2,223
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Monitoring acidic water in a polluted river with hyperspectral remote sensing (HyMap)

Surveillance des eaux acides dans une rivière polluée par télédétection hyperspectrale (HyMap)

, , , , &
Pages 1064-1077 | Received 18 Jul 2013, Accepted 19 Feb 2014, Published online: 27 Apr 2015

REFERENCES

  • AEMET (Agencia Estatal de Meteorología, Spain), 2004–2009. Resumen anual climatológico del año 2004, 2005, 2006, 2007, 2008 y 2009 [online]. Available from: http://www.aemet.es [Accessed 24 February 2014].
  • Anderson, J.E. and Robbins, E.I., 1998. Spectral reflectance and detection of iron-oxide precipitates associated with acidic mine drainage. Photogrammetric Engineering and Remote Sensing, 64, 1201–1208.
  • Boardman, J.W. and Kruse, F.A.,1994. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada, Proceedings ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, I, 407–418.
  • Brando, V.E. and Dekker, A.G., 2003. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing, 41–6, 1378–1387.
  • Bukata, R.P., et al., 1995. Optical properties and remote sensing of Inland and coastal waters. London: CRC Press.
  • Buzzi, J., 2012. Imaging spectroscopy to monitor the contamination from sulphide mine waste in the Iberian Pyrite Belt using hyperspectral sensors (Huelva, Spain). Thesis (PhD). Universidad de León (Spain).
  • Buzzi, J., et al., 2011. Modified Gaussian modelization applied to hyperspectral data in an AMD-contaminated area. Case of Odiel River, Huelva, SW Spain, Proceedings 7th EARSeL Workshop on imaging spectroscopy [online], 11–13 April, Edinburgh. Available from: http://www.earsel2011.com/Proceedings/ [Accessed 24 February 2014].
  • Buzzi, J., et al., 2012. Change detection in sediments of a river affected by acid mine drainage using airborne hyperspectral HyMap data (River Odiel, SW Spain). In: Proceedings 4th workshop on remote sensing and geology, 24–25 May, Mykonos. European Association of Remote Sensing Laboratories (EARSeL), 134–158.
  • Clark, R.N., Vance, J.S., and Livo, K.E., 1998. Mineral mapping with imaging spectroscopy: the Ray Mine, AZ. In: R.O. Green, ed. Summaries of the 7th annual JPL airborne earth science workshop, 12–14 January. JPL Publication, 97–21, 67–75.
  • Cocks, T., et al., 1998. The Hymap™ Airborne Hyperspectral Sensor: The system, calibration and performance. In: Proceedings 1st EARSEL workshop on Imaging Spectroscopy, October, Zürich.
  • Crowley, J.K., et al., 2003. Spectral reflectance properties (0.4–2.5 m) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochemistry: Exploration, Environment, Analysis, 3–3, 219–228.
  • Dekker, H.J. and Hoogenboom, A.G., 1996. Predictive modelling of AVIRIS performance over inland waters. Proceedings Sixth Annual JPL Airborne Earth Science Workshop. JPL Publication, 96-4 1, 83–92.
  • Emerson, R. and Lewis, Ch., 1943. The dependence of the quantum yield of Chlorella photosynthesis on wave length of light. American Journal of Botany, 30–3, 83–163.
  • Farrand, W.H. and Harsanyi, J.C., 1995. Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data, Coeur d’Aldene River, Idaho. Proceedings AVIRIS Workshop, 47–50.
  • Hubbard, B.E. and Crowley, J.K., 2005. Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: data dimensionality issues and solutions. Remote Sensing of Environment, 99, 173–186. doi:10.1016/j.rse.2005.04.027
  • Karaska, M.A., et al., 2004. AVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the Neuse River, North Carolina. Photogrammetric Engineering and Remote Sensing, 70, 125–133. doi:10.14358/PERS.70.1.125
  • Kruse, F.A., et al., 1993. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44, 145–163. doi:10.1016/0034-4257(93)90013-N
  • Lévesque, J., et al., 1997. Spectral unmixing for monitoring mine tailings site rehabilitation, Copper Cliff Mine, Sudbury, Ontario. Proceedings 12th international conference and workshops on applied geologic remote sensing, 17–19 November, Denver, CO.
  • Nordstrom, D.K. and Alpers, C.N., 1999. Geochemistry of acid mine waters. In: G.S. Plumlee and M.J. Logsdon, eds. The environmental geochemistry of mineral deposits. Part A: Processes, techniques, and health issues. Littleton, CO: Society of Economic Geologists Inc., Reviews in Economic Geology, 6A, 133–160.
  • Olías, M., et al., 2006. Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (Southwest Spain). Applied Geochemistry, 21, 1733–1749.
  • Riaza, A. and Carrère, V., 2010. Monitoring of superficial contamination produced by massive sulphide mine waste along the Odiel River (Andalousia, Spain) using hyperspectral data. In: IGARSS 2009 Geoscience and remote sensing symposium, 13–17 July, Cape Town, III-1701–III-1704, ISBN: 978-1-4244-3394-0.
  • Riaza, A. and Müller, A., 2010. Hyperspectral remote sensing monitoring of pyrite mine wastes: a record of climate variability (Pyrite Belt, Spain). Environmental Earth Sciences, 61–3, 575–594.
  • Riaza, A., et al., 2011b. Pyrite mine waste and water mapping using HyMap and Hyperion hyperspectral data. Environmental Earth Sciences, 66–7, 1957–1971.
  • Riaza, A., et al., 2011c. Monitoring the extent of contamination from acid mine drainage in the Iberian Pyrite Belt (SW Spain) using hyperspectral imagery. Remote Sensing, 3, 2166–2186. doi:10.3390/rs3102166
  • Riaza, A., et al., 2012a. River acid mine drainage: sediment and water mapping through hyperspectral Hymap data. International Journal of Remote Sensing, 33 (19), 6163–6185. doi:10.1080/01431161.2012.675454
  • Riaza, A., et al., 2012b. Mapping acid water on an acid mine drainage contaminated river with hyperspectral Hymap data (River Odiel, Huelva, Spain). Proceedings 4th workshop on remote sensing and geology, 24–25 May, Mykonos, 163–177.
  • Riaza, A., García-Meléndez, E., and Mueller, A., 2011a. Spectral identification of pyrite mud weathering products: a field and laboratory evaluation. International Journal of Remote Sensing, 32 (1), 185–208. doi:10.1080/01431160903439957
  • Richter, R. and Schläpfer, D., 2002. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote Sensing, 23, 2631–2649. doi:10.1080/01431160110115834
  • RSI, 2000. ENVI User´s Guide. Research Systems Inc. Publications.
  • Sánchez España, J., et al., 2005. Acid mine drainage in the Iberian Pyrite Belt (Odiel River watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356. doi:10.1016/j.apgeochem.2005.01.011
  • Sarmiento, A.M., et al., 2009a. Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel River basin (SW Spain). Applied Geochemistry, 24, 697–714. doi:10.1016/j.apgeochem.2008.12.025
  • Sarmiento, A.M., et al., 2009b. Inorganic arsenic speciation at river basin scales: the Tinto and Odiel rivers in the Iberian Pyrite Belt, SW Spain. Environmental Pollution, 157, 1202–1209. doi:10.1016/j.envpol.2008.12.002
  • Schläpfer, D. and Richter, R., 2002. Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: parametric orthorectification. International Journal of Remote Sensing, 23, 2609–2630. doi:10.1080/01431160110115825
  • Swayze, G.A., et al., 1996. Mapping acid generating minerals at the California Gulch Superfund Site in Leadville, Colorado using imaging spectroscopy. In: R.O. Green, ed. Proceedings sixth annual JPL airborne earth sciences workshop. JPL Publication 96-4.
  • Swayze, G.A., et al., 1998. Using imaging spectroscopy to cost-effectively locate acid-generating minerals at mine sites: an example from the California Gulch Superfund Site. Paper presented at Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Proceedings 1998 JPL Airborne Geoscience Workshop, Leadville, CO, 49–53.
  • Swayze, G.A., et al., 2000. Using imaging spectroscopy to map acidic mine waste. Environmental Science and Technology, 34, 47–54. doi:10.1021/es990046w
  • Velasco, F., et al., 2005. Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). Journal of Geochemical Exploration, 87, 45–72. doi:10.1016/j.gexplo.2005.07.002
  • Zeinalov, Y. and Maslenkova, L., 2000. On the action spectra of photosynthesis and spectral dependence of the quantum efficiency. Bulgarian Journal of Plant Physiology, 26 (1–2), 68–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.