1,470
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Low-cost inundation modelling at the reach scale with sparse data in the Lower Damodar River basin, India

Modélisation économique des inondations à l’échelle du bief utilisant peu de données dans le bassin inférieur de la rivière Damodar (Inde)

, &
Pages 2086-2102 | Received 08 Apr 2013, Accepted 30 Jul 2013, Published online: 20 Oct 2014

REFERENCES

  • Adhikari, P., et al., 2010. A digitized global flood inventory (1998–2008): compilation and preliminary results. Natural Hazards, 55, 405–422. doi:10.1007/s11069-010-9537-2.
  • Alcántara-Ayala, I., 2002. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47, 107–124. doi:10.1016/S0169-555X(02)00083-1.
  • Alho, P. and Aaltonen, J., 2008. Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods. Hydrological Processes, 22, 1537–1547. doi:10.1002/hyp.6692.
  • Aronica, G., Bates, P.D., and Horritt, M.S., 2002. Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16, 2001–2016. doi:10.1002/hyp.398.
  • Basu, S., 1996. An evaluation of DVC project as flood moderator. In: R.S. Tripathi, S.B. Singh Parmer. eds. Social and economic development in India. New Delhi: Ashis Publishing House, 143–157.
  • Bates, P.D., et al., 2006. Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. Journal of Hydrology, 328, 306–318. doi:10.1016/j.jhydrol.2005.12.028.
  • Bates, P.D. and DeRoo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54–77. doi:10.1016/S0022-1694(00)00278-X.
  • Bates, P.D., Marks, K.J., and Horritt, M.S., 2003. Optimal use of high-resolution topographic data in flood inundation models. Hydrological Processes, 17, 537–557. doi:10.1002/hyp.1113.
  • Biancamaria, S., et al., 2009. Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. Journal of Hydrology, 379 (1–2), 136–150. doi:10.1016/j.jhydrol.2009.09.054.
  • Casas, A., et al., 2006. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms, 31, 444–456. doi:10.1002/esp.1278.
  • Chandra, S., 2003. India: flood management-Damodar River Basin, World Meteorological Organization [online]. Available from: www.apfm.info/pdf/case_studies/cs_india.pdf [Accessed 30 May 2013].
  • Cobby, D.M., et al., 2003. Two-dimensional hydraulic flood modelling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrological Processes, 17, 1979–2000. doi:10.1002/hyp.1201.
  • Cook, A. and Merwade, V., 2009. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology, 377, 131–142. doi:10.1016/j.jhydrol.2009.08.015.
  • CSRS-PPP [online], 2013. Available from: http://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php [Accessed 23 September 2014].
  • da Paz, A.R., et al., 2011. Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil). Hydrological Processes, 25 (9), 1498–1516. doi:10.1002/hyp.7926.
  • De Roo, A., et al., 2007. Potential flood hazard and risk mapping at pan-European scale. In: R. Peckham and G. Jordan, eds. Digital terrain modelling. Berlin: Springer, 183–202.
  • Di Baldassarre, G., et al., 2009. Probability weighted hazard maps for comparing different flood risk management strategies: a case study. Natural Hazards, 50, 479–496. doi:10.1007/s11069-009-9355-6.
  • Hardy, R.J., Bates, P.D., and Anderson, M.G., 1999. The importance of spatial resolution in hydraulic models for floodplain environments. Journal of Hydrology, 216 (1–2), 124–136. doi:10.1016/S0022-1694(99)00002-5.
  • Herschey, R.W., 1998. Flow measurement. In: R.W. Herschey, ed. Hydrometry: principles and practices. Chichester: Wiley, 9–83.
  • Hervouet, J.-M. and Van Haren, L., 1996. Recent advances in numerical methods for fluid flows. In: M.G. Anderson, et al., ed. Floodplain processes. Chichester: Wiley, 183–214.
  • Horritt, M.S., 2000. Calibration of a two-dimensional finite element flood flow model using satellite radar imagery. Water Resources Research, 36, 3279–3291. doi:10.1029/2000WR900206.
  • Horritt, M.S., et al., 2007. Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery. Hydrological Processes, 21, 2745–2759. doi:10.1002/hyp.6486.
  • Horritt, M.S. and Bates, P.D., 2001a. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology, 253, 239–249. doi:10.1016/S0022-1694(01)00490-5.
  • Horritt, M.S. and Bates, P.D., 2001b. Predicting floodplain inundation: raster-based modelling versus the finite element approach. Hydrological Processes, 15, 825–842. doi:10.1002/hyp.188.
  • Hunter, N.M., et al., 2005. Utility of different data types for calibrating flood inundation models within a GLUE framework. Hydrology and Earth System Sciences, 9, 412–430. doi:10.5194/hess-9-412-2005.
  • Jung, H.C., et al., 2010. Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers. Earth Surface Processes and Landforms, 35 (3), 294–304. doi:10.1002/esp.1914.
  • Keokhumcheng, Y., Tingsanchali, T., and Clemente, R.S., 2012. Flood risk assessment in the region surrounding the Bangkok Suvarnabhumi Airport. Water International, 37 (3), 201–217. doi:10.1080/02508060.2012.687868.
  • Legleiter, C.J. and Kyriakidis, P.C., 2008. Spatial prediction of river channel topography by kriging. Earth Surface Processes and Landforms, 33, 841–867. doi:10.1002/esp.1579.
  • Lehner, B. and Verdin, K., Jarvis, A., 2008. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union, 89, 93. doi:10.1029/2008EO100001.
  • Masood, M. and Takeuchi, K., 2012. Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model. Natural Hazards, 61, 757–770. doi:10.1007/s11069-011-0060-x.
  • Merwade, V., et al., 2008b. Uncertainty in flood inundation mapping: current issues and future directions. Journal of Hydrologic Engineering, 13 (7), 608–620. doi:10.1061/(ASCE)1084-0699(2008)13:7(608).
  • Merwade, V., Cook, A., and Coonrod, J., 2008a. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environmental Modelling and Software, 23, 1300–1311. doi:10.1016/j.envsoft.2008.03.005.
  • Mohapatra, P.K. and Singh, R.D., 2003. Flood management in India. Natural Hazards, 28, 131–143. doi:10.1023/A:1021178000374.
  • Morvan, H., et al., 2008. The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models. Journal of Hydraulic Research, 46 (2), 191–208. doi:10.1080/00221686.2008.9521855.
  • Neal, J., et al., 2011. Evaluating a new LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK. Journal of Flood Risk Management, 4, 88–95. doi:10.1111/j.1753-318X.2011.01093.x.
  • Neal, J., Schumann, G., and Bates, P., 2012. A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resources Research, 48, W11506. doi:10.1029/2012WR012514.
  • Nicholas, A.P. and Walliang, D.E., 1997. Modelling flood hydraulics and overbank deposition on river floodplains. Earth Surface Processes and Landforms, 19, 349–368.
  • NRC Canadian Hydraulics Centre [online]. 2012. Available from: http://www.nrc-cnrc.gc.ca/eng/ibp/chc/software/kenue/blue-kenue.html [Accessed 23 September 2014].
  • Paiva, R.C.D., Collischonn, W., and Tucci, C.E.M., 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology, 406, 170–181. doi:10.1016/j.jhydrol.2011.06.007.
  • Pappenberger, F., et al., 2005. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. Journal of Hydrology, 302, 46–69. doi:10.1016/j.jhydrol.2004.06.036.
  • Rawat, K.S., et al., 2012. Comparative evaluation of horizontal accuracy of elevations of selected ground control points from ASTER and SRTM DEM with respect to CARTOSAT-1 DEM: a case study of Shahjahanpur district, Uttar Pradesh, India. Geocarto International, 28 (5), 439–452. doi:10.1080/10106049.2012.724453.
  • Saha, S.K., 1979. River-Basin planning in the Damodar Valley of India. Geographical Review, 69, 273–287. doi:10.2307/214885.
  • Sanders, B.F., 2007. Evaluation of on-line DEMs for flood inundation modeling. Advances in Water Resources, 30, 1831–1843. doi:10.1016/j.advwatres.2007.02.005.
  • Sanyal, J., Carbonneau, P., and Densmore, A.L., 2013. Hydraulic routing of extreme floods in a large ungauged river and the estimation of associated uncertainties: a case study of the Damodar River, India. Natural Hazards, 66 (2), 1153–1177. doi:10.1007/s11069-012-0540-7.
  • Sanyal, J., Densmore, A.L., and Carbonneau, P., 2014. 2D finite element inundation modelling in anabranching channels with sparse data: examination of uncertainties. Water Resources Management, 28 (8), 2351–2366.
  • Sanyal, J. and Lu, X.X., 2004. Application of remote sensing in flood management with special reference to monsoon Asia: a review. Natural Hazards, 33, 283–301. doi:10.1023/B:NHAZ.0000037035.65105.95.
  • Sarhadi, A., Soltani, S., and Modarres, R., 2012. Probabilistic flood inundation mapping of ungauged rivers: linking GIS techniques and frequency analysis. Journal of Hydrology, 458–459, 68–86. doi:10.1016/j.jhydrol.2012.06.039.
  • Schumann, G., et al., 2007. Deriving distributed roughness values from satellite radar data for flood inundation modelling. Journal of Hydrology, 344, 96–111. doi:10.1016/j.jhydrol.2007.06.024.
  • Tarekegn, T.H., et al., 2010. Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling. International Journal of Applied Earth Observation and Geoinformation, 12, 457–465. doi:10.1016/j.jag.2010.05.007.
  • Tate, E., et al., 2002. Creating a Terrain Model for Floodplain Mapping. Journal of Hydrologic Engineering, 7 (2), 100–108. doi:10.1061/(ASCE)1084-0699(2002)7:2(100).
  • Wang, W., Yang, X., and Yao, T., 2012. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrological Processes, 26, 213–225. doi:10.1002/hyp.8127.
  • Wilson, M., et al., 2007. Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophysical Research Letters, 34, L15404. doi:10.1029/2007GL030156.
  • Wilson, M.D. and Atkinson, P.M., 2005. The use of elevation data in flood inundation modelling: a comparison of ERS interferometric SAR and combined contour and differential GPS data. International Journal of River Basin Management, 3, 3–20. doi:10.1080/15715124.2005.9635241.
  • Yamazaki, D., et al., 2012. Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. Journal of Hydrology, 436–437, 81–91. doi:10.1016/j.jhydrol.2012.02.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.