1,142
Views
2
CrossRef citations to date
0
Altmetric
Articles

Availability and performance of sediment detachment and transport functions for overland flow conditions

Disponibilité et les performances des fonctions de détachement et de transport des sédiments pour des conditions d'écoulement de surface

&
Pages 1550-1565 | Received 18 Jun 2013, Accepted 12 Mar 2014, Published online: 14 Aug 2015

REFERENCES

  • Abrahams, A.D., Gao, P., and Aebly, F.A., 2000. Relation of sediment transport capacity to stone-cover and size in rain impacted interrill flow. Earth Surface Processes and Landforms, 25 (5), 497–504. doi:10.1002/(SICI)1096-9837(200005)25:5<497::AID-ESP77>3.0.CO;2-P
  • Abrahams, A.D., Li, G., and Parsons, A.J., 1996. Rill hydraulics on a semiarid hillslope, Southern Arizona. Earth Surface Processes and Landforms, 21 (1), 35–47. doi:10.1002/(SICI)1096-9837(199601)21:1<35::AID-ESP539>3.0.CO;2-T
  • Abrahams, A.D. and Parsons, A.J., 1994. Hydraulics of interrill overland flow on stone-covered desert surfaces. Catena, 23, 111–140. doi:10.1016/0341-8162(94)90057-4
  • Abrahams, A.D., et al., 2001. A sediment transport equation for interrill overland flow on rough surfaces. Earth Surface Processes and Landforms, 26 (13), 1443–1459. doi:10.1002/esp.286
  • Aksoy, H., et al., 2013. Laboratory experiments of sediment transport from bare soil with a rill. Hydrological Sciences Journal, 58 (7), 1505–1518. doi:10.1080/02626667.2013.824085
  • Ali, M., et al., 2012. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds. Hydrology and Earth System Sciences, 16, 591–601. doi:10.5194/hess-16-591-2012
  • Allen, J.R.L., 1994. Fundamental properties of fluids and their relation to sediment transport processes. In: K. Pye, ed. Sediment transport and depositional processes. Oxford: Blackwell Scientific Publications, 25–60.
  • Alonso, C.V., Neibling, W.H., and Foster, G.R., 1981. Estimating sediment transport capacity in watershed modeling. Transactions of the American Society of Agricultural Engineers, 24, 1211–1220. doi:10.13031/2013.34422
  • Aziz, N.M. and Scott, D.E., 1989. Experiments on sediment transport in shallow flows in high gradient channels. Hydrological Sciences Journal, 34, 465–478. doi:10.1080/02626668909491352
  • Bagnold, R.A., 1956. The flow of cohesionless grains in fluids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 249 (964), 235–297. doi:10.1098/rsta.1956.0020
  • Bagnold, R.A., 1966. An approach to the sediment transport problem from general physics. United States Geological Survey Professional Paper 422-I, I1–I37.
  • Bagnold, R.A., 1980. An empirical correlation of bedload transport rates in flumes and natural rivers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 453–473. doi:10.1098/rspa.1980.0122
  • Barrow, C.J., 1991. Land degradation. Cambridge University Press.
  • Beven, K.J., 2001. Rainfall–runoff modelling The Primer. Chichester: Wiley.
  • Blau, J.B., Woolhiser, D.A., and Lane, L.J., 1988. Identification of erosion model parameters. Transactions of the American Society of Agricultural Engineers, 31 (3), 839–845. doi:10.13031/2013.30789
  • De Roo, A.P.J., Offermans, R.J.E., and Cremers, N.H.D.T., 1996. LISEM: a single-event, physically based hydrological and soil erosion model for drainage basins II: sensitivity analysis, validation and application. Hydrological Processes, 10, 1119–1126. doi:10.1002/(SICI)1099-1085(199608)10:8<1119::AID-HYP416>3.0.CO;2-V
  • DuBoys, M.P., 1879. Le Rhône et les rivières à lit afflouillable. Annals de Ponts et Chaussée, 18 (5), 141–195.
  • Elliot, W.J. and Laflen, J.M., 1993. A process-based rill erosion model. Transactions of the American Society of Agricultural Engineers, 36 (1), 35–72.
  • Elliot, W.J., et al., 1989. A compendium of soil erodibility data from WEPP cropland soil field erodibility experiments 1987 and 1988. West Lafayette, IN, NSERL Report No. 3.
  • Ellison, W.D., 1947. Soil erosion studies, Part 1. Agricultural Engineering, 28, 145–146.
  • Engelund, F. and Hansen, E., 1967. A monograph on sediment transport in alluvial streams. Copenhagen: Teknisk Forlag.
  • Everaert, W., 1991. Empirical relations for the sediment transport capacity of interrill flow. Earth Surface Processes and Landforms, 16, 513–532. doi:10.1002/esp.3290160604
  • Finney, V.L., et al., 1993. Comparison of DR-USLE, SEGMO and AGNPS with two rainfall events. In: K. Banasik and A. Zbikowski, eds. Proceeding of international symposium on runoff and sediment yield modelling. Warsaw Agricultural University Press, 195–200.
  • Flanagan, D.C., et al., 2001. The water erosion prediction project (WEPP) model. In: R.S. Harmon and W.W. Doe, eds. Landscape erosion and evolution modelling. New York: Kluwer Academics/Plenum, 145–199.
  • Foster, G.R., 1982. Modeling the erosion process. In: C.T. Hahn, ed. Hydrologic modeling of small watersheds. St Joseph, MI: American Society of Agricultural Engineers, 295–380.
  • Foster, G.R., Johnson, C.B., and Moldenhauer, W.C., 1982. Hydraulics of failure of unanchored cornstalk and wheat straw mulches for erosion control. Transactions of the American Society of Agricultural Engineers, 25, 940–947. doi:10.13031/2013.33644
  • Foster, G.R. and Meyer, L.D., 1972. Transport of soil particles by shallow flow. Transactions of the American Society of Agricultural Engineers, 15, 99–102. doi:10.13031/2013.37840
  • Foster, G.R., et al., 1981. Estimating erosion and sediment yield on field sized areas. Transactions of the American Society of Agricultural Engineers, 24 (5), 1253–1262. doi:10.13031/2013.34429
  • Fullen, M.A. and Reed, A.H. 1987. Rill erosion on arable loamy sands in the West Midlands of England. In: R.B. Bryan, ed. Rill erosion processes and significance. Catena Supplement, 8, 85–96.
  • Ghebreiyessus, Y.T. 1990. Evaluation of concentrated flow erosion and hydraulic shear stress relationships. Thesis (PhD). University of Missouri, Columbia, MO.
  • Giménez, R., et al., 2007. Effect of bed topography on soil aggregates transport by rill flow. Earth Surface Processes and Landforms, 32, 602–611. doi:10.1002/esp.1418
  • Govers, G., 1990. Empirical relationships for the transporting capacity of overland flow. In: D.E. Walling, A. Yair, and S. Berckowicz eds. Erosion, Transport and Deposition Processes. Wallingford: International Association of Hydrological Sciences, IAHS Publ. 189, 45–63.
  • Govers, G., 1992. Evaluation of transporting capacity formulae for overland flow. In: A.J. Parsons and A.D. Abrahams, eds. Overland flow hydraulics and erosion mechanics. London: University College London Press, 243–273.
  • Govers, G. and Rauws, G., 1986. Transporting capacity of overland flow on plane and on irregular beds. Earth Surface Processes and Landforms, 11, 515–524. doi:10.1002/esp.3290110506
  • Graf, W.H., 1971. Hydraulics of sediment transport. New York: McGraw-Hill.
  • Grismer, M.E., 2012. Erosion modelling for land management in the Tahoe basin, USA: scaling from plots to forest catchments. Hydrological Sciences Journal, 57 (5), 878–900. doi:10.1080/02626667.2012.685170
  • Guy, B.T., Dickinson, W.T., and Rudra, R.P., 1992. Evaluation of fluvial sediment transport equations for overland flow. Transactions of the American Society of Agricultural Engineers, 35, 545–555. doi:10.13031/2013.28632
  • Hairsine, P.B. and Rose, C.W., 1992. Modeling water erosion due to overland flow using physical principles: 2. Rill flow. Water Resources Research, 28, 245–250. doi:10.1029/91WR02381
  • Hessel, R. and Jetten, V., 2007. Suitability of transport equations in modelling soil erosion for a small loess plateau catchment. Engineering Geology, 91, 56–71. doi:10.1016/j.enggeo.2006.12.013
  • Hirschi, M.C. and Barfield, B.J., 1988a. KYERMO-A physically based research erosion model part I. Model development. Transactions of the American Society of Agricultural Engineers, 31 (3), 804–813. doi:10.13031/2013.30785
  • Hirschi, M.C. and Barfield, B.J., 1988b. KYERMO-A physically based research erosion model part II. Model sensitivity analysis and testing. Transactions of the American Society of Agricultural Engineers, 31 (3), 814–820. doi:10.13031/2013.30786
  • Kim, M., et al., 2007. Regional scale application of USLE and WEPP for soil erosion assessment in Korea. American Society of Agricultural and Biological Engineers Meeting Presentation, Paper Number, 072048.
  • Knapen, A., et al., 2007. Resistance of soils to concentrated flow erosion: a review. Earth-Science Reviews, 80, 75–109. doi:10.1016/j.earscirev.2006.08.001
  • Knisel, W.G., 1980. CREAMS, a filed scale model for chemicals, runoff and erosion for agricultural management systems. USDA Conservation Research Report vol. 26.
  • Knisel, W.G. and Davis, F.M., 2000. GLEAMS – groundwater loading effects of agricultural management systems, version 3.0, user manual. Tifton, GA: US Department of Agriculture, Southeast Watershed Research Laboratory.
  • Kramer, L.A. and Meyer, L.D., 1969. Small amounts of surface mulch reduce soil erosion and runoff velocity. Transactions of the American Society of Agricultural Engineers, 12, 638–645. doi:10.13031/2013.38916
  • Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304 (5677), 1623–1627. doi:10.1126/science.1097396
  • Lal, R. and Stewart, B.A., 1990. Agroforestry for soil management in tropics. In: R. Lal and B.A. Stewart, eds. Soil degradation, a global threat. New York: Springer, XIII–XVII.
  • Larsen, I.J. and MacDonald, L.H., 2007. Predicting post-fire sediment yields at the hillslope scale: testing RUSLE and disturbed WEPP. Water Resources Research, 43 (11), Art. No. W11412. doi:10.1029/2006WR005560
  • Laursen, E.M., 1958. The total sediment load of streams. Journal of Hydraulic Division, 84 (1530), 1–36.
  • Lewis, S.M., et al., 1994a. Proril—an erosion model using probability distributions for rill flow and density I. Model development. Transactions of the American Society of Agricultural Engineers, 37 (1), 115–123. doi:10.13031/2013.28060
  • Lewis, S.M., et al., 1994b. PRORIL—an erosion model using probability distributions for rill flow and density II. Model validation. Transactions of the American Society of Agricultural Engineers, 37 (1), 125–133. doi:10.13031/2013.28061
  • Liu, B.Y., et al., 2000. Slope length effects on soil loss for steep slopes. Soil Science Society of America Journal, 64 (5), 1759–1763. doi:10.2136/sssaj2000.6451759x
  • Loch, R.J., Maroulis, J.C., and Silburn, D.M., 1989. Rill erosion of a self-mulching black earth. II. Comparison of sediment transport equations. Australian Journal of Soil Research, 27, 535–542. doi:10.1071/SR9890535
  • Low, H.S., 1989. Effect of sediment density on bed‐load transport. Journal of Hydraulic Engineering, 115, 124–138. doi:10.1061/(ASCE)0733-9429(1989)115:1(124)
  • Lu, J.Y., Cassol, E.A., and Moldenhauer, W.C., 1989. Sediment transport relationships for sand and silt loam soils. Transactions of the American Society of Agricultural Engineers, 32, 1923–1931. doi:10.13031/2013.31244
  • Merten, G.H., Nearing, M.A., and Borges, A.L.O., 2001. Effect of sediment load on soil detachment and deposition in rills. Soil Science Society of America Journal, 65, 861–868. doi:10.2136/sssaj2001.653861x
  • Meyer, L.D. and Wischmeier, W.H., 1969. Mathematical simulation of the process of soil erosion by water. Transactions of the American Society of Agricultural Engineers, 12 (6), 754–762. doi:10.13031/2013.38945
  • Meyer, L.D., et al., 1983. Transport of sand sized sediment along crop row furrows. Transactions of the American Society of Agricultural Engineers, 26, 106–111. doi:10.13031/2013.33884
  • Meyer-Peter, E. and Muller, R., 1948. Formulas for bed-load transport. In: Proceedings of the 2nd meeting of the international association for hydraulic structures research. Stockholm: IAHR, 39–64.
  • Misra, R.K. and Rose, C.W., 1996. Application and sensitivity analysis of process-based erosion model GUEST. European Journal of Soil Science, 47, 593–604. doi:10.1111/j.1365-2389.1996.tb01858.x
  • Morgan, R.P.C., et al., 1998a. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23, 527–544. doi:10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  • Morgan, R.P.C., et al., 1998b. The European Soil Erosion Model (EUROSEM): documentation and user guide, version 3. Bedford: Silsoe College, Cranfield University.
  • Moss, A.J. and Green, P., 1983. Movement of solids in air and water by raindrop impact. effects of drop-size and water depth variations. Australian Journal of Soil Research, 21, 257–269. doi:10.1071/SR9830257
  • Nearing, M.A., Bradford, J.M., and Parker, S.C., 1991. Soil detachment by shallow flow at low slopes. Soil Science Society of America Journal, 55, 339–344. doi:10.2136/sssaj1991.03615995005500020006x
  • Nord, G. and Esteves, M., 2007. Evaluation of sediment transport formulae and detachment parameters in eroding rills using PSEM_2D and the water erosion prediction project (WEPP) database. Water Resources Research, 43, 00. doi:10.1029/2006WR005444
  • Onstad, C.A., 1984. Sediment yield modelling. In: R.F. Hadley and D.E. Walling, eds. Erosion and sediment yield: some methods of measurement and modelling. Norwich: GE Books.
  • Owoputi, L.O. and Stolte, W.J., 1995. Soil detachment in the physically based soil erosion process: a review. Transactions of the American Society of Agricultural Engineers, 38, 1099–1110. doi:10.13031/2013.27927
  • Pimentel, D., et al., 1995. Environmental and Economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123. doi:10.1126/science.267.5201.1117
  • Poesen, J. and Savat, J., 1981. Detachment and transportation of loose sediments by raindrop splash. Part II: detachability and transportability measurements. Catena, 8, 19–41. doi:10.1016/S0341-8162(81)80002-1
  • Poesen, J., et al., 2003. Gully erosion and environmental change: importance and research needs. Catena, 50, 91–133. doi:10.1016/S0341-8162(02)00143-1
  • Prosser, I. and Rustomji, P., 2000. Sediment transport capacity relations for overland flow. Progress in Physical Geography, 24, 179–193. doi:10.1177/030913330002400202
  • Ramsankaran, R., et al., 2013. Physically-based distributed soil erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrological Sciences Journal, 58 (4), 872–891. doi:10.1080/02626667.2013.781606
  • Rauws, G.. 1984. De transportcapaciteit van afterflow over een ruw oppervlak: laboratoriumexperimenten. Thesis (MSc). K.U. Leuven, Belgium.
  • Renard, K.G., et al., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook 703. Washington, DC: US Government Print Office.
  • Rickenmann, D., 1991. Hyperconcentrated flow and sediment transport at steep slopes. Journal of Hydraulic Engineering, 117 (11), 1419–1439. doi:10.1061/(ASCE)0733-9429(1991)117:11(1419)
  • Riley, S.J. and Gorey, D.B., 1988. Aspects of the design and calibration of a portable flume. Soil Technology, 1, 297–312. doi:10.1016/0933-3630(88)90011-6
  • Sadeghi, S.H.R., Gholami, L., and Khaledi Darvishan, A.V., 2013. Suitability of MUSLT for storm sediment yield prediction in Chehelgazi watershed, Iran. Hydrological Sciences Journal, 58 (4), 892–897. doi:10.1080/02626667.2013.782406
  • Savat, J., 1981. Work done by splash: laboratory experiments. Earth Surface Processes and Landforms, 6, 275–283. doi:10.1002/esp.3290060308
  • Schoklitsch, A., 1962. Handbuch des Wasserbaues. 3rd ed. (In German). Vienna, Austria: Springer Verlag.
  • Sfeir-Younis, A., 1986. Soil conservation in developing countries, Western Africa Projects Department. Washington, DC: The World Bank.
  • Shields, A., 1936. Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Berlin: Mitteilungen des Preussischen Versuchsanstalt fuer Wasserbau und Schiffbau.
  • Smart, G.M., 1984. Sediment transport formula for steep channels. Journal of Hydraulic Engineering, 110 (3), 267–276. doi:10.1061/(ASCE)0733-9429(1984)110:3(267)
  • Smith, R.E., Goodrich, D.C., and Quinton, J.N., 1995. Dynamic, distributed simulation of watershed erosion: the KINEROS2 and EUROSEM models. Journal of Soil and Water Conservation, 50 (5), 517–520.
  • Summer, W. and Walling, D.E.. 2002. Modelling erosion, sediment transport and sediment yield. Paris: UNESCO, Technical Documents in Hydrology No. 60 (IHP-VI).
  • Toy, T.J., Foster, G.R., and Renard, K.G., 2002. Soil erosion: processes, prediction, measurement, and control. New York: John Wiley & Sons.
  • Wicks, J.M. and Bathurst, J.C., 1996. SHESED: a physically-based, distributed erosion and sediment yield component for the SHE hydrological modelling system. Journal of Hydrology, 175, 213–238. doi:10.1016/S0022-1694(96)80012-6
  • Wieprecht, S., Tolossa, H.G., and Yang, C.T., 2013. A neuro-fuzzy-based modelling approach for sediment transport computation. Hydrological Sciences Journal, 58 (3), 587–599. doi:10.1080/02626667.2012.755264
  • Woodward, D.E., 1999. Method to predict cropland ephemeral gully erosion. Catena, 37, 393–399. doi:10.1016/S0341-8162(99)00028-4
  • Yalin, M.S., 1963. An expression for bed-load transportation. Journal Hydraulic Division, 89, 221–248.
  • Yang, C.T., 1972. Unit stream power and sediment transport. Journal of Hydraulic Division, 98, 1805–1826.
  • Yang, C.T., 1973. Incipient motion and sediment transport. Journal of Hydraulic Division, 99, 1679–1703.
  • Yang, C.T., 1984. Unit stream power equation for gravel. Journal of Hydraulic Engineering, 110 (12), 1783–1797. doi:10.1061/(ASCE)0733-9429(1984)110:12(1783)
  • Yang, D., et al., 2003. Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17, 2913–2928. doi:10.1002/hyp.1441
  • Young, R.A. and Wiersma, J.L., 1973. The role of rainfall impact in soil detachment and transport. Water Resources Research, 9 (6), 1629–1636. doi:10.1029/WR009i006p01629
  • Zhang, G., et al., 2003. Detachment of undisturbed soil by shallow flow. Soil Science Society of America Journal, 67, 713–719. doi:10.2136/sssaj2003.0713
  • Zhu, J.C., et al., 1996. Simulated small channel bed scour and head cut erosion rates compared. Soil Science Society of America Journal, 59, 211–218. doi:10.2136/sssaj1995.03615995005900010032x
  • Zhu, J.C., et al., 2001. Comparison of concentrated flow detachment equations for low shear stress. Soil and Tillage Research, 61, 203–212. doi:10.1016/S0167-1987(01)00207-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.