3,204
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications

Modélisation des impacts des changements climatiques et d’occupation des sols avec SWIM: enseignements tirés d’applications multiples

, , , , , , & show all
Pages 606-635 | Received 11 Nov 2013, Accepted 12 Mar 2014, Published online: 26 Mar 2015

REFERENCES

  • Abbott, M.B., et al., 1986. An introduction to the european hydrological systems-systeme hydrologique Europeen, ‘SHE’. 2. Structure of a physically based distributed modelling system. Journal of Hydrology, 87, 61–77. doi:10.1016/0022-1694(86)90115-0
  • Aich, V., et al., 2014. Comparing impacts of climate change on streamflow in four large African river basins, Hydrology and Earth System Sciences, 18, 1305–1321. doi:10.5194/hess-18-1305-2014
  • Alcamo, J., et al., 2003. Development and testing of the waterGAP 2 global model of water use and availability. Hydrological Sciences Journal, 48 (3), 317–337. doi:10.1623/hysj.48.3.317.45290
  • Arnold, J.G., Allen, P.M., and Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology, 142 (1–4), 47–69. doi:10.1016/0022-1694(93)90004-S
  • Arnold, J.G., et al., 1990. SWRRB - A basin scale simulation model for soil and water resources management. College Station, TX: Texas A&M University Press.
  • Bergström, S., 1995. The HBV model. In: V.P. Singh, Ed. Computer models of watershed hydrology. Highlands Ranch, CO: Water Resources Publications, 443–476.
  • Beven, K.J. and Kirby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24 (1), 43–69.
  • Böhm, U., et al., 2006. CLM – The climate version of LM: brief description and long-term application. Proceedings from the COSMO General Meeting 2005. COSMO Newsletter [online], 6, 225–235. Available from: http://www.cosmo-model.org [Accessed 6 Feb 2014].
  • Bondeau, A., et al., 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13 (3), 679–706. doi:10.1111/j.1365-2486.2006.01305.x
  • Boyacioglu, H., et al., 2011. Modeling the impacts of climate change on nitrogen retention in a 4th order stream. Climatic Change. doi:10.1007/s10584-011-0369-1
  • Brown, L.C. and Barnwell, T.O., 1987. The enhanced water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. Athens, GA: USEPA, EPA/600/3-87/007.
  • Chiew, F.H.S. and McMahon, T.A., 1993. Assessing the adequacy of catchment streamflow yield estimates. Australian Journal of Soil Research, 31, 665–680. doi:10.1071/SR9930665
  • Coles, S., 2001. An introduction to statistical modeling of extreme values. Heidelberg: Springer.
  • Conradt, T., et al., 2012. Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Regional Environmental Change. doi:10.1007/s10113-012-0279-4
  • Enke, W., et al., 2005a. Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations. Meteorologische Zeitschrift, 14 (2), 247–257. doi:10.1127/0941-2948/2005/0028
  • Enke, W., Schneider, F., and Deutschländer, T., 2005b. A novel scheme to derive optimized circulation pattern classifications for downscaling and forecast purposes. Theoretical Applications Climatology, 82, 51–63. doi:10.1007/s00704-004-0116-x
  • Gassman, P.W., et al., 2010. Invited Review Article: The agricultural policy/environmental eXtender (APEX) model: an emerging tool for landscape and watershed environmental analyses. Transactions of the ASABE, 53 (3), 711–740. doi:10.13031/2013.30078
  • Gelfan, A.N., Pomeroy, J.W., and Kuchment, L.S., 2004. Modeling forest cover influences on snow accumulation, sublimation, and melt. Journal of Hydrometeorology, 5 (5), 785–803. doi:10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2
  • Grünewald, U., 2001. Water resources management in river catchments influenced by lignite mining. Ecological Engineering, 17, 143–152. doi:10.1016/S0925-8574(00)00154-3
  • Harley, P.C., et al., 1992. Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell and Environment, 15 (3), 271–282. doi:10.1111/j.1365-3040.1992.tb00974.x
  • Hattermann, F.F., Krysanova, V., and Hesse, C., 2008. Modelling wetland processes in regional applications. Hydrological Sciences Journal, 53 (5), 1001–1012. doi:10.1623/hysj.53.5.1001
  • Hattermann, F.F., et al., 2004. Integrating groundwater dynamics in regional hydrological modelling. Environmental Modelling & Software, 19 (11), 1039–1051. doi:10.1016/j.envsoft.2003.11.007
  • Hattermann, F.F., et al., 2005. Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment - validation and uncertainty analysis. Hydrological Processes, 19 (3), 693–714. doi:10.1002/hyp.5625
  • Hattermann, F.F., et al., 2006. Integrating wetlands and riparian zones in river basin modelling. Ecological Modelling, 199 (4), 379–392. doi:10.1016/j.ecolmodel.2005.06.012
  • Hattermann, F.F., et al., 2011. Model-supported impact assessment for the water sector in Central Germany under climate change—A case study. Water Resources Management, 25 (13), 3113–3134. doi:10.1007/s11269-011-9848-4
  • Hattermann, F.F., et al., 2012. Flood risk in holistic perspective—observed changes in Germany. In: Z.W. Kundzewicz, ed. Changes in flood risk in Europe. Wallingford: International Association of Hydrological Sciences IAHS Special publ. 10, 212–237.
  • Hattermann, F.F., et al., 2013. Climatological drivers of changes in flood hazard in Germany. Acta Geophysica, 61 (2), 463–477. doi:10.2478/s11600-012-0070-4
  • Hattermann, F.F., et al., 2014. Modeling flood damages under climate change conditions - a case study for Germany. Natural Hazards and Earth System Science, 14, 3151–3168. doi:10.5194/nhess-14-3151-2014
  • Hesse, C., et al., 2008. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, 218 (1–2), 135–148. doi:10.1016/j.ecolmodel.2008.06.035
  • Hesse, C., et al., 2013. Comparison of several approaches representing terrestrial and in-stream nutrient retention and decomposition in watershed modelling. Ecological Modelling, 269, 70–85. doi:10.1016/j.ecolmodel.2013.08.017
  • Hesse, C., Krysanova, V., and Voß, A., 2012. Implementing in-stream nutrient processes in large-scale landscape modeling for the impact assessment on water quality. Environmental Modeling & Assessment, 17 (6), 589–611. doi:10.1007/s10666-012-9320-8
  • Holsten, A., et al., 2009. Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecological Modelling, 220 (17), 2076–2087. doi:10.1016/j.ecolmodel.2009.04.038
  • Huang, S., 2012. Modelling of environmental change impacts on water resources and hydrological extremes in Germany. Thesis (PhD). Potsdam University, Potsdam.
  • Huang, S., Krysanova, V., and Hattermann, F.F., 2012. Impacts of climate change on water availability and crop yield in Germany. In: R. Seppelt, et al., eds. Proceedings of the International Congress on Environmental Modelling and Software: Managing Resources of a Limited Planet, Sixth Biennial Meeting, 2012 Leipzig.
  • Huang, S., Krysanova, V., and Hattermann, F.F., 2013. Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological model. Acta Geophysica, 61 (1), 151–193. doi:10.2478/s11600-012-0065-1
  • Huang, S., Krysanova, V., and Hattermann, F., 2014. Does bias correction increase reliability of flood projections under climate change? – A case study of large rivers in Germany. International Journal of Climatology, 34 (14), 3780–3800. doi:10.1002/joc.3945
  • Huang, S., et al., 2009. From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios. Ecological Modelling, 220 (19), 2543–2558. doi:10.1016/j.ecolmodel.2009.06.043
  • Huang, S., et al., 2010. Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrological Processes, 24 (23), 3289–3306. doi:10.1002/hyp.7753
  • Huang, S., et al., 2015. Impact of intensive irrigation activities on river discharge under agricultural scenarios in the semi-arid Aksu river basin, northwest China. Water Resources Management, 29 (3), 945–959. doi:10.1007/s11269-014-0853-2
  • Huang, S., et al., 2013a. Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Climatic Change, 116 (3–4), 631–663. doi:10.1007/s10584-012-0586-2
  • Kimball, B.A., et al., 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biology, 1, 429–442. doi:10.1111/j.1365-2486.1995.tb00041.x
  • Knisel, W.G., ed., 1980. CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems. USDA Conservation Research Report, 26. Washington, DC: USDA.
  • Koch, H., Liersch, S., and Hattermann, F.F., 2013. Integrating water resources management in eco-hydrological modelling. Water Science and Technology, 67 (7), 1525–1533. doi:10.2166/wst.2013.022
  • Krysanova, V. and Arnold, J.G., 2008. Advances in ecohydrological modelling with SWAT—a review. Hydrological Sciences Journal, 53 (5), 939–947. doi:10.1623/hysj.53.5.939
  • Krysanova, V. and Becker, A., 1999. Integrated modelling of hydrological processes and nutrient dynamics at the river basins scale. Hydrobiologia, 410, 131–138. doi:10.1023/A:1003728419934
  • Krysanova, V. and Haberlandt, U., 2002b. Assessment of nitrogen leaching from arable land in large river basins. Part I: simulation experiments using a process-based model. Ecological Modelling, 150 (3), 255–275. doi:10.1016/S0304-3800(01)00525-7
  • Krysanova, V., Hattermann, F., and Wechsung, F., 2007. Implications of complexity and uncertainty for integrated modelling and impact assessment in river basins. Environmental Modelling and Software, 22 (5), 701–709. doi:10.1016/j.envsoft.2005.12.029
  • Krysanova, V., Müller-Wohlfeil, D.-I., and Becker, A., 1998. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological Modelling, 106 (2–3), 261–289. doi:10.1016/S0304-3800(97)00204-4
  • Krysanova, V., Wechsung, F., and Hattermann, F., 2005. Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment. Hydrological Processes, 19, 763–783. doi:10.1002/hyp.5619
  • Krysanova, V., et al., 1989. Simulation modelling of the coastal waters pollution from agricultural watershed. Ecological Modelling, 49 (1–2), 7–29. doi:10.1016/0304-3800(89)90041-0
  • Krysanova, V., et al., 1999. Mesoscale ecohydrological modelling to analyse regional effects of climate change. Environmental Modeling and Assessment, 4 (4), 259–271. doi:10.1023/A:1019020518977
  • Krysanova, V., et al., 2000. SWIM (Soil and Water Integrated Model): user manual. PIK Report no. 69. Potsdam: Potsdam Institute for Climate Impact Research.
  • Krysanova, V., et al., 2002. Linkage between hydrological processes and sediment transport at the river basin scale - a modelling study. In: W. Summer and D.E. Walling, eds. Modelling erosion, sediment transport and sediment yield. Paris: UNESCO: International Hydrological Programme, IHP-VI, Technical Documents in Hydrology no. 60, 147–174.
  • Kundzewicz, Z.W. and Schellnhuber, H.-J., 2004. Floods in the IPCC TAR perspective. Natural Hazards, 31 (1), 111–128. doi:10.1023/B:NHAZ.0000020257.09228.7b
  • Liersch, S., et al., 2012a. Vulnerability of rice production in the Inner Niger Delta to water resources management under climate variability and change. Environmental Science and Policy. doi:10.1016/j.envsci.2012.10.014
  • Liersch, S., et al., 2012b. Constraints of future freshwater resources in the Upper Niger Basin – Has the human-environmental system of the Inner Niger Delta a chance to survive? In: R. Seppelt, A.A. Voinov, and D. Bankamp, eds. Proceedings of the international congress on environmental modelling and software: Managing resources of a limited planet, Leipzig, Germany [online]. Available from: http://www.iemss.org/society/index.php/iemss-2012-proceedings [Accessed 21 November 2012].
  • Mahé, G., et al., 2011. Estimation of the flooded area of the Inner Delta of the River Niger in Mali by hydrological balance and satellite data. In: S.W. Franks et al., eds. Hydro-climatology: variability and change, (Proceedings of symposium JHS02, Melbourne, Australia, July 2011). Wallingford: International Association of Hydrological Sciences, IAHS Publ. 344, 138–143.
  • Mander, Ü., et al., 1997. Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecological Engineering, 8 (4), 299–324. doi:10.1016/S0925-8574(97)00025-6
  • Merz, B., 2006. Hochwasserrisiken: grenzen und Möglichkeiten der Risikoabschätzung. Stuttgart: Schweizerbart.
  • Monteith, J.L., 1965. Evaporation and the environment. Symp. of the Society for Experimental Biology, 19, 205–234.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50 (3), 885–900.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10 (3), 282–290.
  • Neteler, M. and Mitasova, H., 2008. Open source GIS: A GRASS GIS approach. 3rd ed. New York: Springer (ISBN-10: 038735767X; ISBN-13: 978-0387357676).
  • Orlowsky, B., Gerstengarbe, F.-W., and Werner, P., 2008. A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theoretical and Applied Climatology, 92 (3–4), 209–223. doi:10.1007/s00704-007-0352-y
  • Post, J., et al., 2008b. Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin. Hydrological Sciences Journal, 53 (5), 1043–1058. doi:10.1623/hysj.53.5.1043
  • Post, J., et al., 2007. Evaluation of water and nutrient dynamics in soil-crop systems using the eco-hydrological catchment model SWIM. In: K.C. Kersebaum, et al., eds. Modelling water and nutrient dynamics in soil-crop systems. Dordrecht: Springer, 129–146.
  • Post, J., et al., 2008a. Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics. Environmental Modelling and Software, 23, 125–138. doi:10.1016/j.envsoft.2007.05.010
  • Priestley, C.H.B. and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review, 100, 81–92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • RDM, 2010. Plan national d’investissement prioritaire dans le secteur agricole au Mali—2011–2015. Rapport PNIP-SA Republique du Mali, Bamako.
  • Tomassini, L. and Jacob, D., 2009. Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. Journal of Geophysical Research, 114, D12113. doi:10.1029/2008JD010652
  • Vetter, T., et al., 2015. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth System Dynamics, 6, 17–43. doi:10.5194/esd-6-17-2015
  • Wattenbach, M., et al., 2005. A simplified approach to implement forest eco-hydrological properties in regional hydrological modelling. Ecological Modelling, 187 (1), 40–59. doi:10.1016/j.ecolmodel.2005.01.026
  • Wechsung, F., et al., eds., 2008. Integrated analysis of the impacts of global change on environment and society in the Elbe River Basin. Berlin: Weißensee Verlag.
  • Wechsung, F., et al., 2000. May land use change reduce the water deficiency problem caused by reduced brown coal mining in the state of Brandenburg? Landscape and Urban Planning, 51 (2–4), 177–189. doi:10.1016/S0169-2046(00)00108-0
  • Weedon, G.P., et al., 2011. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12, 823–848. doi:10.1175/2011JHM1369.1
  • Williams, J.R. and Berndt, H.D., 1977. Sediment yield prediction based on watershed hydrology. Transactions of the American Society of Agricultural Engineers, 20 (6), 1100–1104. doi:10.13031/2013.35710
  • Williams, J.R., et al., 1995. Simulation of animal waste management with APEX. In: J. McFarland, ed, Innovations and new horizons in livestock and poultry manure management. Austin, TX: Texas A&M University, Texas Agricultural Extension Service, 22–26.
  • Williams, J.R., Renard, K.G., and Dyke, P.T., 1984. EPIC—a new model for assessing erosion’s effect on soil productivity. Journal of Soil and Water Conservation, 38 (5), 381–383.
  • World Meteorological Organization (WMO), 2009. Modelling of hydrological systems. In: Guide to hydrological practices, vol. II—Management of water resources and application of hydrological practices, WMO-No. 168, 6th ed. Geneva: WMO, II.6-1–II.6.53.
  • Wortmann, M., et al., 2013. Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China. Hydrological Processes. doi:10.1002/hyp.10118
  • Zwarts, L., et al., 2006. The economic and ecological effects of water management choices in the Upper Niger River: development of decision support methods. International Journal of Water Resources Development, 22, 135–156. doi:10.1080/07900620500405874

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.