1,259
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Predicting daily pan evaporation by soft computing models with limited climatic data

Prévoir l’évaporation journalière au bac par des modèles flous avec des données climatiques limitées

, , , &
Pages 1120-1136 | Received 20 Nov 2012, Accepted 25 Feb 2014, Published online: 26 Jun 2015

REFERENCES

  • Allen, R.G., et al., 1998. Crop evapotranspiration guidelines for computing crop water requirements, FAO Irrigation and Drainage, Paper no. 56. Rome: Food and Agriculture Organization of the United Nations.
  • ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models, 1993. Criteria for evaluation of watershed models. Journal of Irrigation and Drainage Engineering, 119 (3), 429–442. doi:10.1061/(ASCE)0733-9437(1993)119:3(429).
  • Ayyub, B.M. and McCuen, R.H., 2003. Probability, statistics, and reliability for engineers and scientists. 2nd ed. Boca Raton, FL: Taylor & Francis.
  • Bruton, J.M., McClendon, R.W., and Hoogenboom, G., 2000. Estimating daily pan evaporation with artificial neural networks. Transactions of the ASAE, 43 (2), 491–496. doi:10.13031/2013.2730.
  • Chang, F.J., et al., 2010. Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. Journal of Hydrology, 384 (1–2), 118–129. doi:10.1016/j.jhydrol.2010.01.016.
  • Chang, F.J., Chang, L.C., and Wang, Y.S., 2007. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes, 21 (6), 741–749. doi:10.1002/hyp.6262.
  • Chang, F.J., Sun, W., and Chung, C.H., 2013. Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan. Hydrological Sciences Journal, 58 (4), 813–825. doi:10.1080/02626667.2013.775447.
  • Choudhury, B.J., 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216 (1–2), 99–110. doi:10.1016/S0022-1694(98)00293-5.
  • Chow, V.T., Maidment, D.R., and Mays, L.W., 1988. Applied hydrology. NewYork: McGraw-Hill.
  • Dawson, C.W. and Wilby, R.L., 2001. Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25 (1), 80–108. doi:10.1177/030913330102500104.
  • Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13 (2), 87–129.
  • Ferreira, C., 2006. Gene expression programming: mathematical modeling by an artificial intelligence. 2nd ed. Heidelberg: Springer.
  • Finch, J.W., 2001. A comparison between measured and modelled open water evaporation from a reservoir in south-east England. Hydrological Processes, 15, 2771–2778. doi:10.1002/hyp.267.
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. Journal of Hydrology, 377 (1–2), 80–91. doi:10.1016/j.jhydrol.2009.08.003.
  • Guven, A. and Kişi, Ö., 2011. Daily pan evaporation modeling using linear genetic programming technique. Irrigation Science, 29 (2), 135–145. doi:10.1007/s00271-010-0225-5.
  • Haykin, S., 2009. Neural networks and learning machines. 3rd ed. Upper Saddle River, NJ: Prentice Hall.
  • Hsu, K., et al., 2002. Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research, 38 (12), 1302. doi:10.1029/2001WR000795.
  • Jain, S.K., Nayak, P.C., and Sudheer, K.P., 2008. Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes, 22 (13), 2225–2234. doi:10.1002/hyp.6819.
  • Kay, A.L. and Davies, H.N., 2008. Calculating potential evaporation from climate model data: a source of uncertainty for hydrological climate change impacts. Journal of Hydrology, 358 (3–4), 221–239. doi:10.1016/j.jhydrol.2008.06.005.
  • Keskin, M.E. and Terzi, Ö., 2006. Artificial neural network models of daily pan evaporation. Journal of Hydrologic Engineering, 11 (1), 65–70. doi:10.1061/(ASCE)1084-0699(2006)11:1(65).
  • Kim, S. and Kim, H.S., 2008. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, 351 (3–4), 299–317. doi:10.1016/j.jhydrol.2007.12.014.
  • Kim, S., et al., 2013. Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resources Management, 27 (7), 2267–2286. doi:10.1007/s11269-013-0287-2.
  • Kim, S., Kim, J.H., and Park, K.B., 2009. Statistical learning theory for the disaggregation of the climatic data. In: Proceedings of 33rd IAHR Congress 2009, 9–14 August. Vancouver: IAHR, 1154–1162.
  • Kim, S., Shiri, J., and Kisi, O., 2012. Pan evaporation modeling using neural computing approach for different climatic zones. Water Resources Management, 26 (11), 3231–3249. doi:10.1007/s11269-012-0069-2.
  • Kişi, Ö., 2006. Daily pan evaporation modelling using a neuro-fuzzy computing technique. Journal of Hydrology, 329 (3–4), 636–646. doi:10.1016/j.jhydrol.2006.03.015.
  • Kişi, O., 2007. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrological Processes, 21, 1925–1934. doi:10.1002/hyp.6403.
  • Kişi, Ö., 2009. Modeling monthly evaporation using two different neural computing techniques. Irrigation Science, 27 (5), 417–430. doi:10.1007/s00271-009-0158-z.
  • Kişi, O., Pour-Ali Baba, A., and Shiri, J., 2012. Generalized neurofuzzy models for estimating daily pan evaporation values from weather data. Journal of Irrigation and Drainage Engineering, 138 (4), 349–362. doi:10.1061/(ASCE)IR.1943-4774.0000403.
  • Kohonen, T., 1990. The self-organizing map. Proceedings of the IEEE, 78 (9), 1464–1480. doi:10.1109/5.58325.
  • Kohonen, T., 2001. Self-organizing maps. NewYork: Springer-Verlag.
  • Kottegoda, N.T. and Rosso, R., 1997. Statistics, probability, and reliability for civil and environmental engineers. Singapore: McGraw-Hill.
  • Kumar, M., et al., 2002. Estimating evapotranspiration using artificial neural networks. Journal of Irrigation and Drainage Engineering, 128 (4), 224–233. doi:10.1061/(ASCE)0733-9437(2002)128:4(224).
  • Legates, D.R. and McCabe, G.J., 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233–241. doi:10.1029/1998WR900018.
  • Lin, G.F. and Chen, L.H., 2005. Time series forecasting by combining the radial basis function network and the self-organizing map. Hydrological Processes, 19 (10), 1925–1937. doi:10.1002/hyp.5637.
  • Lin, G.F. and Chen, L.H., 2006. Identification of homogeneous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324 (1–4), 1–9. doi:10.1016/j.jhydrol.2005.09.009.
  • Lin, G.F. and Wu, M.C., 2007. A SOM-based approach to estimating design hyetographs of ungauged sites. Journal of Hydrology, 339 (3–4), 216–226. doi:10.1016/j.jhydrol.2007.03.016.
  • Lin, G.F. and Wu, M.C., 2009. A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology, 375 (3–4), 450–458. doi:10.1016/j.jhydrol.2009.06.047.
  • McCuen, R.H., 1993. Microcomputer applications in statistical hydrology. Englewood Cliffs, NJ: Prentice Hall.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • NeuroDimension Inc, 2005. Developers of neurosolutions V5.01: neural network simulator. Gainesville, FL: NeuroDimension Incorporated.
  • Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193, 120–145. doi:10.1098/rspa.1948.0037.
  • Principe, J.C., Euliano, N.R., and Lefebvre, W.C., 2000. Neural and adaptive systems: fundamentals through simulation. NewYork: Wiley, John & Sons, Inc.
  • Rosenberry, D.O., et al., 2007. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology, 340 (3–4), 149–166. doi:10.1016/j.jhydrol.2007.03.018.
  • Shiri, J. and Kişi, Ö., 2011. Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (Southwestern Iran). Journal of Irrigation and Drainage Engineering, 137 (7), 412–425. doi:10.1061/(ASCE)IR.1943-4774.0000315.
  • Shiri, J., et al., 2011. Estimating daily pan evaporation from climatic data of the state of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research, 42 (6), 491–502. doi:10.2166/nh.2011.020.
  • Shiri, J., Marti, P., and Singh, V.P., 2014. Evaluation of gene expression programming approaches for estimating daily pan evaporation through spatial and temporal data scanning. Hydrological Processes, 28 (3), 1215–1225. doi:10.1002/hyp.9669.
  • Singh, V.P., Jain, S.K., and Tyagi, A., 2007. Risk and reliability analysis: a handbook for civil and environmental engineers. Reston, VA: ASCE Press.
  • Sivakumar, B., Jayawardena, A.W., and Fernando, T.M.K.G., 2002. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 265 (1–4), 225–245. doi:10.1016/S0022-1694(02)00112-9.
  • Sudheer, K.P., et al., 2002. Modelling evaporation using an artificial neural network algorithm. Hydrological Processes, 16 (16), 3189–3202. doi:10.1002/hyp.1096.
  • Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S., 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering, 129 (3), 214–218. doi:10.1061/(ASCE)0733-9437(2003)129:3(214).
  • Tabari, H., Marofi, S., and Sabziparvar, A.A., 2010. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrigation Science, 28 (5), 399–406. doi:10.1007/s00271-009-0201-0.
  • Tan, S.B.K., Shuy, E.B., and Chua, L.H.C., 2007. Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate. Hydrological Processes, 21 (4), 486–499. doi:10.1002/hyp.6251.
  • Terzi, Ö. and Erol Keskin, M., 2005. Evaporation estimation using gene expression programming. Journal of Applied Sciences, 5 (3), 508–512. doi:10.3923/jas.2005.508.512.
  • Tokar, A.S. and Johnson, P.A., 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4 (3), 232–239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232).
  • Vallet-Coulomb, C., et al., 2001. Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia). Journal of Hydrology, 245 (1–4), 1–18. doi:10.1016/S0022-1694(01)00341-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.