Publication Cover
Comments on Inorganic Chemistry
A Journal of Critical Discussion of the Current Literature
Volume 44, 2024 - Issue 3
417
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Separation of Propylene and Propane Using Metal–Organic Frameworks

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Sholl, D. S.; Lively, R. P. Seven Chemical Separations to Change the World. Nature. 2016, 532(7600), 435–437. DOI: 10.1038/532435a.
  • Kim, A.-R.; Yoon, T.-U.; Kim, E.-J.; Yoon, J. W.; Kim, S.-Y.; Yoon, J. W.; Hwang, Y. K.; Chang, J.-S.; Bae, Y.-S. Facile Loading of Cu(i) in MIL-100(fe) Through Redox-Active Fe(ii) Sites and Remarkable Propylene/Propane Separation Performance. Chem. Eng. J. 2018, 331, 777–784. DOI: 10.1016/j.cej.2017.09.016.
  • Yu, L.; Han, X.; Wang, H.; Ullah, S.; Xia, Q.; Li, W.; Li, J.; da Silva, I.; Manuel, P.; Rudić, S., et al. Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene. J. Am. Chem. Soc. 2021, 143(46), 19300–19305. DOI: 10.1021/jacs.1c10423.
  • Li, L.; Lin, R.-B.; Wang, X.; Zhou, W.; Jia, L.; Li, J.; Chen, B. Kinetic Separation of Propylene Over Propane in a Microporous Metal-Organic Framework. Chem. Eng. J. 2018, 354, 977–982. DOI: 10.1016/j.cej.2018.08.108.
  • Liu, T.; Cui, H.; Zhang, X.; Zhang, Z.-Y.; Lin, R.-B.; Liang, B.; Zhang, J.; Li, D.; Chen, B. Doubly Interpenetrated Metal–Organic Framework of Pcu Topology for Selective Separation of Propylene from Propane. ACS Appl. Mater. Interfaces. 2020, 12(43), 48712–48717. DOI: 10.1021/acsami.0c15517.
  • He, Y.; Zhou, W.; Krishna, R.; Chen, B. Microporous Metal–Organic Frameworks for Storage and Separation of Small Hydrocarbons. Chem. Commun. 2012, 48(97), 11813–11831. DOI: 10.1039/C2CC35418G.
  • Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. A Metal-Organic Framework–Based Splitter for Separating Propylene from Propane. Science. 2016, 353(6295), 137–140. (80-.). DOI: 10.1126/science.aaf6323.
  • Liang, B.; Zhang, X.; Xie, Y.; Lin, R.-B.; Krishna, R.; Cui, H.; Li, Z.; Shi, Y.; Wu, H.; Zhou, W., et al. An Ultramicroporous Metal–Organic Framework for High Sieving Separation of Propylene from Propane. J. Am. Chem. Soc. 2020, 142(41), 17795–17801. DOI: 10.1021/jacs.0c09466.
  • Amedi, H. R.; Aghajani, M. Economic Estimation of Various Membranes and Distillation for Propylene and Propane Separation. Ind. Eng. Chem. Res. 2018, 57(12), 4366–4376. DOI: 10.1021/acs.iecr.7b04169.
  • Bottenus, D.; Caldwell, D.; Fischer, C.; Humble, P.; Powell, M.; Lucke, R.; TeGrotenhuis, W. Process Intensification of Distillation Using a Microwick Technology to Demonstrate Separation of Propane and Propylene. AIChE. J. 2018, 64(10), 3690–3699. DOI: 10.1002/aic.16325.
  • Li, J.; Lian, H.; Wei, K.; Song, E.; Pan, Y.; Xing, W. Synthesis of Tubular ZIF-8 Membranes for Propylene/Propane Separation Under High-Pressure. J. Memb. Sci. 2020, 595, 117503. DOI: 10.1016/j.memsci.2019.117503.
  • Park, J.; Kim, K.; Shin, J.-W.; Tak, K.; Park, Y.-K. Performance Study of Multistage Membrane and Hybrid Distillation Processes for Propylene/Propane Separation. Can. J. Chem. Eng. 2017, 95(12), 2390–2397. DOI: 10.1002/cjce.22914.
  • Park, J.; Kim, S.-J.; Lee, I.; Shin, J.-W.; Park, Y.-I.; Kim, K.; Park, Y.-K. Techno-Economics and Sensitivity Analysis of Hybrid Process Combining Carbon Molecular Sieve Membrane and Distillation Column for Propylene/Propane Separation. Chem. Eng. Res. Des. 2021, 172, 204–214. DOI: 10.1016/j.cherd.2021.06.009.
  • Yao, S.; Liu, Q.; Zhu, Q.; Li, Y.; Ueda, W.; Zhang, Z. Investigation of the Synthesis of Zeolitic Vanadotungstate and Its Use in the Separation of Propylene/Propane at High Temperature and Humidity. Inorg. Chem. 2022, 61(26), 10133–10143. DOI: 10.1021/acs.inorgchem.2c01238.
  • Pan, Y.; Li, T.; Lestari, G.; Lai, Z. Effective Separation of Propylene/Propane Binary Mixtures by ZIF-8 Membranes. J. Memb. Sci. 2012, 390391, 93–98. DOI: 10.1016/j.memsci.2011.11.024.
  • Alcheikhhamdon, Y.; Pinnau, I.; Hoorfar, M.; Chen, B. Propylene - Propane Separation Using Zeolitic-Imidazolate Framework (ZIF-8) Membranes: Process Techno-Commercial Evaluation. J. Memb. Sci. 2019, 591, 117252. DOI: 10.1016/j.memsci.2019.117252.
  • Chen, X. Y.; Xiao, A.; Rodrigue, D. Polymer-Based Membranes for Propylene/Propane Separation. Sep. Purif. Rev. 2022, 51(1), 130–142. DOI: 10.1080/15422119.2021.1874415.
  • Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Diffusive Separation of Propylene/Propane with ZIF-8 Membranes. J. Memb. Sci. 2014, 450, 215–223. DOI: 10.1016/j.memsci.2013.09.012.
  • Lee, M. J.; Kwon, H. T.; Jeong, H.-K. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange. Angew. Chemie. Int. Ed. 2018, 57(1), 156–161. DOI: 10.1002/anie.201708924.
  • Park, S.; Jeong, H.-K. Transforming Polymer Hollow Fiber Membrane Modules to Mixed-Matrix Hollow Fiber Membrane Modules for Propylene/Propane Separation. J. Memb. Sci. 2020, 612, 118429. DOI: 10.1016/j.memsci.2020.118429.
  • Chen, Y.; Qiao, Z.; Lv, D.; Duan, C.; Sun, X.; Wu, H.; Shi, R.; Xia, Q.; Li, Z. Efficient Adsorptive Separation of C3H6 Over C3H8 on Flexible and Thermoresponsive CPL-1. Chem. Eng. J. 2017, 328, 360–367. DOI: 10.1016/j.cej.2017.07.044.
  • Ding, Q.; Zhang, S. Recent Advances in the Development of Metal–Organic Frameworks for Propylene and Propane Separation. Energy. Fuels. 2022, 36(14), 7337–7361. DOI: 10.1021/acs.energyfuels.2c01427.
  • Chen, Y.; Wu, H.; Yu, L.; Tu, S.; Wu, Y.; Li, Z.; Xia, Q. Separation of Propylene and Propane with Pillar-Layer Metal–Organic Frameworks by Exploiting Thermodynamic-Kinetic Synergetic Effect. Chem. Eng. J. 2022, 431, 133284. DOI: 10.1016/j.cej.2021.133284.
  • Sen, S.; Hosono, N.; Zheng, J.-J.; Kusaka, S.; Matsuda, R.; Sakaki, S.; Kitagawa, S. Cooperative Bond Scission in a Soft Porous Crystal Enables Discriminatory Gate Opening for Ethylene Over Ethane. J. Am. Chem. Soc. 2017, 139(50), 18313–18321. DOI: 10.1021/jacs.7b10110.
  • Koudelková, E.; Ghrib, Y.; de Oliveira Ramos, F. S.; Čičmanec, P.; Bulánek, R. Adsorption and Separation of the C3 Hydrocarbons on Cationic FER Zeolites: Effect of Dual Sites Existence. Microporous. Mesoporous. Mater. 2019, 279, 416–422. DOI: 10.1016/j.micromeso.2019.01.032.
  • Sala, A.; Pérez-Botella, E.; Jordá, J. L.; Cantín, A.; Rey, F.; Valencia, S. ITQ-69: A Germanium-Containing Zeolite and Its Synthesis, Structure Determination, and Adsorption Properties. Angew. Chemie. Int. Ed. 2021, 60(21), 11745–11750. DOI: 10.1002/anie.202100822.
  • Sakai, M.; Fujimaki, N.; Sasaki, Y.; Yasuda, N.; Seshimo, M.; Matsukata, M. Preferential Adsorption of Propylene Over Propane on a Ag-Exchanged X-Type Zeolite Membrane. ACS Appl. Mater. Interfaces. 2020, 12(21), 24086–24092. DOI: 10.1021/acsami.0c01461.
  • Atanga, M. A.; Rezaei, F.; Jawad, A.; Fitch, M.; Rownaghi, A. A. Oxidative Dehydrogenation of Propane to Propylene with Carbon Dioxide. Appl. Catal. B. 2018, 220, 429–445. DOI: 10.1016/j.apcatb.2017.08.052.
  • Liu, J.; Liu, Y.; Kayrak Talay, D.; Calverley, E.; Brayden, M.; Martinez, M. A New Carbon Molecular Sieve for Propylene/Propane Separations. Carbon. 2015, 85, 201–211. DOI: 10.1016/j.carbon.2014.12.089.
  • Campo, M. C.; Ribeiro, A. M.; Ferreira, A.; Santos, J. C.; Lutz, C.; Loureiro, J. M.; Rodrigues, A. E. New 13X Zeolite for Propylene/Propane Separation by Vacuum Swing Adsorption. Sep. Purif. Technol. 2013, 103, 60–70. DOI: 10.1016/j.seppur.2012.10.009.
  • Grande, C. A.; Gascon, J.; Kapteijn, F.; Rodrigues, A. E. Propane/Propylene Separation with Li-Exchanged Zeolite 13X. Chem. Eng. J. 2010, 160(1), 207–214. DOI: 10.1016/j.cej.2010.03.044.
  • Maghsoudi, H.; Abdi, H.; Aidani, A. Temperature- and Pressure-Dependent Adsorption Equilibria and Diffusivities of Propylene and Propane in Pure-Silica Si-CHA Zeolite. Ind. Eng. Chem. Res. 2020, 59(4), 1682–1692. DOI: 10.1021/acs.iecr.9b05451.
  • Gi Min, J.; Christian Kemp, K.; Kencana, K. S.; Mukti, R. R.; Bong Hong, S. Dealuminated Cs-ZK-5 Zeolite for Propylene/Propane Separation. Chem. Eng. J. 2021, 413, 127422. DOI: 10.1016/j.cej.2020.127422.
  • Kim, J.-J.; Hong, S.-H.; Park, D.; Chung, K.; Lee, C.-H. Separation of Propane and Propylene by Desorbent Swing Adsorption Using Zeolite 13X and Carbon Dioxide. Chem. Eng. J. 2021, 410, 128276. DOI: 10.1016/j.cej.2020.128276.
  • Liu, J.; Calverley, E. M.; McAdon, M. H.; Goss, J. M.; Liu, Y.; Andrews, K. C.; Wolford, T. D.; Beyer, D. E.; Han, C. S.; Anaya, D. A., et al. New Carbon Molecular Sieves for Propylene/Propane Separation with High Working Capacity and Separation Factor. Carbon. 2017, 123, 273–282. DOI: 10.1016/j.carbon.2017.07.068.
  • Min, J. G.; Kemp, K. C.; Hong, S. B. Propylene/Propane Separation on a Ferroaluminosilicate Levyne Zeolite. Microporous. Mesoporous. Mater. 2020, 294, 109833. DOI: 10.1016/j.micromeso.2019.109833.
  • Yamane, Y.; Miyahara, M. T.; Tanaka, H. High-Performance Carbon Molecular Sieves for the Separation of Propylene and Propane. ACS Appl. Mater. Interfaces. 2022, 14(15), 17878–17888. DOI: 10.1021/acsami.1c21305.
  • Zeng, H.; Xie, M.; Wang, T.; Wei, R.-J.; Xie, X.-J.; Zhao, Y.; Lu, W.; Li, D. Orthogonal-Array Dynamic Molecular Sieving of Propylene/Propane Mixtures. Nature. 2021, 595(7868), 542–548. DOI: 10.1038/s41586-021-03627-8.
  • Wang, H.; Dong, X.; Colombo, V.; Wang, Q.; Liu, Y.; Liu, W.; Wang, X.-L.; Huang, X.-Y.; Proserpio, D. M.; Sironi, A., et al. Tailor-Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. Adv. Mater. 2018, 30(49), 1805088. DOI: 10.1002/adma.201805088.
  • Bachman, J. E.; Kapelewski, M. T.; Reed, D. A.; Gonzalez, M. I.; Long, J. R. M2(m-Dobdc) (M = Mn, Fe, Co, Ni) Metal–Organic Frameworks as Highly Selective, High-Capacity Adsorbents for Olefin/Paraffin Separations. J. Am. Chem. Soc. 2017, 139(43), 15363–15370. DOI: 10.1021/jacs.7b06397.
  • Bae, Y.-S.; Lee, C. Y.; Kim, K. C.; Farha, O. K.; Nickias, P.; Hupp, J. T.; Nguyen, S. T.; Snurr, R. Q. High Propene/Propane Selectivity in Isostructural Metal–Organic Frameworks with High Densities of Open Metal Sites. Angew. Chemie. Int. Ed. 2012, 51(8), 1857–1860. DOI: 10.1002/anie.201107534.
  • Zhang, Z.; Ye, Y.; Xiang, S.; Chen, B. Exploring Multifunctional Hydrogen-Bonded Organic Framework Materials. Acc. Chem. Res. 2022, 55(24), 3752–3766. DOI: 10.1021/acs.accounts.2c00686.
  • Yang, W.; Wang, J.; Wang, H.; Bao, Z.; Zhao, J. C.-G.; Chen, B. Highly Interpenetrated Robust Microporous Hydrogen-Bonded Organic Framework for Gas Separation. Cryst. Growth Des. 2017, 17(11), 6132–6137. DOI: 10.1021/acs.cgd.7b01322.
  • Yang, J.; Wang, J.; Hou, B.; Huang, X.; Wang, T.; Bao, Y.; Hao, H. Porous Hydrogen-Bonded Organic Frameworks (HOFs): From Design to Potential Applications. Chem. Eng. J. 2020, 399, 125873. DOI: 10.1016/j.cej.2020.125873.
  • Wang, J.; Li, J.; Gao, M.; Zhang, X. Self-Assembling Covalent Organic Framework Functionalized Magnetic Graphene Hydrophilic Biocomposites as an Ultrasensitive Matrix for N-Linked Glycopeptide Recognition. Nanoscale. 2017, 9(30), 10750–10756. DOI: 10.1039/C7NR02932B.
  • Liu, Y.; Zhou, W.; Teo, W. L.; Wang, K.; Zhang, L.; Zeng, Y.; Zhao, Y. Covalent-Organic-Framework-Based Composite Materials. Chem. 2020, 6(12), 3172–3202. DOI: 10.1016/j.chempr.2020.08.021.
  • Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal–Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49(3), 483–493. DOI: 10.1021/acs.accounts.5b00530.
  • Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Emerging Multifunctional Metal–Organic Framework Materials. Adv. Mater. 2016, 28(40), 8819–8860. DOI: 10.1002/adma.201601133.
  • Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Adv. Energy Mater. 2017, 7(4), 1601296. DOI: 10.1002/aenm.201601296.
  • Gao, M.-Y.; Bezrukov, A. A.; Song, B.-Q.; He, M.; Nikkhah, S. J.; Wang, S.-Q.; Kumar, N.; Darwish, S.; Sensharma, D.; Deng, C., et al. Highly Productive C3H4/C3H6 Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material. J. Am. Chem. Soc. 2023, 145(21), 11837–11845. DOI: 10.1021/jacs.3c03505.
  • Sahoo, R.; Mondal, S.; Chand, S.; Das, M. C. Highly Robust Metal–Organic Framework for Efficiently Catalyzing Knoevenagel Condensation and the Strecker Reaction Under Solvent-Free Conditions. Inorg. Chem. 2023, 62(32), 12989–13000. DOI: 10.1021/acs.inorgchem.3c01767.
  • Guo, T.; Mo, K.; Zhang, N.; Xiao, L.; Liu, W.; Wen, L. Embedded Homogeneous Ultra-Fine Pd Nanoparticles within MOF Ultra-Thin Nanosheets for Heterogeneous Catalysis. Dalt. Trans. 2021, 50(5), 1774–1779. DOI: 10.1039/D0DT03877F.
  • Zhang, X.; Yang, C.; An, P.; Cui, C.; Ma, Y.; Liu, H.; Wang, H.; Yan, X.; Li, G.; Tang, Z. Creating Enzyme-Mimicking Nanopockets in Metal-Organic Frameworks for Catalysis. Sci. Adv. 2023, 8(40), eadd5678. DOI: 10.1126/sciadv.add5678.
  • Zhang, Y.; Guo, J.; Shi, L.; Zhu, Y.; Hou, K.; Zheng, Y.; Tang, Z. Tunable Chiral Metal Organic Frameworks Toward Visible Light–Driven Asymmetric Catalysis. Sci. Adv. 2023, 3(8), e1701162. DOI: 10.1126/sciadv.1701162.
  • Demakov, P. A.; Dybtsev, D. N.; Fedin, V. P. Diastereoselective Guest-Shape Dependent [2+2]-Photodimerization of 2-Cyclopenten-1-One Trapped within a Metal–Organic Framework. Chem. Commun. 2023, 59(61), 9380–9383. DOI: 10.1039/D3CC02162A.
  • Bonneau, M.; Lavenn, C.; Ginet, P.; Otake, K.; Kitagawa, S. Upscale Synthesis of a Binary Pillared Layered MOF for Hydrocarbon Gas Storage and Separation. Green. Chem. 2020, 22(3), 718–724. DOI: 10.1039/C9GC03561C.
  • Colorado-Peralta, R.; María Rivera-Villanueva, J.; Manuel Mora-Hernández, J.; Morales-Morales, D.; Ángel Alfonso-Herrera, L. An Overview of the Role of Supramolecular Interactions in Gas Storage Using MOFs. Polyhedron. 2022, 224, 115995. DOI: 10.1016/j.poly.2022.115995.
  • Daglar, H.; Gulbalkan, H. C.; Avci, G.; Aksu, G. O.; Altundal, O. F.; Altintas, C.; Erucar, I.; Keskin, S. Effect of Metal–Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angew. Chemie. Int. Ed. 2021, 60(14), 7828–7837. DOI: 10.1002/anie.202015250.
  • Fan, W.; Wang, X.; Xu, B.; Wang, Y.; Liu, D.; Zhang, M.; Shang, Y.; Dai, F.; Zhang, L.; Sun, D. Amino-Functionalized MOFs with High Physicochemical Stability for Efficient Gas Storage/Separation{,} Dye Adsorption and Catalytic Performance. J. Mater. Chem. A. 2018, 6(47), 24486–24495. DOI: 10.1039/C8TA07839D.
  • Gulati, A.; Kakkar, R. DFT Studies on Storage and Adsorption Capacities of Gases on MOFs. Phys. Sci. Rev. 2018, 3(8), 20170196. DOI: 10.1515/psr-2017-0196.
  • Kovalenko, K. A.; Potapov, A. S.; Fedin, V. P. Micro- and Mesoporous Metal-Organic Coordination Polymers for Separation of Hydrocarbons. Russ. Chem. Rev. 2022, 91(4), RCR5026. RCR5026. DOI: 10.1070/RCR5026.
  • Fard, Z. H.; Kalinovskyy, Y.; Spasyuk, D. M.; Blight, B. A.; Shimizu, G. K. H. Alkaline-Earth Phosphonate MOFs with Reversible Hydration-Dependent Fluorescence. Chem. Commun. 2016, 52(87), 12865–12868. DOI: 10.1039/C6CC06490F.
  • Gao, X.; Cui, R.; Ji, G.; Liu, Z. Size and Surface Controllable Metal–Organic Frameworks (MOFs) for Fluorescence Imaging and Cancer Therapy. Nanoscale. 2018, 10(13), 6205–6211. DOI: 10.1039/C7NR08892B.
  • Hou, Y.; Liu, L.; Zhang, Z.; Sun, J.; Zhang, Y.; Jiang, J. S. Synthesis, Crystal Structures, and Fluorescence Properties of Porphyrin Alkaline Earth MOFs. Inorg. Chem. Commun. 2018, 95, 36–39. DOI: 10.1016/j.inoche.2018.07.005.
  • Li, J.; He, Y.; Wang, L.; Li, G.; Zou, Y.; Yan, Y.; Li, D.; Shi, X.; Song, Z.; Shi, X. Construction of Fluorescence Active MOFs with Symmetrical and Conformationally Rigid N-2-Aryl-Triazole Ligands. R.S.C. Adv. 2020, 10(68), 41921–41925. DOI: 10.1039/D0RA09305J.
  • Zhao, B.; Yang, Q.; Wang, J.-S.; Xie, F.-Y.; Yu, H.-Y.; Li, Y.; Ma, Y.-X.; Ruan, W.-J. An Anionic-Ligand Installed Pyrene-Based MOF for the Fluorescence Detection of Paraquat. New. J. Chem. 2021, 45(9), 4401–4407. DOI: 10.1039/D0NJ05866A.
  • Zhao, Y.-T.; Chen, X.-X.; Jiang, W.-L.; Li, Y.; Fei, J.; Li, C.-Y. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis. ACS Appl. Mater. Interfaces. 2020, 12(42), 47840–47847. DOI: 10.1021/acsami.0c13003.
  • Sahoo, R.; Mondal, S.; Chand, S.; Manna, A. K.; Das, M. C. A Water-Stable Cationic SIFSIX MOF for Luminescent Probing of Cr2O72− via Single-Crystal to Single-Crystal Transformation. Small. 2023. 2304581. n/a (n/a), DOI: 10.1002/smll.202304581.
  • Chernikova, V.; Yassine, O.; Shekhah, O.; Eddaoudi, M.; Salama, K. N. Highly Sensitive and Selective SO2 MOF Sensor: The Integration of MFM-300 MOF as a Sensitive Layer on a Capacitive Interdigitated Electrode. J. Mater. Chem. A. 2018, 6(14), 5550–5554. DOI: 10.1039/C7TA10538J.
  • Iacomi, P.; Gulcay-Ozcan, E.; Pires Conti, P.; Biswas, S.; Steunou, N.; Maurin, G.; Rioland, G.; Devautour-Vinot, S. MIL-101(cr) MOF as an Effective Siloxane Sensor. ACS Appl. Mater. Interfaces. 2022, 14(15), 17531–17538. DOI: 10.1021/acsami.2c02607.
  • Yang, G.-L.; Jiang, X.-L.; Xu, H.; Zhao, B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small. 2021, 17(22), 2005327. DOI: 10.1002/smll.202005327.
  • Gustafson, J. A.; Wilmer, C. E. Optimizing Information Content in MOF Sensor Arrays for Analyzing Methane-Air Mixtures. Sens. Actuators B Chem. 2018, 267, 483–493. DOI: 10.1016/j.snb.2018.04.049.
  • Zhao, H.; Ni, J.; Zhang, J.-J.; Liu, S.-Q.; Sun, Y.-J.; Zhou, H.; Li, Y.-Q.; Duan, C.-Y. A Trichromatic MOF Composite for Multidimensional Ratiometric Luminescent Sensing. Chem. Sci. 2018, 9(11), 2918–2926. DOI: 10.1039/C8SC00021B.
  • Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and Photophysics of MOFs: Steps Towards MOF-Based Sensing Enhancements. Chem. Soc. Rev. 2018, 47(13), 4710–4728. DOI: 10.1039/C7CS00861A.
  • Yu, X.; Ryadun, A. A.; Pavlov, D. I.; Guselnikova, T. Y.; Potapov, A. S.; Fedin, V. P. Highly Luminescent Lanthanide Metal‐Organic Frameworks with Tunable Color for Nanomolar Detection of Iron(iii), Ofloxacin and Gossypol and Anti‐Counterfeiting Applications. Angew. Chemie. Int. Ed. 2023, 62(35), e202306680. DOI: 10.1002/anie.202306680.
  • Efimova, A. S.; Alekseevskiy, P. V.; Timofeeva, M. V.; Kenzhebayeva, Y. A.; Kuleshova, A. O.; Koryakina, I. G.; Pavlov, D. I.; Sukhikh, T. S.; Potapov, A. S.; Shipilovskikh, S. A., et al. Exfoliation of 2D Metal-Organic Frameworks: Toward Advanced Scalable Materials for Optical Sensing. Small Methods 2023, n/a (n/a). 2300752. DOI: 10.1002/smtd.202300752
  • Sahoo, R.; Pal, S. C.; Das, M. C. Solid-State Proton Conduction Driven by Coordinated Water Molecules in Metal–Organic Frameworks and Coordination Polymers. Acs. Energy. Lett. 2022, 7(12), 4490–4500. DOI: 10.1021/acsenergylett.2c02275.
  • Li, H.; Li, L.; Lin, R.-B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B. Porous Metal-Organic Frameworks for Gas Storage and Separation: Status and Challenges. EnergyChem. 2019, 1(1), 100006. DOI: 10.1016/j.enchem.2019.100006.
  • Lin, R.-B.; Zhang, Z.; Chen, B. Achieving High Performance Metal–Organic Framework Materials Through Pore Engineering. Acc. Chem. Res. 2021, 54(17), 3362–3376. DOI: 10.1021/acs.accounts.1c00328.
  • Lin, R.-B.; Xiang, S.; Zhou, W.; Chen, B. Microporous Metal-Organic Framework Materials for Gas Separation. Chem. 2020, 6(2), 337–363. DOI: 10.1016/j.chempr.2019.10.012.
  • Liu, P.; Chen, K.; Chen, Y.; Wang, X.; Yang, J.; Li, L.; Li, J. Linker Micro-Regulation of a Hofmann-Based Metal–Organic Framework for Efficient Propylene/Propane Separation. Inorg. Chem. Front. 2022, 9(6), 1082–1090. DOI: 10.1039/D1QI01562A.
  • Chen, Y.; Qiao, Z.; Wu, H.; Lv, D.; Shi, R.; Xia, Q.; Zhou, J.; Li, Z. An Ethane-Trapping MOF PCN-250 for Highly Selective Adsorption of Ethane Over Ethylene. Chem. Eng. Sci. 2018, 175, 110–117. DOI: 10.1016/j.ces.2017.09.032.
  • Chen, Y.; Wu, H.; Lv, D.; Shi, R.; Chen, Y.; Xia, Q.; Li, Z. Highly Adsorptive Separation of Ethane/Ethylene by an Ethane-Selective MOF MIL-142A. Ind. Eng. Chem. Res. 2018, 57(11), 4063–4069. DOI: 10.1021/acs.iecr.7b05260.
  • Zhang, J.; Liu, Z.; Liu, H.; Xu, F.; Li, Z.; Wang, X. Preferential Adsorption Performance of Ethane in a Robust Nickel-Based Metal–Organic Framework for Separating Ethane from Ethylene. ACS Omega. 2022, 7(9), 7648–7654. DOI: 10.1021/acsomega.1c06309.
  • Lysova, A. A.; Samsonenko, D. G.; Dorovatovskii, P. V.; Lazarenko, V. A.; Khrustalev, V. N.; Kovalenko, K. A.; Dybtsev, D. N.; Fedin, V. P. Tuning the Molecular and Cationic Affinity in a Series of Multifunctional Metal–Organic Frameworks Based on Dodecanuclear Zn(ii) Carboxylate Wheels. J. Am. Chem. Soc. 2019, 141(43), 17260–17269. DOI: 10.1021/jacs.9b08322.
  • Lysova, A. A.; Samsonenko, D. G.; Kovalenko, K. A.; Nizovtsev, A. S.; Dybtsev, D. N.; Fedin, V. P. A Series of Mesoporous Metal-Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane Over Ethylene Adsorption Selectivity. Angew. Chem. Int. Ed. 2020, 59(46), 20561–20567. DOI: 10.1002/anie.202008132.
  • Yu, C.; Guo, Z.; Yang, L.; Cui, J.; Chen, S.; Bo, Y.; Suo, X.; Gong, Q.; Zhang, S.; Cui, X., et al. A Robust Metal-Organic Framework with Scalable Synthesis and Optimal Adsorption and Desorption for Energy-Efficient Ethylene Purification. Angew. Chemie. Int. Ed. 2023, 62(16), e202218027.
  • Wang, J.-W.; Fan, S.-C.; Li, H.-P.; Bu, X.; Xue, Y.-Y.; Zhai, Q.-G. De-Linker-Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C2H2/C2H4 and C2H2/CO2 Separations in Metal–Organic Frameworks. Angew. Chemie. Int. Ed. 2023, 62(10), e202217839. DOI: 10.1002/anie.202217839.
  • Zhang, Q.; Zhou, L.; Liu, P.; Li, L.; Yang, S.-Q.; Li, Z.-F.; Hu, T.-L. Integrating Tri-Mural Nanotraps into a Microporous Metal-Organic Framework for C2H2/CO2 and C2H2/C2H4 Separation. Sep. Purif. Technol. 2022, 296, 121404. DOI: 10.1016/j.seppur.2022.121404.
  • Thakkar, J.; Guo, W. K.; Janik, M. J.; Zhang, X. Selective Adsorption of Butenes Over Butanes on Isoreticular Ni-IRMOF-74-I and Ni-IRMOF-74-II. R.S.C. Adv. 2022, 12(32), 20599–20602. DOI: 10.1039/D2RA00817C.
  • Wang, L.; Xue, W.; Zhu, H.; Guo, X.; Huang, H.; Zhong, C. Stepwise Engineering the Pore Aperture of a Cage-Like MOF for the Efficient Separation of Isomeric C4 Paraffins Under Humid Conditions. Angew. Chemie. Int. Ed. 2023, 62(11), e202218596. DOI: 10.1002/anie.202218596.
  • Lal, B.; Idrees, K. B.; Xie, H.; Smoljan, C. S.; Shafaie, S.; Islamoglu, T.; Farha, O. K. Pore Aperture Control Toward Size-Exclusion-Based Hydrocarbon Separations. Angew. Chemie. Int. Ed. 2023, 62(16), e202219053. DOI: 10.1002/anie.202219053.
  • Lin, Y.; Yu, L.; Ullah, S.; Li, X.; Wang, H.; Xia, Q.; Thonhauser, T.; Li, J. Temperature-Programmed Separation of Hexane Isomers by a Porous Calcium Chloranilate Metal-Organic Framework. Angew. Chemie. Int. Ed. 2022, 61(50), e202214060. DOI: 10.1002/anie.202214060.
  • Zhang, Z.; Peh, S. B.; Kang, C.; Yu, K.; Zhao, D. Efficient Splitting of Alkane Isomers by a Bismuth-Based Metal-Organic Framework with Auxetic Reentrant Pore Structures. Angew. Chemie. Int. Ed. 2022, 61(47), e202211808. DOI: 10.1002/anie.202211808.
  • Huang, W.; Jiang, J.; Wu, D.; Xu, J.; Xue, B.; Kirillov, A. M. A Highly Stable Nanotubular MOF Rotator for Selective Adsorption of Benzene and Separation of Xylene Isomers. Inorg. Chem. 2015, 54(22), 10524–10526. DOI: 10.1021/acs.inorgchem.5b01581.
  • Zhao, Y.; Zhao, H.; Liu, D. Selective Adsorption and Separation of O-Xylene Using an Aluminum-Based Metal–Organic Framework. Ind. Eng. Chem. Res. 2021, 60(47), 17143–17149. DOI: 10.1021/acs.iecr.1c03049.
  • Lysova, A. A.; Kovalenko, K. A.; Dybtsev, D. N.; Klyamkin, S. N.; Berdonosova, E. A.; Fedin, V. P. Hydrocarbon Adsorption in a Series of Mesoporous Metal-Organic Frameworks. Microporous. Mesoporous Mater. 2021, 328, 111477. DOI: https://doi.org/10.1016/j.micromeso.2021.111477.
  • Sapianik, A. A.; Dudko, E. R.; Kovalenko, K. A.; Barsukova, M. O.; Samsonenko, D. G.; Dybtsev, D. N.; Fedin, V. P. Metal–Organic Frameworks for Highly Selective Separation of Xylene Isomers and Single-Crystal X-Ray Study of Aromatic Guest–Host Inclusion Compounds. ACS Appl. Mater. Interfaces. 2021, 13(12), 14768–14777. DOI: 10.1021/acsami.1c02812.
  • Zhao, Y.-J.; Tang, W.-Q.; Wang, X.-W.; Zhao, H.-F.; Gu, Z.-Y.; Yang, Q.; Liu, D. Isomer Recognition by Dynamic Guest-Adaptive Ligand Rotation in a Metal–Organic Framework with Local Flexibility. Chem. Sci. 2022, 13(40), 11896–11903. DOI: 10.1039/D2SC03923K.
  • Hu, L.; Wu, W.; Gong, L.; Zhu, H.; Jiang, L.; Hu, M.; Lin, D.; Yang, K. A Novel Aluminum-Based Metal-Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angew. Chemie. Int. Ed. 2023, 62(12), e202215296. DOI: 10.1002/anie.202215296.
  • Xu, H.; He, Y.; Zhang, Z.; Xiang, S.; Cai, J.; Cui, Y.; Yang, Y.; Qian, G.; Chen, B. A Microporous Metal–Organic Framework with Both Open Metal and Lewis Basic Pyridyl Sites for Highly Selective C2H2/CH4 and C2H2/CO2 Gas Separation at Room Temperature. J. Mater. Chem. A. 2013, 1(1), 77–81. DOI: 10.1039/C2TA00155A.
  • Zhang, J.-P.; Zhu, A.-X.; Lin, R.-B.; Qi, X.-L.; Chen, X.-M. Pore Surface Tailored SOD-Type Metal-Organic Zeolites. Adv. Mater. 2011, 23(10), 1268–1271. DOI: 10.1002/adma.201004028.
  • Rao, X.; Cai, J.; Yu, J.; He, Y.; Wu, C.; Zhou, W.; Yildirim, T.; Chen, B.; Qian, G. A Microporous Metal–Organic Framework with Both Open Metal and Lewis Basic Pyridyl Sites for High C2H2 and CH4 Storage at Room Temperature. Chem. Commun. 2013, 49(60), 6719–6721. DOI: 10.1039/C3CC41866A.
  • Liu, K.; Ma, D.; Li, B.; Li, Y.; Yao, K.; Zhang, Z.; Han, Y.; Shi, Z. High Storage Capacity and Separation Selectivity for C2 Hydrocarbons Over Methane in the Metal–Organic Framework Cu–TDPAT. J. Mater. Chem. A. 2014, 2(38), 15823–15828. DOI: 10.1039/C4TA03656E.
  • Li, J.; Chen, S.; Jiang, L.; Wu, D.; Li, Y. Pore Space Partitioning of Metal–Organic Framework for C2Hx Separation from Methane. Inorg. Chem. 2019, 58(9), 5410–5413. DOI: 10.1021/acs.inorgchem.9b00550.
  • Das, M. C.; Xu, H.; Wang, Z.; Srinivas, G.; Zhou, W.; Yue, Y.-F.; Nesterov, V. N.; Qian, G.; Chen, B. A Zn4O-Containing Doubly Interpenetrated Porous Metal–Organic Framework for Photocatalytic Decomposition of Methyl Orange. Chem. Commun. 2011, 47(42), 11715–11717. DOI: 10.1039/C1CC12802G.
  • Das, M. C.; Xu, H.; Xiang, S.; Zhang, Z.; Arman, H. D.; Qian, G.; Chen, B. A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chem. – A Eur. J. 2011, 17(28), 7817–7822. DOI: 10.1002/chem.201100350.
  • He, Y.; Zhang, Z.; Xiang, S.; Wu, H.; Fronczek, F. R.; Zhou, W.; Krishna, R.; O’Keeffe, M.; Chen, B. High Separation Capacity and Selectivity of C2 Hydrocarbons Over Methane within a Microporous Metal–Organic Framework at Room Temperature. Chem. Eur. J. 2012, 18(7), 1901–1904. DOI: 10.1002/chem.201103927.
  • Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(ii) Coordination Sites. Science. 2012, 335(6076), 1606–1610. (80-.). DOI: 10.1126/science.1217544.
  • Sahoo, R.; Chand, S.; Mondal, M.; Pal, A.; Pal, S. C.; Rana, M. K.; Das, M. C. A “Thermodynamically Stable” 2D Nickel Metal–Organic Framework Over a Wide PH Range with Scalable Preparation for Efficient C2s Over C1 Hydrocarbon Separations. Chem. – A Eur. J. 2020, 26(55), 12624–12631. DOI: 10.1002/chem.202001611.
  • Duan, J.; Higuchi, M.; Horike, S.; Foo, M. L.; Rao, K. P.; Inubushi, Y.; Fukushima, T.; Kitagawa, S. High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity in a Chemically Robust Porous Coordination Polymer. Adv. Funct. Mater. 2013, 23(28), 3525–3530. DOI: 10.1002/adfm.201203288.
  • Huang, Y.-L.; Qiu, P.-L.; Zeng, H.; Liu, H.; Luo, D.; Li, Y. Y.; Lu, W.; Li, D. Tuning the C2/C1 Hydrocarbon Separation Performance in a BioMof by Surface Functionalization. Eur. J. Inorg. Chem. 2019, 2019(39–40), 4205–4210. DOI: 10.1002/ejic.201900551.
  • Li, H.-P.; Dou, Z.-D.; Wang, Y.; Xue, Y. Y.; Li, Y. P.; Hu, M.-C.; Li, S.-N.; Jiang, Y.-C.; Zhai, Q.-G. Tuning the Pore Surface of an Ultramicroporous Framework for Enhanced Methane and Acetylene Purification Performance. Inorg. Chem. 2020, 59(22), 16725–16736. DOI: 10.1021/acs.inorgchem.0c02713.
  • Huang, Y.; Lin, Z.; Fu, H.; Wang, F.; Shen, M.; Wang, X.; Cao, R. Porous Anionic Indium–Organic Framework with Enhanced Gas and Vapor Adsorption and Separation Ability. ChemSuschem. 2014, 7(9), 2647–2653. DOI: 10.1002/cssc.201402206.
  • Han, Y.; Zheng, H.; Liu, K.; Wang, H.; Huang, H.; Xie, L.-H.; Wang, L.; Li, J.-R. In-Situ Ligand Formation-Driven Preparation of a Heterometallic Metal–Organic Framework for Highly Selective Separation of Light Hydrocarbons and Efficient Mercury Adsorption. ACS Appl. Mater. Interfaces. 2016, 8(35), 23331–23337. DOI: 10.1021/acsami.6b08397.
  • Li, L.; Wang, X.; Liang, J.; Huang, Y.; Li, H.; Lin, Z.; Cao, R. Water-Stable Anionic Metal–Organic Framework for Highly Selective Separation of Methane from Natural Gas and Pyrolysis Gas. ACS Appl. Mater. Interfaces. 2016, 8(15), 9777–9781. DOI: 10.1021/acsami.6b00706.
  • Sun, D.; Ma, S.; Ke, Y.; Petersen, T. M.; Zhou, H.-C. Synthesis, Characterization, and Photoluminescence of Isostructural Mn, Co, and Zn MOFs Having a Diamondoid Structure with Large Tetrahedral Cages and High Thermal Stability. Chem. Commun 2005, (21), 2663–2665. DOI: 10.1039/B502007G.
  • Ma, S.; Sun, D.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H.-C. Framework-Catenation Isomerism in Metal−organic Frameworks and Its Impact on Hydrogen Uptake. J. Am. Chem. Soc. 2007, 129(7), 1858–1859. DOI: 10.1021/ja067435s.
  • Sun, D.; Ma, S.; Ke, Y.; Collins, D. J.; Zhou, H.-C. An Interweaving MOF with High Hydrogen Uptake. J. Am. Chem. Soc. 2006, 128(12), 3896–3897. DOI: 10.1021/ja058777l.
  • Lin, R.-G.; Li, L.; Lin, R.-B.; Arman, H.; Chen, B. Separation of C2/C1 Hydrocarbons Through a Gate-Opening Effect in a Microporous Metal–Organic Framework. CrystEngcomm. 2017, 19(45), 6896–6901. DOI: 10.1039/C7CE01766A.
  • Gao, S.; Morris, C. G.; Lu, Z.; Yan, Y.; Godfrey, H. G. W.; Murray, C.; Tang, C. C.; Thomas, K. M.; Yang, S.; Schröder, M. Selective Hysteretic Sorption of Light Hydrocarbons in a Flexible Metal–Organic Framework Material. Chem. Mater. 2016, 28(7), 2331–2340. DOI: 10.1021/acs.chemmater.6b00443.
  • Sahoo, R.; Das, M. C. C2s/C1 Hydrocarbon Separation: The Major Step Towards Natural Gas Purification by Metal-Organic Frameworks (MOFs). Coord. Chem. Rev. 2021, 442, 213998. DOI: 10.1016/j.ccr.2021.213998.
  • Sahoo, R.; Mondal, S.; Mukherjee, D.; Das, M. C. Metal–Organic Frameworks for CO2 Separation from Flue and Biogas Mixtures. Adv. Funct. Mater. 2022, 32(45), 2207197. DOI: 10.1002/adfm.202207197.
  • Li, X.; Liu, J.; Zhou, K.; Ullah, S.; Wang, H.; Zou, J.; Thonhauser, T.; Li, J. Tuning Metal–Organic Framework (MOF) Topology by Regulating Ligand and Secondary Building Unit (SBU) Geometry: Structures Built on 8-Connected M6 (M = Zr, Y) Clusters and a Flexible Tetracarboxylate for Propane-Selective Propane/Propylene Separation. J. Am. Chem. Soc. 2022, 144(47), 21702–21709. DOI: 10.1021/jacs.2c09487.
  • Sun, Y.; Ke, Z.; Tang, Y.; Wang, S.; Wu, Y.; Xia, Q.; Li, Z. Room-Temperature Synthesis of Pyr1/3@cu–BTC with Enhanced Stability and Its Excellent Performance for Separation of Propylene/Propane. Ind. Eng. Chem. Res. 2020, 59(13), 6202–6209. DOI: 10.1021/acs.iecr.0c00096.
  • Chen, Y.; Yang, Y.; Wang, Y.; Xiong, Q.; Yang, J.; Xiang, S.; Li, L.; Li, J.; Zhang, Z.; Chen, B. Ultramicroporous Hydrogen-Bonded Organic Framework Material with a Thermoregulatory Gating Effect for Record Propylene Separation. J. Am. Chem. Soc. 2022, 144(37), 17033–17040. DOI: 10.1021/jacs.2c06585.
  • Liu, Y.; Wu, H.; Li, R.; Wang, J.; Kong, Y.; Guo, Z.; Jiang, H.; Ren, Y.; Pu, Y.; Liang, X., et al. MOF–COF “Alloy” Membranes for Efficient Propylene/Propane Separation. Adv. Mater. 2022, 34(24), 2201423. DOI: 10.1002/adma.202201423.
  • Plaza, M. G.; Ferreira, A. F. P.; Santos, J. C.; Ribeiro, A. M.; Müller, U.; Trukhan, N.; Loureiro, J. M.; Rodrigues, A. E. Propane/Propylene Separation by Adsorption Using Shaped Copper Trimesate MOF. Microporous. Mesoporous. Mater. 2012, 157, 101–111. DOI: 10.1016/j.micromeso.2011.06.024.
  • Gao, J.; Cai, Y.; Qian, X.; Liu, P.; Wu, H.; Zhou, W.; Liu, D.-X.; Li, L.; Lin, R.-B.; Chen, B. A Microporous Hydrogen-Bonded Organic Framework for the Efficient Capture and Purification of Propylene. Angew. Chemie. Int. Ed. 2021, 60(37), 20400–20406. DOI: 10.1002/anie.202106665.
  • Jiang, H.; Chen, Y.; Song, S.; Guo, Z.; Zhang, Z.; Zheng, C.; He, G.; Wang, H.; Wu, H.; Huang, T., et al. Confined Facilitated Transport within Covalent Organic Frameworks for Propylene/Propane Membrane Separation. Chem. Eng. J. 2022, 439, 135657. DOI: 10.1016/j.cej.2022.135657.
  • Iacomi, P.; Formalik, F.; Marreiros, J.; Shang, J.; Rogacka, J.; Mohmeyer, A.; Behrens, P.; Ameloot, R.; Kuchta, B.; Llewellyn, P. L. Role of Structural Defects in the Adsorption and Separation of C3 Hydrocarbons in Zr-Fumarate-MOF (MOF-801). Chem. Mater. 2019, 31(20), 8413–8423. DOI: 10.1021/acs.chemmater.9b02322.
  • Cai, Y.; Gao, J.; Li, J.-H.; Liu, P.; Zheng, Y.; Zhou, W.; Wu, H.; Li, L.; Lin, R.-B.; Chen, B. Pore Modulation of Hydrogen-Bonded Organic Frameworks for Efficient Separation of Propylene. Angew. Chemie. Int. Ed. 2023, 62(37), e202308579. DOI: 10.1002/anie.202308579.
  • Biswal, B. P.; Kunjattu, S. H.; Kaur, T.; Banerjee, R.; Kharul, U. K. Transforming Covalent Organic Framework into Thin-Film Composite Membranes for Hydrocarbon Recovery. Sep. Sci. Technol. 2018, 53(11), 1752–1759. DOI: 10.1080/01496395.2018.1443136.
  • Dong, Q.; Song, Z.; Zhou, F.; Li, H.; Yu, M. U. Ultrathin, Fine-Tuned Microporous Coating Modified 5A Zeolite for Propane/Propylene Adsorptive Separation. Microporous. Mesoporous. Mater. 2019, 281, 9–14. DOI: 10.1016/j.micromeso.2019.02.038.
  • Wang, Y.-S.; Li, T.-Y.; Ba, Y.-Q.; Zheng, Z.; Hao, G.-P.; Lu, A.-H. “Mortar-And-Cobblestone” Type Carbon Pellets with Interlinked C3H6-Philic Domains and Mesoporous Transport Channels for Propylene/Propane Separation. Sep. Purif. Technol. 2023, 305, 122436. DOI: 10.1016/j.seppur.2022.122436.
  • Chen, F.; Huang, X.; Guo, K.; Yang, L.; Sun, H.; Xia, W.; Zhang, Z.; Yang, Q.; Yang, Y.; Zhao, D., et al. Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Appl. Mater. Interfaces. 2022, 14(26), 30443–30453. DOI: 10.1021/acsami.2c09189.
  • Pu, Y.; Zhao, M.; Liang, X.; Wang, S.; Wang, H.; Zhu, Z.; Ren, Y.; Zhang, Z.; He, G.; Zhao, D., et al. Growing ZIF-8 Seeds on Charged COF Substrates Toward Efficient Propylene-Propane Separation Membranes. Angew. Chemie. Int. Ed. 2023, 62(22), e202302355. DOI: 10.1002/anie.202302355.
  • Abdi, H.; Maghsoudi, H. All-Silica DD3R Zeolite for Adsorptive Separation of Propylene from Propane: Equilibrium and Kinetic Data. Microporous. Mesoporous. Mater. 2020, 307, 110513. DOI: 10.1016/j.micromeso.2020.110513.
  • Dong, Q.; Huang, Y.; Wan, J.; Lu, Z.; Wang, Z.; Gu, C.; Duan, J.; Bai, J. Confining Water Nanotubes in a Cu10O13-Based Metal–Organic Framework for Propylene/Propane Separation with Record-High Selectivity. J. Am. Chem. Soc. 2023, 145(14), 8043–8051. DOI: 10.1021/jacs.3c00515.
  • Cheng, Z.; Zhang, P.; Wang, Z.; Jiang, H.; Wang, W.; Liu, D.; Wang, L.; Zhu, G.; Zou, X. A Bipyridyl Covalent Organic Framework with Coordinated Cu(i) for Membrane C3H6/C3H8 Separation. Small. 2023, 19(30), 2300438. DOI: 10.1002/smll.202300438.
  • Du, S.; Huang, J.; Anjum, A. W.; Xiao, J.; Li, Z. A Novel Mechanism of Controlling Ultramicropore Size in Carbons at Sub-Angstrom Level for Molecular Sieving of Propylene/Propane Mixtures. J. Mater. Chem. A. 2021, 9(42), 23873–23881. DOI: 10.1039/D1TA07261G.
  • Peng, J.; Wang, H.; Olson, D. H.; Li, Z.; Li, J. Efficient Kinetic Separation of Propene and Propane Using Two Microporous Metal Organic Frameworks. Chem. Commun. 2017, 53(67), 9332–9335. DOI: 10.1039/C7CC03529B.
  • Liang, X.; Wu, H.; Huang, H.; Wang, X.; Wang, M.; Dou, H.; He, G.; Ren, Y.; Liu, Y.; Wu, Y., et al. Efficient Ethylene/Ethane Separation Through Ionic Liquid-Confined Covalent Organic Framework Membranes. J. Mater. Chem. A. 2022, 10(10), 5420–5429. DOI: 10.1039/D1TA10516G.
  • Xiong, Y.; Tian, T.; L’Hermitte, A.; Méndez, A. S. J.; Danaci, D.; Platero-Prats, A. E.; Petit, C. Using Silver Exchange to Achieve High Uptake and Selectivity for Propylene/Propane Separation in Zeolite Y. Chem. Eng. J. 2022, 446, 137104. DOI: 10.1016/j.cej.2022.137104.
  • Hong, A. N.; Yang, H.; Li, T.; Wang, Y.; Wang, Y.; Jia, X.; Zhou, A.; Kusumoputro, E.; Li, J.; Bu, X., et al. Pore-Space Partition and Optimization for Propane-Selective High-Performance Propane/Propylene Separation. ACS Appl. Mater. Interfaces. 2021, 13(44), 52160–52166. DOI: 10.1021/acsami.1c10391.
  • Yong, J.; Chen, J.; Chen, Y.; Cai, Y.; Gao, J. Hofmann-Type Metal-Organic Frameworks with High Open Metal Sites Density for Efficient Propylene/Propane Separation. Microporous. Mesoporous. Mater. 2022, 344, 112233. DOI: 10.1016/j.micromeso.2022.112233.
  • Grande, C. A.; Rodrigues, A. E. Propane/Propylene Separation by Pressure Swing Adsorption Using Zeolite 4A. Ind. Eng. Chem. Res. 2005, 44(23), 8815–8829. DOI: 10.1021/ie050671b.
  • Yoon, J. W.; Kim, A.-R.; Kim, M. J.; Yoon, T.-U.; Kim, J.-H.; Bae, Y.-S. Low-Temperature Cu(i) Loading on a Mesoporous Metal–Organic Framework for Adsorptive Separation of C3H6/C3H8 Mixtures. Microporous. Mesoporous. Mater. 2019, 279, 271–277. DOI: 10.1016/j.micromeso.2018.12.041.
  • Chang, Z.; Lin, R.-B.; Ye, Y.; Duan, C.; Chen, B. Construction of a Thiourea-Based Metal–Organic Framework with Open Ag+ Sites for the Separation of Propene/Propane Mixtures. J. Mater. Chem. A. 2019, 7(44), 25567–25572. DOI: 10.1039/C9TA08614E.
  • Mohamed, M. H.; Yang, Y.; Li, L.; Zhang, S.; Ruffley, J. P.; Jarvi, A. G.; Saxena, S.; Veser, G.; Johnson, J. K.; Rosi, N. L. Designing Open Metal Sites in Metal–Organic Frameworks for Paraffin/Olefin Separations. J. Am. Chem. Soc. 2019, 141(33), 13003–13007. DOI: 10.1021/jacs.9b06582.
  • Wang, X.; Yong, J.; Wang, B.; Chen, J.; Zhou, Y.; Cai, Y.; Gao, J. Metal-Organic Framework with High Densities of Open Metal Sites for Efficient Separation of Propylene from Propane. Zeitschrift für Anorg. und Allg. Chemie. 2022, 648(20), e202200248. DOI: 10.1002/zaac.202200248.
  • Yu, M.-H.; Space, B.; Franz, D.; Zhou, W.; He, C.; Li, L.; Krishna, R.; Chang, Z.; Li, W.; Hu, T.-L., et al. Enhanced Gas Uptake in a Microporous Metal–Organic Framework via a Sorbate Induced-Fit Mechanism. J. Am. Chem. Soc. 2019, 141(44), 17703–17712. DOI: 10.1021/jacs.9b07807.
  • Ding, Q.; Zhang, Z.; Zhang, P.; Wang, J.; Cui, X.; He, C.-H.; Deng, S.; Xing, H. Control of Intracrystalline Diffusion in a Bilayered Metal-Organic Framework for Efficient Kinetic Separation of Propylene from Propane. Chem. Eng. J. 2022, 434, 134784. DOI: 10.1016/j.cej.2022.134784.
  • Wang, X.; Krishna, R.; Li, L.; Wang, B.; He, T.; Zhang, Y.-Z.; Li, J.-R.; Li, J. Guest-Dependent Pressure Induced Gate-Opening Effect Enables Effective Separation of Propene and Propane in a Flexible MOF. Chem. Eng. J. 2018, 346, 489–496. DOI: 10.1016/j.cej.2018.03.163.
  • Li, J.; Han, X.; Kang, X.; Chen, Y.; Xu, S.; Smith, G. L.; Tillotson, E.; Cheng, Y.; McCormick McPherson, L. J.; Teat, S. J., et al. Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angew. Chemie. Int. Ed. 2021, 60(28), 15541–15547. DOI: 10.1002/anie.202103936.
  • Wang, X.; Zhang, P.; Zhang, Z.; Yang, L.; Ding, Q.; Cui, X.; Wang, J.; Xing, H. Efficient Separation of Propene and Propane Using Anion-Pillared Metal–Organic Frameworks. Ind. Eng. Chem. Res. 2020, 59(8), 3531–3537. DOI: 10.1021/acs.iecr.9b06294.
  • Zhang, Z.; Ding, Q.; Cui, X.; Jiang, X.-M.; Xing, H. Fine-Tuning and Selective-Binding within an Anion-Functionalized Ultramicroporous Metal–Organic Framework for Efficient Olefin/Paraffin Separation. ACS Appl. Mater. Interfaces. 2020, 12(36), 40229–40235. DOI: 10.1021/acsami.0c07800.
  • Ding, Q.; Zhang, Z.; Yu, C.; Zhang, P.; Wang, J.; Kong, L.; Cui, X.; He, C.-H.; Deng, S.; Xing, H. Separation of Propylene and Propane with a Microporous Metal–Organic Framework via Equilibrium-Kinetic Synergetic Effect. AIChE. J. 2021, 67(1), e17094. DOI: 10.1002/aic.17094.
  • Tu, S.; Yu, L.; Wu, Y.; Chen, Y.; Wu, H.; Wang, L.; Liu, B.; Zhou, X.; Xiao, J.; Xia, Q. A New Yttrium-Based Metal–Organic Framework for Molecular Sieving of Propane from Propylene with High Propylene Capacity. AIChE. J. 2022, 68(3), e17551. DOI: 10.1002/aic.17551.
  • Hu, P.; Han, J.; Zhou, J.; Wang, H.; Xiong, C.; Liu, H.; Zhou, X.; Wang, Y.; Ji, H. Customized H-Bonding Acceptor and Aperture Chemistry within a Metal-Organic Framework for Efficient C3H6/C3H8 Separation. Chem. Eng. J. 2021, 426, 131302. DOI: 10.1016/j.cej.2021.131302.
  • Wang, L.; Du, F.; Zhang, B.; Liu, B.; Zhou, H. Ligand Configuration-Directed Pillared Kagome-Layer MOFs: Synthesis, Structure, and Adsorption of Propane/Propylene Properties. Cryst. Growth Des. 2022, 22(12), 7419–7425. DOI: 10.1021/acs.cgd.2c01003.
  • Chen, Y.; Wu, H.; Lv, D.; Yuan, N.; Xia, Q.; Li, Z. A Pillar-Layer Metal-Organic Framework for Efficient Adsorption Separation of Propylene Over Propane. Sep. Purif. Technol. 2018, 204, 75–80. DOI: 10.1016/j.seppur.2018.04.046.
  • Yang, S.-Q.; Sun, F.-Z.; Krishna, R.; Zhang, Q.; Zhou, L.; Zhang, Y.-H.; Hu, T.-L. Propane-Trapping Ultramicroporous Metal–Organic Framework in the Low-Pressure Area Toward the Purification of Propylene. ACS Appl. Mater. Interfaces. 2021, 13(30), 35990–35996. DOI: 10.1021/acsami.1c09808.
  • Yang, S.-Q.; Zhou, L.; Xing, B.; Zhang, Y.-H.; Hu, T.-L. Robust Microporous Metal-Organic Framework with High Moisture Tolerance for Efficient Separation of Propylene from Propane. Chinese J. Struct. Chem. 2023, 42(2), 100004. DOI: 10.1016/j.cjsc.2022.100004.
  • Xie, Y.; Shi, Y.; Cedeño Morales, E. M.; El Karch, A.; Wang, B.; Arman, H.; Tan, K.; Chen, B. Optimal Binding Affinity for Sieving Separation of Propylene from Propane in an Oxyfluoride Anion-Based Metal–Organic Framework. J. Am. Chem. Soc. 2023, 145(4), 2386–2394. DOI: 10.1021/jacs.2c11365.
  • Liu, D.; Pei, J.; Zhang, X.; Gu, X.-W.; Wen, H.-M.; Chen, B.; Qian, G.; Li, B. Scalable Green Synthesis of Robust Ultra-Microporous Hofmann Clathrate Material with Record C3H6 Storage Density for Efficient C3H6/C3H8 Separation. Angew. Chemie. Int. Ed. 2023, 62(12), e202218590. DOI: 10.1002/anie.202218590.
  • Xie, Y.; Shi, Y.; Cui, H.; Lin, R.-B.; Chen, B. Efficient Separation of Propylene from Propane in an Ultramicroporous Cyanide-Based Compound with Open Metal Sites. Small Struct. 2022, 3(5), 2100125. DOI: 10.1002/sstr.202100125.
  • Fischer, M.; Gomes, J. R. B.; Fröba, M.; Jorge, M. Modeling Adsorption in Metal–Organic Frameworks with Open Metal Sites: Propane/Propylene Separations. Langmuir. 2012, 28(22), 8537–8549. DOI: 10.1021/la301215y.
  • Lv, D.; Xu, J.; Zhou, P.; Tu, S.; Xu, F.; Yan, J.; Xi, H.; Liu, Z.; Yuan, W.; Fu, Q., et al. Highly Selective Separation of Propylene/Propane Mixture on Cost-Effectively Four-Carbon Linkers Based Metal-Organic Frameworks. Chin. J. Chem. Eng. 2022, 51, 126–134. DOI: 10.1016/j.cjche.2021.12.024.
  • Hayashi, H.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Zeolite a Imidazolate Frameworks. Nat. Mater. 2007, 6(7), 501–506. DOI: 10.1038/nmat1927.
  • Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. S. Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43(1), 58–67. DOI: 10.1021/ar900116g.
  • Liu, G.; Chernikova, V.; Liu, Y.; Zhang, K.; Belmabkhout, Y.; Shekhah, O.; Zhang, C.; Yi, S.; Eddaoudi, M.; Koros, W. J. Mixed Matrix Formulations with MOF Molecular Sieving for Key Energy-Intensive Separations. Nat. Mater. 2018, 17(3), 283–289. DOI: 10.1038/s41563-017-0013-1.
  • Song, E.; Wei, K.; Lian, H.; Hua, J.; Tao, H.; Wu, T.; Pan, Y.; Xing, W. Improved Propylene/Propane Separation Performance Under High Temperature and Pressures on in-Situ Ligand-Doped ZIF-8 Membranes. J. Memb. Sci. 2021, 617, 118655. DOI: 10.1016/j.memsci.2020.118655.
  • Liu, D.; Xiang, L.; Chang, H.; Chen, K.; Wang, C.; Pan, Y.; Li, Y.; Jiang, Z. Rational Matching Between MOFs and Polymers in Mixed Matrix Membranes for Propylene/Propane Separation. Chem. Eng. Sci. 2019, 204, 151–160. DOI: 10.1016/j.ces.2019.04.032.
  • Lin, R.; Ge, L.; Diao, H.; Rudolph, V.; Zhu, Z. Propylene/Propane Selective Mixed Matrix Membranes with Grape-Branched MOF/CNT Filler. J. Mater. Chem. A. 2016, 4(16), 6084–6090. DOI: 10.1039/C5TA10553F.
  • Eum, K.; Yang, S.; Min, B.; Ma, C.; Drese, J. H.; Tamhankar, Y.; Nair, S. All-Nanoporous Hybrid Membranes: Incorporating Zeolite Nanoparticles and Nanosheets with Zeolitic Imidazolate Framework Matrices. ACS Appl. Mater. Interfaces. 2020, 12(24), 27368–27377. DOI: 10.1021/acsami.0c06227.
  • Sun, Y.; Tian, L.; Qiao, Z.; Geng, C.; Guo, X.; Zhong, C. Surface Modification of Bilayer Structure on Metal-Organic Frameworks Towards Mixed Matrix Membranes for Efficient Propylene/Propane Separation. J. Memb. Sci. 2022, 648, 120350. DOI: 10.1016/j.memsci.2022.120350.
  • Frentzel-Beyme, L.; Kloß, M.; Kolodzeiski, P.; Pallach, R.; Henke, S. Meltable Mixed-Linker Zeolitic Imidazolate Frameworks and Their Microporous Glasses: From Melting Point Engineering to Selective Hydrocarbon Sorption. J. Am. Chem. Soc. 2019, 141(31), 12362–12371. DOI: 10.1021/jacs.9b05558.
  • Lee, T. H.; Jung, J. G.; Kim, Y. J.; Roh, J. S.; Yoon, H. W.; Ghanem, B. S.; Kim, H. W.; Cho, Y. H.; Pinnau, I.; Park, H. B. Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angew. Chemie. Int. Ed. 2021, 60(23), 13081–13088. DOI: 10.1002/anie.202100841.
  • Song, S.; Jiang, H.; Wu, H.; Zhao, M.; Guo, Z.; Li, B.; Ren, Y.; Wang, Y.; Ye, C.; Guiver, M. D., et al. Weakly Pressure-Dependent Molecular Sieving of Propylene/Propane Mixtures Through Mixed Matrix Membrane with ZIF-8 Direct-Through Channels. J. Memb. Sci. 2022, 648, 120366. DOI: 10.1016/j.memsci.2022.120366.
  • Ramu, G.; Lee, M.; Jeong, H.-K. Effects of Zinc Salts on the Microstructure and Performance of Zeolitic-Imidazolate Framework ZIF-8 Membranes for Propylene/Propane Separation. Microporous. Mesoporous. Mater. 2018, 259, 155–162. DOI: 10.1016/j.micromeso.2017.10.010.
  • Liu, Y.; Chen, Z.; Liu, G.; Belmabkhout, Y.; Adil, K.; Eddaoudi, M.; Koros, W. Conformation-Controlled Molecular Sieving Effects for Membrane-Based Propylene/Propane Separation. Adv. Mater. 2019, 31(14), 1807513. DOI: 10.1002/adma.201807513.
  • Pramanik, B.; Sahoo, R.; Das, M. C. PH-Stable MOFs: Design Principles and Applications. Coord. Chem. Rev. 2023, 493, 215301. DOI: 10.1016/j.ccr.2023.215301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.