952
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Bridging hydraulic diffusivity from aquifer to particle-size scale: a study on loess sediments from southwest Hungary

Relier les diffusivités hydrauliques de l’aquifère à l’échelle particulaire : une étude sur les loess du Sud-Ouest de la Hongrie

, &
Pages 269-284 | Received 25 Apr 2013, Accepted 09 Jan 2014, Published online: 07 Jan 2015

REFERENCES

  • Abrisqueta, J.M., et al., 2006. Unsaturated hydraulic conductivity of disturbed and undisturbed loam soil. Spanish Journal of Agricultural Research, 4 (1), 91–96. doi:10.5424/sjar/2006041-179.
  • Alyamani, M.S. and Sen, Z., 1993. Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water, 31, 551–555. doi:10.1111/j.1745-6584.1993.tb00587.x.
  • Appoloni, C.R., et al., 1990. Determinação da condutividade e difusividade hidráulica dos solos terra roxa estruturada e latossolo roxo através da infiltração vertical [Determination of hydraulic conductivity and diffusivity of structured red earth and red leptosol through vertical infiltration]. Semina, 11 (4), 145–149.
  • Baloochestani, F., 2008. Estimation of hydraulic properties of the shallow aquifer system for selected basins in the Blue Ridge and the Piedmont physiographic provinces of the southeastern U.S. using streamflow recession and baseflow data [online]. Geosciences Dissertations, Paper 2. Available from: http://digitalarchive.gsu.edu/geosciences_diss/2 [Accessed 13 October 2012].
  • Bear, J., 1972. Dynamics of fluids in porous media. New York: American Elsevier.
  • Beyer, W., 1964. Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve. WWT- Wasserwirtschaft Wassertechnik, 14, 165–168.
  • Bird, N. and Perrier, E., 2010. Multiscale percolation properties of a fractal pore network. Geoderma, 160, 105–110. doi:10.1016/j.geoderma.2009.10.009.
  • Bouma, J., 1982. Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Science Society of America Journal, 46, 438–441. doi:10.2136/sssaj1982.03615995004600020047x.
  • Butler, J.J., 2005. Hydrogeological methods. In: Y. Rubin and S. Hubbard, eds. Hydrogeophysics. Dordrecht: Springer, 23–58.
  • Carman, P.C., 1937. Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers, 15, 150–166.
  • Carman, P.C., 1956. Flow of gases through porous media. London: Butterworth Scientific.
  • Chen, S.-C., 1998. Estimating the hydraulic conductivity and diffusivity in unsaturated porous media by fractal capillary model. Journal of the Chinese Institute of Engineers, 21 (4), 449–458. doi:10.1080/02533839.1998.9670407.
  • Clauser, C., 1992. Permeability of crystalline rocks. Eos, Transactions American Geophysical Union, 73 (21), 233–238. doi:10.1029/91EO00190.
  • Das, B.B. and Kondraivendhan, B., 2012. Implication of pore size distribution parameters on compressive strength, permeability and hydraulic diffusivity of concrete. Construction and Building Materials, 28, 382–386. doi:10.1016/j.conbuildmat.2011.08.055.
  • De Marsily, G., 1986. Quantitative hydrogeology: groundwater hydrology for engineers. New York: Academic Press.
  • Delépine, N., et al., 2004. Characterization of fluid transport properties of the Hot Dry Rock reservoir Soultz-2000 using induced microseismicity. Journal of Geophysics and Engineering, 1, 77–83. doi:10.1088/1742-2132/1/1/010.
  • Doan, M.L., et al., 2006. In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault, Taiwan. Geophysical Research Letters, 33, L16317. doi:10.1029/2006GL026889.
  • ESRI, 2010. ArcMap (version 10). Redlands, CA: ESRI. Available from: http://www.esri.com/software/arcgis
  • Fallico, C., 2014. Reconsideration at field scale of the relationship between hydraulic conductivity and porosity: the case of a sandy aquifer in South Italy. The Scientific World Journal, 2014, 15. doi:10.1155/2014/537387.
  • Fischer, U.H., et al., 2001. Hydraulic and mechanical properties of glacial sediments beneath Unteraargletscher, Switzerland: implications for glacier basal motion. Hydrological Processes, 15, 3525–3540. doi:10.1002/hyp.349.
  • Flach, G.P., et al., 2000. Electromagnetic Borehole Flowmeter (EBF) testing at the Southwest Plume Test Pad (U). Savannah River Site, Aiken: Westinghouse Savannah River Company (Rep. WSRC-TR–2000–00347).
  • Frechen, M., Horváth, E., and Gábris, G., 1997. Geochronology of middle and upper Pleistocene loess sections in Hungary. Quaternary Research, 48, 291–312. doi:10.1006/qres.1997.1929.
  • Gilmore, T.J., et al., 1992. Application of three aquifer test methods for estimating hydraulic properties within the 100-N area. Richland, Washington: Pacific Northwest Laboratory (Report US Department of Energy, Contract DE-AC06-76RLO 1830).
  • Giménez, D., Rawls, W.J., and Lauren, J.G., 1999. Scaling Properties of saturated hydraulic conductivity in soil. Geoderma, 88, 205–220. doi:10.1016/S0016-7061(98)00105-0.
  • Guo, H., Jiao, J.J., and Li, H., 2010. Groundwater response to tidal fluctuation in a two-zone aquifer. Journal of Hydrology, 381, 364–371. doi:10.1016/j.jhydrol.2009.12.009.
  • Ha, K., et al., 2007. Estimation of layered aquifer diffusivity and river resistance using flood wave response model. Journal of Hydrology, 337 (3–4), 284–293. doi:10.1016/j.jhydrol.2007.01.040.
  • Hazen, A., 1893. Some physical properties of sand and gravels, with special reference to their use in filtration. Twenty Fourth Annual Report of the State Board of Health of Massachusetts, 541–556.
  • Heath, R.C., 1983. Basic ground-water hydrology. US Geological Survey Water-Supply Paper 2220.
  • Illman, W.A., 2005. Type curve analyses of pneumatic single-hole tests in unsaturated fractured tuff: direct evidence for a porosity scale effect. Water Resources Research, 41, W04018. doi:10.1029/2004WR003703.
  • Illman, W.A., 2006. Strong field evidence of directional permeability scale effect in fractured rock. Journal of Hydrology, 319 (1–4), 227–236. doi:10.1016/j.jhydrol.2005.06.032.
  • Jámbor, Á.,1997. AKözép-Dunántúlfiatal kainozoos rétegtanának és fejl}odéstörténetének néhány kérdése. Annual Report of the Geological Institute of Hungary 1996 (2), 191–202.
  • Jiménez-Martínez, J., et al., 2013. Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: insights from a frequency domain analysis. Water Resources Research, 49, 3007–3023. doi:10.1002/wrcr.20260.
  • Kaubisch, M. and Fischer, M., 1985. Zur Berechnung des Filtrationskoeffizienten in Tagebaukippen. Teil 3: Ermittlung des Filtrationskoeffizienten für schluffige Feinsande aus Mischbodenkippen durch Korngrößenanalysen. Neue Bergbautechnik, 15, 142–143.
  • Knudby, C. and Carrera, J., 2006. On the use of apparent hydraulic diffusivity as an indicator of connectivity. Journal of Hydrology, 329, 377–389. doi:10.1016/j.jhydrol.2006.02.026.
  • Kovács, J., et al., 2011. Plio-Pleistocene red clay deposits in the Pannonian basin: a review. Quaternary International, 240 (1–2), 35–43. doi:10.1016/j.quaint.2010.12.013.
  • Krahn, J., 2004. Transport modelling with CTRAN/W: an engineering methodology. Calgary: GEO-SLOPT International.
  • Leahy, P.P., 1976. Hydraulic characteristics of the Piney Point aquifer and overlying confining bed near Dover. Dover, DE: Geological Survey, Report of investigations 26.
  • Le Borgne, T., et al., 2006. Assessment of preferential flow path connectivity and hydraulic properties at single borehole and cross-borehole scales in a fractured aquifer. Journal of Hydrology, 328, 347–359. doi:10.1016/j.jhydrol.2005.12.029.
  • Li, V.C., 1984. Estimation of in-situ hydraulic diffusivity of rock masses. Pure and Applied Geophysics, 122, 545–559. doi:10.1007/BF00874616.
  • Martinez-Landa, L. and Carrera, J., 2005. An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland. Water Resources Research, 41, W03006.
  • Morris, D.A. and Johnson, A.I., 1967. Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the U.S. Geological Survey (1948–60). US Geological Survey Water-Supply Paper 1839-D.
  • Murray, T., 1997. Assessing the paradigm shift: deformable glacier beds. Quaternary Science Reviews, 16, 995–1016. doi:10.1016/S0277-3791(97)00030-9.
  • Nemecz, E., et al., 2000. The origin of the silt size quartz grains and minerals in loess. Quaternary International, 68–71, 199–208. doi:10.1016/S1040-6182(00)00044-6.
  • Neuman, S.P., 1990. Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resources Research, 26, 1749–1758. doi:10.1029/WR026i008p01749.
  • Neuman, S.P. and Witherspoon, P.A., 1972. Field determination of the hydraulic properties of leaky multiple aquifer systems. Water Resources Research, 8 (5), 1284–1298. doi:10.1029/WR008i005p01284.
  • Odong, J., 2007. Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. Journal of American Science, 3 (3), 54–60.
  • Onder, H., 1994. Determination of aquifer parameters of finite confined aquifers from constant drawdown nonsteady type-curves. Hydrological Sciences Journal, 39 (3), 269–280. doi:10.1080/02626669409492743.
  • Pacheco, F.A.L., 2013. Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrological Sciences Journal, 58 (4), 930–944. doi:10.1080/02626667.2013.784847.
  • Pacheco, F.A.L. and Alencoão, A.M.P., 2006. Role of fractures in weathering of solid rocks: narrowing the gap between laboratory and field weathering rates. Journal of Hydrology, 316 (1–4), 248–265. doi:10.1016/j.jhydrol.2005.05.003.
  • Pacheco, F.A.L. and Szocs, T., 2006. Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary. Applied Geochemistry, 21, 614–631. doi:10.1016/j.apgeochem.2005.12.009.
  • Pacheco, F.A.L. and Van der Weijden, C.H., 2012. Weathering of plagioclase across variable flow and solute transport regimes. Journal of Hydrology, 420–421, 46–58. doi:10.1016/j.jhydrol.2011.11.044.
  • Pécsi, M., 1987. The loess-paleosol and related subaereal sequence in Hungary. Geojournal, 15 (2), 151–162.
  • Pradhana, B., Nageshb, M., and Bhattacharjee, B., 2005. Prediction of the hydraulic diffusivity from pore size distribution of concrete. Cement and Concrete Research, 35, 1724–1733. doi:10.1016/j.cemconres.2004.10.043.
  • Rovey, C.W. and Cherkauer, D.S., 1995. Scale dependency of hydraulic conductivity measurements. Ground Water, 33, 769–780. doi:10.1111/j.1745-6584.1995.tb00023.x.
  • Schad, H. and Teutsch, G., 1994. Effects of the investigation scale on pumping test results in heterogeneous porous aquifers. Journal of Hydrology, 159, 61–77. doi:10.1016/0022-1694(94)90249-6.
  • Schulze-Makuch, D. and Cherkauer, D.S., 1997. Method developed for extrapolating scale behavior. Eos, Transactions American Geophysical Union, 78, 3. doi:10.1029/97EO00005.
  • Schulze-Makuch, D. and Cherkauer, D.S., 1998. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous, carbonate rocks. Hydrogeology Journal, 6, 204–215. doi:10.1007/s100400050145.
  • Schulze-Makuch, D., et al., 1999. Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water, 37, 904–919. doi:10.1111/j.1745-6584.1999.tb01190.x.
  • Seelheim, F., 1880. Methoden zur Bestimmung der Durchlässigkeit des Bodens. Fresen. Zeitschrift für Analytische Chemie, 19, 387–418. doi:10.1007/BF01341054.
  • Shepherd, R.G., 1989. Correlations of permeability and grain sizes. Ground Water, 27, 633–638. doi:10.1111/j.1745-6584.1989.tb00476.x.
  • Shih, D. and Lin, G., 2004. Application of spectral analysis to determine hydraulic diffusivity of a sandy aquifer(Pingtung County, Taiwan). Hydrological Processes, 18 (9), 1655–1669. doi:10.1002/hyp.1411.
  • Smalley, I.J. and Leach, J.A., 1978. The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe—A review. Sedimentary Geology, 21, 1–26. doi:10.1016/0037-0738(78)90031-3.
  • Talwani, P., 1976. Earthquakes associated with the Clark Hill reservoir, South Carolina—A case of induced seismicity. Engineering Geology, 10, 239–253. doi:10.1016/0013-7952(76)90024-7.
  • Talwani, P., 1997. On the nature of reservoir-induced seismicity. Pure Applied Geophysics, 150, 473–492. doi:10.1007/s000240050089.
  • Talwani, P., Cobb, J.S., and Schaeffer, M.F., 1999. In situ measurements of hydraulic properties of a shear zone in northwestern South Carolina. Journal of Geophysical Research, 104 (B7), 14993–15003. doi:10.1029/1999JB900059.
  • Taylor, C.J. and Alley, W.M., 2001. Ground-water-level monitoring and the importance of long-term water-level data. Denver, CO: US Geological Survey Circular 1217.
  • Terzaghi, K. and Peck, R.B., 1964. Soil mechanics in engineering practice. New York: Wiley.
  • Trefry, M.G. and Johnston, C.D., 1998. Pumping test analysis for a tidally forced aquifer. Ground Water, 36 (3), 427–433. doi:10.1111/j.1745-6584.1998.tb02813.x.
  • Van der Kamp, G., 2001. Methods for determining the in situ hydraulic conductivity of shallow aquitards – an overview. Hydrogeology Journal, 9 (1), 5–16. doi:10.1007/s100400000118.
  • Vesselinov, V.V., Neuman, S.P., and Illman, W.A., 2001. Threedimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resources Research, 37, 3019–3041. doi:10.1029/2000WR000135.
  • Vienken, T. and Dietrich, P., 2011. Field evaluation of methods for determining hydraulic conductivity from grain size data. Journal of Hydrology, 400, 58–71. doi:10.1016/j.jhydrol.2011.01.022.
  • Vuković, M. and Soro, A., 1992. Determination of hydraulic conductivity of porous media from grain-size composition. Littleton, CO: Water Resources Publications.
  • Wibberley, C.A.J., 2002. Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets Space, 54, 1153–1171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.