851
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Transit time determination for a riverbank filtration system using oxygen isotope data and the lumped-parameter model

Détermination du temps de transit dans un système de filtration par les berges grâce à un modèle global paramétré utilisant des données isotopiques de l’oxygène

, , , &
Pages 1109-1116 | Received 28 Aug 2012, Accepted 07 May 2013, Published online: 02 Jun 2014

REFERENCES

  • Amin, I.E. and Campana, M.E., 1996. A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems. Journal of Hydrology, 179, 1–21. doi:10.1016/0022-1694(95)02880-3.
  • Császár, G., ed., 1997. Basic lithostratigraphic units of Hungary—charts and short descriptions. Budapest: Geological Institute of Hungary.
  • Deák, J., et al., 1992. Determination of the origin of water in riverbank filtrated wells by using tritium concentrations and oxygen isotope ratios (in Hungarian). Hidrológiai Közlöny, 72 (4), 204–210.
  • Fórizs, I., et al., 2005. Origin of shallow groundwater of Csepel Island (south of Budapest, Hungary, River Danube): isotopic and chemical approach. Hydrological Processes, 19, 3299–3312. doi:10.1002/hyp.5971.
  • Gat, J.R., Mook, W.G., and Meijer, H.A.J., 2001. Observed isotope effects in precipitation. In: W.G. Mook, ed. Environmental isotopes in the hydrological cycle, Vol. II, Atmospheric water. Technical documents in hydrology no. 39. Paris: IAEA/UNESCO, 43–56.
  • Góczán, L., 1955. A Szentendrei sziget geomorfológiai fejlődéstörténete. Földrajzi Értesítő, 4 (1–4), 301–316.
  • IAEA (International Atomic Energy Agency), 2009. Laser spectroscopic analysis of liquid water samples for stable hydrogen and oxygen isotopes, IAEA-TCS-35. Vienna: IAEA.
  • Kármán, K., et al., 2010. Oxygen isotopic composition in a riverbank filtration system—case study on Szentendre Island, Hungary. In: Zuber, A., Kania, J., and Kmiecik, E., eds. XXXVIII IAH congress, groundwater quality sustainability—extended abstracts. Krakow: University of Silesia, 1611–1618.
  • Katz, B.G., et al., 1997. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water, 35 (6), 1014–1028. doi:10.1111/j.1745-6584.1997.tb00174.x.
  • Kumar, U.S., et al., 2001. Environmental isotope study on hydrodynamics of Lake Naini, Uttar Pradesh, India. Hydrological Processes, 15, 425–439. doi:10.1002/hyp.158.
  • Leibundgut, C., Maloszewski, P., and Külls, C., 2009. Tracers in hydrology. West Sussex: Wiley-Blackwell.
  • Maloszewski, P., Stichler, W., and Zuber, A., 2004. Interpretation of environmental tracers in groundwater systems with stagnant water zones. Isotopes in Environmental and Health Studies, 40, 21–33. doi:10.1080/10256010310001645717.
  • Małoszewski, P. and Zuber, A., 1982. Determining the turnover time of groundwater systems with the aid of environmental tracers, I. Models and their applicability. Journal of Hydrology, 57, 207–231. doi:10.1016/0022-1694(82)90147-0.
  • Maloszewski, P. and Zuber, A., 1993. Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. Advances in Water Resources, 16, 173–190. doi:10.1016/0309-1708(93)90036-F.
  • Maloszewski, P. and Zuber, A., 1996. Lumped parameter models for the interpretation of environmental tracer data. In: Y. Yurtsever, ed. Manual on mathematical models in isotope hydrology, IAEA-TECDOC 910. Vienna: IAEA, 9–58.
  • Małoszewski, P., et al., 1983. Application of flow models in an alpine catchment area using tritium and deuterium data. Journal of Hydrology, 66, 319–330. doi:10.1016/0022-1694(83)90193-2.
  • Maloszewski, P., et al., 2002. Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes. Journal of Hydrology, 256, 48–59. doi:10.1016/S0022-1694(01)00526-1.
  • McGuire, K.J., DeWalle, D.R., and Gburek, W.J., 2002. Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. Journal of Hydrology, 261, 132–149. doi:10.1016/S0022-1694(02)00006-9.
  • McKinney, C.R., et al., 1950. Improvements in mass-spectrometers for the measurement of small differences in isotope abundance ratios. Review of Scientific Instruments, 21, 724–730. doi:10.1063/1.1745698.
  • OMSZ (Országos Meteorológiai Szolgálat), 2002. Climate atlas of Hungary. Budapest: Országos Meteorológiai Szolgálat, 107.
  • Stichler, W., Maloszewski, P., and Moser, H., 1986. Modelling of river water infiltration using oxygen-18 data. Journal of Hydrology, 83, 355–365. doi:10.1016/0022-1694(86)90161-7.
  • Stichler, W., et al., 2008. Use of environmental isotopes to define the capture zone of a drinking water supply situated near a dredge lake. Journal of Hydrology, 362, 220–233. doi:10.1016/j.jhydrol.2008.08.024.
  • Vitvar, T. and Balderer W., 1997. Estimation of mean water residence times and runoff generation by 18O measurements in a pre-alpine catchment (Rietholzbach, Eastern Switzerland). Applied Geochemistry, 12, 787–796. doi:10.1016/S0883-2927(97)00045-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.