21,120
Views
196
CrossRef citations to date
0
Altmetric
Original Articles

Global hydrological models: a review

Revue des modèles hydrologiques globaux

&
Pages 549-565 | Received 20 Jun 2013, Accepted 30 Apr 2014, Published online: 10 Mar 2015

REFERENCES

  • Agarwal, C., et al., 2002. A review and assessment of land-use change models: dynamics of space, time, and human choice. General technical report, NE-297. Newton Square, PA: US Department of Agriculture, Forest Service, Northeastern Research Station.
  • Alcamo, J., 2009. Managing the global water system. In: S. Levin, et al., eds. Princeton guide of ecology. Princeton, NJ: Princeton University Press.
  • Alcamo, J., et al., 2003. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal, 48 (3), 317–337. doi:10.1623/hysj.48.3.317.45290.
  • Alcamo, J., et al., 2008. A grand challenge for freshwater research: understanding the global water system. Environmental Research Letters, 3, 1–6. doi:10.1088/1748-9326/3/1/010202.
  • Alcamo, J. and Henrichs, T., 2002. Critical regions: a model-based estimation of world water resources sensitive to global changes. Aquatic Sciences, 64 (4), 352–362. doi:10.1007/PL00012591.
  • Alkama, R., et al., 2010. Global evaluation of the ISBA-TRIP continental hydrological system. Part I: comparison to GRACE terrestrial water storage estimates and in situ river discharges. Journal of Hydrometeorology, 11 (3), 583–600. doi:10.1175/2010JHM1211.1.
  • Amarasinghe, U.A., et al., 2005. Spatial variation in water supply and demand across river basins of India. Research report 83. International Water Management Institute, Colombo, Sri Lanka.
  • Arnell, N., 1999. A simple water balance model for the simulation of streamflow over a large geographic domain. Journal of Hydrology, 217 (3–4), 314–335. doi:10.1016/S0022-1694(99)00023-2.
  • Arnell, N.W. and Gosling, S.N., 2013. The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351–364. doi:10.1016/j.jhydrol.2013.02.010.
  • Barnard, J.D., 1948. Heat units as a measure of canning crop maturity. The Canner, 106, 28.
  • Bicknell, B.R., et al., 1997. Hydrological simulation program—Fortran. User’s manual for version 11. Athens, GA: US Environmental Protection Agency, National Exposure Research Laboratory, EPA/600/R-97/080.
  • Biemans, H., et al., 2009. Effects of precipitation uncertainty on discharge calculations for main river basins. Journal of Hydrometeorology, 10, 1011–1025. doi:10.1175/2008JHM1067.1.
  • Bierkens, M.F.P. and van Beek, L.P.H., 2009. Seasonal predictability of European discharge: NAO and hydrological response time. Journal of Hydrometeorology, 10, 953–968. doi:10.1175/2009JHM1034.1.
  • Bondeau, A., et al., 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13, 679–706. doi:10.1111/j.1365-2486.2006.01305.x.
  • Brakenridge, G.R., et al., 2012. Calibration of satellite measurements of river discharge using a global hydrology model. Journal of Hydrology, 475, 123–136. doi:10.1016/j.jhydrol.2012.09.035.
  • Das, N., Entekhabi, D., and Njoku, E., 2011. An algorithm for merging SMAP radiometer and radar data for high resolution soil moisture retrieval. IEEE-Transactions on Geoscience and Remote Sensing, 49 (5), 1504–1512. doi:10.1109/TGRS.2010.2089526.
  • de Graaf, I.E.M., et al., 2014. Dynamic attribution of global water demand to surface water and groundwater resources: effects of abstractions and return flows on river discharges. Advances in Water Resources, 64, 21–33. doi:10.1016/j.advwatres.2013.12.002.
  • Dickinson, R.E., et al., 1986. Biosphere Atmosphere Transfer Scheme (BATS) for the NCAR community climate model. NCAR Technical Note, NCAR/TN-275 + STR.
  • Dirmeyer, P.A., 2011. The terrestrial segment of soil moisture–climate coupling. Geophysical Research Letters, 38, L16702. doi:10.1029/2011GL048268.
  • Döll, P. and Siebert, S., 2002. Global modeling of irrigation water requirements. Water Resources Research, 38 (4), 8–10. doi:10.1029/2001WR000355.
  • Döll, P., et al., 2008. Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling. Advances in Geosciences, 18, 51–61. doi:10.5194/adgeo-18-51-2008.
  • Döll, P., et al., 2012. Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics, 59–60, 143–156. doi:10.1016/j.jog.2011.05.001.
  • Döll, P., et al., 2014. Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surveys in Geophysics, doi:10.1007/s10712-014-9282–2.
  • Döll, P., Fiedler, K., and Zhang, J., 2009. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrology and Earth System Sciences, 13, 2413–2432. doi:10.5194/hess-13-2413-2009.
  • Döll, P., Kaspar, F., and Lehner, B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270, 105–134. doi:10.1016/S0022-1694(02)00283-4.
  • Fekete, B.M. and Vörösmarty, C.J., 2007. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements [online]. In: Predictions in ungauged basins: PUB kick-off (Proceedings of the PUB kick-off meeting held in Brasilia, 20–22 November 2002), IAHS Publication 309, Brasilia, 129–136. Available from: http://iahs.info/uploads/dms/309015.pdf [Accessed 12 February 2015].
  • Fekete, B.M., et al., 2010. Millennium Ecosystem Assessment scenario drivers (1970–2050): climate and hydrological alterations. Global Biogeochemical Cycles, 24 (4). doi:10.1029/2009GB003593.
  • Fekete, B.M., Vörösmarty, C.J., and Grabs, W., 2002. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochemical Cycles, 16 (3), 15–10. doi:10.1029/1999GB001254.
  • Fekete, M., et al., 2006. Application of isotope tracers in continental scale hydrological modeling. Journal of Hydrology, 330, 444–456. doi:10.1016/j.jhydrol.2006.04.029.
  • Foley, J.A., et al., 2005. Global consequences of land use. Science, 309, 570–574. doi:10.1126/science.1111772.
  • Freeman, M.C., Pringle, C.M., and Jackson, C.R., 2007. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. JAWRA Journal of the American Water Resources Association, 43 (1), 5–14. doi:10.1111/j.1752-1688.2007.00002.x.
  • Fritsche, M., Döll, P., and Dietrich, R., 2012. Global-scale validation of model-based load deformation of the Earth’s crust from continental water mass and atmospheric pressure variations using GPS. Journal of Geodynamics, 59–60, 133–142. doi:10.1016/j.jog.2011.04.001.
  • Garrigues, S., et al., 2008. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. Journal of Geophysical Research, 113, G02028. doi:10.1029/2007JG000635.
  • Gerten, D., 2013. A vital link: water and vegetation in the Anthropocene. Hydrology and Earth System Sciences, 17 (10), 3841–3852. doi:10.5194/hess-17-3841-2013.
  • Gerten, D., et al., 2005. Contemporary ‘green’ water flows: simulations with a dynamic global vegetation and water balance model. Physics and Chemistry of the Earth, Parts A/B/C, 30 (6–7), 334–338. doi:10.1016/j.pce.2005.06.002.
  • Gong, L., et al., 2009. Large-scale runoff routing with an aggregated network-response function. Journal of Hydrology, 368 (1–4), 237–250. doi:10.1016/j.jhydrol.2009.02.007.
  • Gosling, S.N., et al., 2010. Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (1926), 4005–4021. doi:10.1098/rsta.2010.0164.
  • Gudmundsson, L., et al., 2012. Comparing large-scale hydrological model simulations to observed runoff percentiles in Europe. Journal of Hydrometeorology, 13 (2), 604–620. doi:10.1175/JHM-D-11-083.1.
  • Haddeland, I., et al., 2011. Multi-model estimate of the global terrestrial water balance: setup and first results. Journal of Hydrometeorology, 12 (5), 869–884. doi:10.1175/2011JHM1324.1.
  • Hagemann, S. and Dümenil, L., 1997. A parametrization of the lateral waterflow for the global scale. Climate Dynamics, 14 (1), 17–31. doi:10.1007/s003820050205.
  • Hagemann, S. and Dümenil, L., 2001. Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. Journal of Geophysical Research, 106, 1503–1510. doi:10.1029/2000JD900568.
  • Hanasaki, N., et al., 2008a. An integrated model for the assessment of global water resources—part 1: model description and input meteorological forcing. Hydrology and Earth System Sciences, 12, 1007–1025. doi:10.5194/hess-12-1007-2008.
  • Hanasaki, N., et al., 2008b. An integrated model for the assessment of global water resources—Part 2: applications and assessments. Hydrology and Earth System Sciences, 12, 1027–1037. doi:10.5194/hess-12-1027-2008.
  • Hanasaki, N., et al., 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. Journal of Hydrology, 384 (3–4), 232–244. doi:10.1016/j.jhydrol.2009.09.028.
  • Hanasaki, N., et al., 2013. A global water scarcity assessment under Shared Socio-economic Pathways—Part 2: water availability and scarcity. Hydrology and Earth System Sciences, 17 (7), 2393–2413. doi:10.5194/hess-17-2393-2013.
  • Huard, D., 2011. A black eye for the Hydrological Sciences Journal. Discussion of ‘A comparison of local and aggregated climate model outputs with observed data’ (by G.G. Anagnostopoulos et al., 2010, Hydrological Sciences Journal 55 (7), 1094–1110). Hydrological Science Journal 56 (7), 1330–1333.
  • Hunger, M. and Döll, P., 2008. Value of river discharge data for global-scale hydrological modeling. Hydrology and Earth System Sciences, 12, 841–861. doi:10.5194/hess-12-841-2008.
  • Immerzeel, W.W. and Droogers, P., 2008. Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology, 349, 411–424. doi:10.1016/j.jhydrol.2007.11.017.
  • Irannejad, P. and Henderson-Sellers, A., 2007. Evaluation of AMIP II global climate model simulations of the land surface water budget and its components over the GEWEX-CEOP regions. Journal of Hydrometeorology, 8 (3), 304–326. doi:10.1175/JHM579.1.
  • Islam, M.D., et al., 2006. A grid-based assessment of global water scarcity including virtual water trading. Water Resources Management, 21 (1), 19–33. doi:10.1007/s11269-006-9038-y.
  • Jin, S. and Feng, G., 2013. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global and Planetary Change, 106, 20–30. doi:10.1016/j.gloplacha.2013.02.008.
  • Kaspar, F., 2004. Development and uncertainty analysis of a global hydrological model (PhD dissertation in German). University of Kassel, Kassel, Germany.
  • Kauffeldt, A., et al., 2013. Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17, 2845–2857. doi:10.5194/hess-17-2845-2013.
  • Kidd, C., et al., 2009. Satellite precipitation measurements for water resource monitoring. JAWRA Journal of the American Water Resources Association, 45 (3), 567–579. doi:10.1111/j.1752-1688.2009.00326.x.
  • Korzoun, V.I., et al., 1977. Atlas of world water balance. Paris: UNESCO.
  • Koster, R.D., et al., 2003. Observational evidence that soil moisture variations affect precipitation. Geophysical Research Letters, 30 (5), 1241. doi:10.1029/2002GL016571.
  • Koster, R.D., et al., 2004. Realistic initialization of land surface states: impacts on subseasonal forecast skill. Journal of Hydrometeorology, 5, 1049–1063. doi:10.1175/JHM-387.1.
  • Krysanova, V., Müller-Wohlfeil, D.I., and Becker, A., 1998. Development and test of a spatially distributed hydrological/water quality model for mesoscale water-sheds. Ecological Modelling, 106, 261–289. doi:10.1016/S0304-3800(97)00204-4.
  • Kuligowski, R.J., 2002. A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. Journal of Hydrometeorology, 3, 112–130. doi:10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2.
  • Kundzewicz, Z.W. and Stakhiv, E.Z., 2010. Are climate models “ready for prime time” in water resources management applications, or is more research needed? Editorial. Hydrological Sciences Journal, 55 (7), 1085–1089. doi:10.1080/02626667.2010.513211.
  • Lawford, R.G., et al., 2004. Advancing global-and continental-scale hydrometeorology: contributions of GEWEX hydrometeorology panel. Bulletin of the American Meteorological Society, 85 (12), 1917–1930. doi:10.1175/BAMS-85-12-1917.
  • Li, L., et al., 2013. Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in southern Africa. Hydrology Research, 44 (5), 770–788. doi:10.2166/nh.2012.175.
  • Liang, X., et al., 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99 (D7), 14415–428. doi:10.1029/94JD00483.
  • Lindström, G., et al., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201, 272–288. doi:10.1016/S0022-1694(97)00041-3.
  • Manabe, S., 1969. Climate and the ocean circulation. The atmospheric circulation and the hydrology of the earth’s surface. Monthly Weather Review, 97, 739–774. doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.
  • Matthews, E., 1983. Global vegetation and land use: new high-resolution data bases for climate studies. Journal of Climate and Applied Meteorology, 22, 474–487. doi:10.1175/1520-0450(1983)022<0474:GVALUN>2.0.CO;2.
  • McMillan, H., Krueger, T., and Freer, J., 2012. Benchmarking observational uncertainties for hydrology: rainfall, river discharge and water quality. Hydrological Processes, 26, 4078–4111. doi:10.1002/hyp.9384.
  • Meigh, J.R., McKenzie, A.A., and Sene, K.J., 1999. A grid-based approach to water scarcity. Estimates for eastern and southern Africa. Water Resources Management, 13, 85–115. doi:10.1023/A:1008025703712.
  • Meigh, J.R. and Tate, E.L., 2002. The GWAVA model—development of a global-scale methodology to assess the combined impact of climate and land use changes [online]. EGS XXVII General Assembly. Nice, abstract #1276. Available from: http://adsabs.harvard.edu/abs/2002EGSGA..27.1276M [Accessed 24 February 2015].
  • Melillo, J.M., et al., 1993. Global climate change and terrestrial net primary production. Nature, 363, 234–240. doi:10.1038/363234a0.
  • Milly, P.C.D. and Shmakin, A.B., 2002. Global modeling of land water and energy balances. Part I: the Land Dynamics (LaD) Model. Journal of Hydrometeorology, 3 (3), 283–299. doi:10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.
  • Milly, P.C.D., et al., 2010. Terrestrial water-storage contributions to sea-level rise and variability. In: J.A. Church, et al. eds. Understanding sea-level rise and variability. Oxford: Wiley-Blackwell.
  • Mu, Q., et al., 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111, 519–536. doi:10.1016/j.rse.2007.04.015.
  • Müller, C. and Lucht, W., 2007. Robustness of terrestrial carbon and water cycle simulations against variations in spatial resolution. Journal of Geophysical Research, 112 (D6), 1–7. doi:10.1029/2006JD007875.
  • Müller Schmied, H., et al., 2014. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrology and Earth System Sciences Discussions, 11, 1583–1649. doi:10.5194/hessd-11-1583-2014.
  • Mulligan, M., 2013. WaterWorld: a self-parameterising, physically-based model for application in data-poor but problem-rich environments globally. Hydrology Research, doi:10.2166/nh.2012.217. in press.
  • Munro, R.K., et al., 1998. Modelling land surface–atmosphere interactions over the Australian continent with an emphasis on the role of soil moisture. Environmental Modelling & Software, 13 (3–4), 333–339. doi:10.1016/S1364-8152(98)00038-3.
  • Neitsch, S.L., et al., 2002. Soil and Water Assessment Tool Theoretical Documentation, Version 2000. Grassland, Soil and Water Research Laboratory, Temple, Texas and Blackland Research Center, Temple, Texas. Texas Water Resources Institute, College Station, Texas.
  • Nijssen, B., et al., 2001a. Predicting the discharge of global rivers. Journal of Climate, 14, 3307–3323. doi:10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2.
  • Nijssen, B., Schnur, R., and Lettenmaier, D.P., 2001b. Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. Journal of Climate, 14, 1790–1808. doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.
  • Noilhan, J. and Planton, S., 1989. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review, 117, 536–549. doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.
  • Oki, T. and Sud, Y.C., 1998. Design of Total Runoff Integrating Pathways (TRIP) – a global river channel network. Earth Interactions, 2. doi:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2.
  • Palmer, M.A., et al., 2008. Climate change and the World’s River Basins: anticipating management options. Frontiers in Ecology and the Environment, 6 (2), 81–89. doi:10.1890/060148.
  • Petrescu, A.M.R., et al., 2010. Modeling regional to global CH4 emissions of boreal and arctic wetlands. Global Biogeochemical Cycles, 24, GB4009. doi:10.1029/2009GB003610.
  • Phillips, E.E., 1950. Heat summation theory as applied to canning crops. The Canner, 27, 13–15.
  • Rabalais, N.N., et al., 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66 (7), 1528–1537. doi:10.1093/icesjms/fsp047.
  • Rodda, J.C., 1995. Guessing or assessing the World’s water resources? Water and Environment Journal, 9 (4), 360–368. doi:10.1111/j.1747-6593.1995.tb00953.x.
  • Rost, S., et al., 2008a. Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 44 (9), 1–17. doi:10.1029/2007WR006331.
  • Rost, S., Gerten, D., and Heyder, U., 2008b. Human alterations of the terrestrial water cycle through land management. Advances in Geosciences, 18, 43–50. doi:10.5194/adgeo-18-43-2008.
  • Schuol, J. and Abbaspour, K.C., 2006. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Advances in Geosciences, 9, 137–143. doi:10.5194/adgeo-9-137-2006.
  • Sellers, P.J., et al., 1986. A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Sciences, 43, 505–531. doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.
  • Seneviratne, S.I., et al., 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Reviews, 99 (3–4), 125–161. doi:10.1016/j.earscirev.2010.02.004.
  • Shmakin, A.B., Milly, P.C.D., and Dunne, K.A., 2002. Global Modeling of land water and energy balances. Part III: interannual variability. Journal of Hydrometeorology, 3 (3), 311–321. doi:10.1175/1525-7541(2002)003<0311:GMOLWA>2.0.CO;2.
  • Sperna Weiland, F.C., et al., 2011. Extracting information from an ensemble of GCMs to reliably assess future global runoff change. Journal of Hydrology, 412–413, 66–75.
  • Strassberg, G., Scanlon, B.R., and Chambers, D., 2009. Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, Central United States. Water Resources Research, 45 (5), W05410. doi:10.1029/2008WR006892.
  • Syed, T.H., Famiglietti, J.S., and Chambers, D.P., 2009. GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. Journal of Hydrometeorology, 10 (1), 22–40. doi:10.1175/2008JHM993.1.
  • Tang, Q., et al., 2009. Remote sensing: hydrology. Progress in Physical Geography, 33 (4), 490–509. doi:10.1177/0309133309346650.
  • Tang, Q., et al., 2010. Dynamics of terrestrial water storage change from satellite and surface observations and modeling. Journal of Hydrometeorology, 11 (1), 156–170. doi:10.1175/2009JHM1152.1.
  • Tobin, K.J. and Bennett, M.E., 2009. Using SWAT to model streamflow in two river basins with ground and satellite precipitation data. JAWRA Journal of the American Water Resources Association, 45 (1), 253–271. doi:10.1111/j.1752-1688.2008.00276.x.
  • Trambauer, P., et al., 2013. A review of continental scale hydrological models and their suitability for drought forecasting in (sub-Saharan) Africa. Physics and Chemistry of the Earth, Parts A/B/C, 66, 16–26. doi:10.1016/j.pce.2013.07.003.
  • van Beek, L.P.H. and Bierkens, M.F.P., 2008. The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification [online]. Report, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands. Available from: http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf [Accessed March 2014].
  • van Beek, L.P.H., Wada, Y., and Bierkens, M.F.P., 2011. Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 47, W07517. doi:10.1029/2010WR009791.
  • Vörösmarty, C.J., et al., 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles, 3 (3), 241–265. doi:10.1029/GB003i003p00241.
  • Vörösmarty, C.J., et al., 2000. Global water resources: vulnerability from climate change and population growth. Science, 289, 284–288. doi:10.1126/science.289.5477.284.
  • Vörösmarty, C.J., Federer, C.A., and Schloss, A., 1998. Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology, 207, 147–169. doi:10.1016/S0022-1694(98)00109-7.
  • Voß, F., et al., 2008. First results from intercomparison of surface water availability modules. Technical Report No. 1. CESR.
  • Wada, Y., et al., 2010. Global depletion of groundwater resources. Geophysical Research Letters, 37, L20402. doi:10.1029/2010GL044571.
  • Wada, Y., et al., 2011. Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47, W07518. doi:10.1029/2010WR009792.
  • Wada, Y., et al., 2013. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters, 40, 4626–4632. doi:10.1002/grl.50686.
  • Wada, Y., Wisser, D., and Bierkens, M.F.P., 2014. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics, 5, 15–40. doi:10.5194/esd-5-15-2014.
  • Weedon, G.P., et al., 2011. Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12 (5), 823–848. doi:10.1175/2011JHM1369.1.
  • Werth, S. and Güntner, A., 2010. Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrology and Earth System Sciences, 14 (1), 59–78. doi:10.5194/hess-14-59-2010.
  • Werth, S., et al., 2009. Integration of GRACE mass variations into a global hydrological model. Earth and Planetary Science Letters, 277 (1–2), 166–173. doi:10.1016/j.epsl.2008.10.021.
  • Widén-Nilsson, E., 2007. Global-scale modelling of the land-surface water balance [online]. Development and Analysis of WASMOD-M. PhD. Dissertation. Available from: http://www.dissertations.se/dissertation/380756370b/ [Accessed January 2014].
  • Widén-Nilsson, E., Halldin, S., and Xu, C., 2007. Global water-balance modelling with WASMOD-M: parameter estimation and regionalisation. Journal of Hydrology, 340 (1–2), 105–118. doi:10.1016/j.jhydrol.2007.04.002.
  • Wilby, R.L., 2010. Evaluating climate model outputs for hydrological applications – opinion. Hydrological Sciences Journal, 55 (7), 1090–1093. doi:10.1080/02626667.2010.513212.
  • Wisser, D., et al., 2008. Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters, 35 (24), 1–5. doi:10.1029/2008GL035296.
  • Wisser, D., et al., 2010. The significance of local water resources captured in small reservoirs for crop production – a global-scale analysis. Journal of Hydrology, 384 (3–4), 264–275. doi:10.1016/j.jhydrol.2009.07.032.
  • Wood, E.F., et al., 2011. Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resources Research, 47 (5), 1–10. doi:10.1029/2010WR010090.
  • Xu, C.-Y., 2002. WASMOD – The water and snow balance modeling system – chapter 17. In: V.J. Singh and D.K. Frevert, eds. Mathematical models of small watershed hydrology and applications. Highlands Ranch, CO: Water Resources Publications LLC, 555–590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.