khrizanforov, M.; Ivshin, K.; Miluykov, V.; Budnikova, Y.; Kataeva, O. Supramolecular Architecture of Diammonium Ferrocene-1, 1′-Diyldi (methylphosphinate). J. Organomet. Chem. 2019, 904, 121004. DOI: 10.1016/j.jorganchem.2019.121004.
  • Shekurov, R.; Khrizanforov, M.; Islamov, D.; Gerasimova, T.; Zagidullin, A.; Budnikova, Y.; Miluykov, V. Synthesis, Crystal Structure and Electrochemical Properties of Poly(cadmium 1, 1′-Ferrocenediyl-Bis (H-Phosphinate)). J. Organomet. Chem. 2020, 914, 121233. DOI: 10.1016/j.jorganchem.2020.121233.
  • Shekurov, R. P.; Khrizanforov, M. N.; Budnikova, Y. H.; Khrizanforova, V. V.; Miluykov, V. A.; Kataeva, O. N. Electrochemical Properties of Poly (Manganese 1,1′-Ferrocenediyl-Bis(h-Phosphinate)). Phosphorus Sulfur Silicon Relat. Elem. 2016, 191(11–12), 1551–1552. DOI: 10.1080/10426507.2016.1213255.
  • Shekurov, R. P.; Miluykov, V. A.; Islamov, D. R.; Krivolapov, D. B.; Kataeva, O. N.; Gerasimova, T. P.; Katsyuba, S. A.; Nasybullina, G. R.; Yanilkin, V. V.; Sinyashin, O. G. Synthesis and Structure of Ferrocenylphosphinic Acids. J. Organomet. Chem. 2014, 766, 40–48. DOI: 10.1016/j.jorganchem.2014.04.035.
  • Khrizanforov, M.; Shekurov, R.; Zagidullin, A.; Gerasimova, T.; Ivshin, K.; Kataeva, O.; Miluykov, V. Zwitterionic Form of Ugi Amine H-Phosphinic Acid: Structure and Electrochemical Properties. Electrochem. Commun. 2021, 126, 107019. DOI: 10.1016/j.elecom.2021.107019.
  • Gerasimova, T.; Shekurov, R.; Gilmanova, L.; Laskin, A.; Katsyuba, S.; Kovalenko, V.; Khrizanforov, M.; Milyukov, V.; Sinyashin, O. IR and UV Study of Reversible Water-Induced Structural Transformations of Poly (Manganese 1,1′-Ferrocenediyl-Bis (H-Phosphinate)) and Poly (Cobalt 1,1′-Ferrocenediyl-Bis (H-Phosphinate)). J. Mol. Struct. 2018, 1166, 237–242. DOI: 10.1016/j.molstruc.2018.04.033.
  • Strekalova, S. O.; Shekurov, R. P.; Gilmanova, L. H.; Gerasimova, T. P.; Grinenko, V. V.; Kononov, A. I.; Dolengovski, E. L.; Budnikova, Y. H.; Khrizanforov, M. N. Ferrocene-Containing Coordination Polymers as Way for Preparation of Energy Carriers. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194(4–6), 571–574. DOI: 10.1080/10426507.2018.1543302.
  • Shekurov, R. P.; Gilmanova, L. H.; Khrizanforov, M. N.; Strekalova, S. O.; Budnikova, Y. H.; Gerasimova, T. P.; Katsyuba, S. A.; Miluykov, V. A. Synthesis and Characterization of Poly ([Eu or Dy] 1,1’-Ferrocenediyl-Bis (H-Phosphinates)). Phosphorus Sulfur Silicon Relat. Elem. 2019, 194(4–6), 459–462. DOI: 10.1080/10426507.2018.1539847.
  • Shekurov, R. P.; Khrizanforov, M. N.; Zagidullin, A. A.; Zinnatullin, A. L.; Kholin, K. V.; Ivshin, K. A.; Gerasimova, T. P.; Sirazieva, A. R.; Kataeva, O. N.; Vagizov, F. G., et al. The Phosphinate Group in the Formation of 2D Coordination Polymer with Sm(iii) Nodes: X-Ray Structural, Electrochemical and Mössbauer Study. Int. J. Mol. Sci. 2022, 23(24), 15569. DOI: 10.3390/ijms232415569.
  • Khrizanforova, V.; Shekurov, R.; Miluykov, V.; Khrizanforov, M.; Bon, V.; Kaskel, S.; Gubaidullin, A.; Sinyashin, O.; Budnikova, Y. 3D Ni and Co Redox-Active Metal–Organic Frameworks Based on Ferrocenyl Diphosphinate and 4, 4′-Bipyridine Ligands as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Dalton Trans. 2020, 49(9), 2794–2802. DOI: 10.1039/C9DT04834K.
  • Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. Li2MnO3-Stabilized LiMo2 (M= Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. J. Mater.Chem. 2007, 17(30), 3112–3125. DOI: 10.1039/B702425H.
  • Jiang, H.; Liu, X. C.; Wu, Y.; Shu, Y.; Gong, X.; Ke, F. S.; Deng, H. Metal–Organic Frameworks for High Charge–Discharge Rates in Lithium–Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57(15), 3916–3921. DOI: 10.1002/anie.201712872.
  • Wu, Z.; Xie, J.; Xu, Z. J.; Zhang, S.; Zhang, Q. Recent Progress in Metal–Organic Polymers as Promising Electrodes for Lithium/Sodium Rechargeable Batteries. J. Mater. Chem. 2019, 7(9), 4259–4290. DOI: 10.1039/C8TA11994E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.