3,287
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Dependence between flood peaks and volumes: a case study on climate and hydrological controls

Relation entre pics et volumes de crues : étude des déterminants climatiques et hydrologiques

, , , , , , & show all
Pages 968-984 | Received 18 Jul 2013, Accepted 15 Jul 2014, Published online: 28 Apr 2015

REFERENCES

  • Bačová-Mitková, V. and Halmová, D., 2014. Joint modeling of flood peak discharges, volume and duration: a case study of the Danube river in Bratislava. Journal of Hydrology and Hydromechanics. doi:10.2478/johh–2014–0026
  • Blöschl, G., 2006. Hydrologic synthesis: across processes, places, and scales. Water Resources Research, 42, W03S02. doi:10.1029/2005WR004319
  • Blöschl, G. et al., eds., 2013a. Runoff prediction in ungauged basins—synthesis across processes, places and scales. Cambridge: Cambridge University Press.
  • Blöschl, G., et al., 2013b. The June 2013 flood in the Upper Danube basin and comparisons with the 2002, 1954 and 1899 floods. Hydrology and Earth System Sciences, 17, 5197–5212. doi:10.5194/hess-17-5197–2013
  • Blöschl, G. and Merz, R., 2009. Landform –hydrology feedbacks. In: J.-C. Otto and R. Dikau, eds. Landform –structure, evolution, process control, Lecture notes in Earth Sciences. 115. Heidelberg: Springer Verlag, 117–126. doi:10.1007/978-3-540-75761-0_8
  • Bonett, D.G. and Wright, T.A., 2000. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika, 65 (1), 23–28. doi:10.1007/BF02294183
  • Borga, M., et al., 2011. Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14, 834–844. doi:10.1016/j.envsci.2011.05.017
  • Burn, D.H., 1997. Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology, 202 (1–4), 212–230. doi:10.1016/S0022–1694(97)00068–1
  • Castellarin, A. and Pistocchi, A., 2012. An analysis of change in alpine annual maximum discharges: implications for the selection of design discharges. Hydrological Processes, 26, 1517–1526. doi:10.1002/hyp.8249
  • Chapman, T.G. and Maxwell, A.I., 1996. Baseflow separation—comparison of numerical methods with tracer experiments. In: 23rd Hydrology and Water Resources Symposium: Water and the Environment. Barton, ACT: Inst. of Eng., National Conference Publ., 96/05, 539–545.
  • Chen, L., et al., 2010. A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrological Sciences Journal, 55 (8), 1264–1280. doi:10.1080/02626667.2010.520564
  • Chowdhary, H., Escobar, L.A., and Singh, V.P., 2011. Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrology Research, 42 (2–3), 193. doi:10.2166/nh.2011.065
  • Corradini, C., Melone, F., and Singh, V.P., 1995. Some remarks on the use of GIUH in the hydrological practice. Nordic Hydrology, 26, 297–312. doi:10.2166/nh.1995.017
  • De Michele, C., et al., 2005. Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10 (1), 50–57. doi:10.1061/(ASCE)1084-0699(2005)10:1(50)
  • Dooge, J.C.I., 2005. Bringing it all together. Hydrology and Earth System Sciences, 9 (1/2), 3–14. doi:10.5194/hess-9-3–2005
  • Falkenmark, M. and Chapman, T.C., 1989. Comparative hydrology: an ecological approach to land and water resources. Paris: UNESCO.
  • Fang, X., et al., 2005. Literature review on timing parameters for hydrographs. Report 0-4696-1, Department of Civil Engineering, College of Engineering, Lamar University, Beaumont, Texas.
  • Favre, A.-C., et al., 2004. Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40, W01101. doi:10.1029/2003WR002456
  • Folmar, N.D., Miller, A.C., and Woodward, D.E., 2007. History and development of the NRCS lag time equation. Journal of the American Water Resources Association, 43 (3), 829–838. doi:10.1111/j.1752-1688.2007.00066.x
  • Gaál, L., et al., 2012. Flood timescales: understanding the interplay of climate and catchment processes through comparative hydrology. Water Resources Research, 48 (4), W04511. doi:10.1029/2011WR011509
  • Gaume, E., et al., 2009. A compilation of data on European flash floods. Journal of Hydrology, 367 (1–2), 70–78. doi:10.1016/j.jhydrol.2008.12.028
  • Gaume, E., et al., 2010. Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. Journal of Hydrology, 394 (1–2), 101–117. doi:10.1016/j.jhydrol.2010.01.008
  • Genest, C. and Favre, A.-C., 2007. Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347–368. doi:10.1061/(ASCE)1084-0699(2007)12:4(347)
  • Goel, N.K., Seth, S.M., and Chandra, S., 1998. Multivariate modeling of flood flows. Journal of Hydraulic Engineering, 124 (2), 146–155. doi:10.1061/(ASCE)0733-9429(1998)124:2(146)
  • Gonzales, A.L., et al., 2009. Comparison of different base flow separation methods in a lowland catchment. Hydrology and Earth System Sciences, 13, 2055–2068. doi:10.5194/hess-13-2055–2009
  • Gräler, B., et al., 2013. Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17, 1281–1296. doi:10.5194/hess-17-1281-2013
  • Grimaldi, S. and Serinaldi, F., 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29 (8), 1155–1167. doi:10.1016/j.advwatres.2005.09.005
  • Harlina, J.M., 1984. Watershed morphometry and time to hydrograph peak. Journal of Hydrology, 67, 141–154. doi:10.1016/0022–1694(84)90238–5
  • Hirschboeck, K.K., Ely, L., and Maddox, R.A., 2000. Hydroclimatology of meteorologic floods. In: E. Wohl, ed. Inland flood hazards: human, riparian and aquatic communities. New York: Cambridge University Press, 39–72.
  • McCuen, R.H., Wong, S.L., and Rawls, W.J., 1984. Estimating urban time of concentration. Journal of Hydraulic Engineering, 110 (7), 887–904. doi:10.1061/(ASCE)0733-9429(1984)110:7(887)
  • Melone, F., Corradini, C., and Singh, V.P., 2002. Lag prediction in ungauged basins: an investigation through actual data of the upper Tiber River valley. Hydrological Processes, 16 (5), 1085–1094. doi:10.1002/hyp.313
  • Merz, R. and Blöschl, G., 2003. A process typology of regional floods. Water Resources Research, 39 (12), 1340. doi:10.1029/2002WR001952
  • Merz, R. and Blöschl, G., 2008a. Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44 (8), W08432. doi:10.1029/2007WR006744
  • Merz, R. and Blöschl, G., 2008b. Flood frequency hydrology: 2. Combining data evidence. Water Resources Research, 44 (8), W08433. doi:10.1029/2007WR006745
  • Merz, R. and Blöschl, G., 2009. A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research, 45 (1), W01415. doi:10.1029/2008WR007163
  • Merz, R., Blöschl, G., and Parajka, J., 2006. Spatio-temporal variability of event runoff coefficients. Journal of Hydrology, 331 (3–4), 591–604. doi:10.1016/j.jhydrol.2006.06.008
  • Parajka, J., et al., 2006. Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrology and Earth System Sciences, 10, 353–368. doi:10.5194/hess-10-353–2006
  • Parajka, J., et al., 2009. Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria. Hydrological Sciences Journal, 54 (3), 456–473. doi:10.1623/hysj.54.3.456
  • Parajka, J., et al., 2010. Seasonal characteristics of flood regimes across the Alpine–Carpathian range. Journal of Hydrology, 394 (1–2), 78–89. doi:10.1016/j.jhydrol.2010.05.015
  • Pavelková, H., Dohnal, M., and Vogel, T., 2012. Hillslope runoff generation - comparing different modeling approaches. Journal of Hydrology and Hydromechanics, 60 (2), 73–86. doi:10.2478/v10098-012-0007-2
  • Pekárová, P., et al., 2012. Estimating flash flood peak discharge in Gidra and Parná Basin: case study for the 7–8 June 2011 flood. Journal of Hydrology and Hydromechanics, 60 (3), 145–216. doi:10.2478/v10098-012-0018–z
  • Rao, A.R., Delleur, J.W., and Sarama, P.B.S., 1972. Conceptual hydrologic models for urbanizing basins. Journal of Hydraulic Division ASCE, 98 (HY7), 1205–1220.
  • Renard, B. and Lang, M., 2007. Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Advances in Water Resources, 30 (4), 897–912. doi:10.1016/j.advwatres.2006.08.001
  • Requena, A.I., Mediero, L., and Garrote, L., 2013. Bivariate return period based on copulas for hydrologic dam design: comparison of theoretical and empirical approach. Hydrology and Earth System Sciences Discussions, 10, 557–596. doi:10.5194/hessd-10-557-2013
  • Sackl, B. and Bergmann, H., 1987. A bivariate flood model and its application. In: V.P. Singh, ed. Hydrologic frequency modelling. Proceedings of the international symposium on flood frequency and risk analyses. New York: Springer Science & Business Media, 571–582.
  • Salvadori, G., De Michele, C., and Durante, F., 2011. On the return period and design in a multivariate framework. Hydrology and Earth System Sciences, 15, 3293–3305. doi:10.5194/hess-15-3293–2011
  • Serinaldi, F. and Kilsby, C.G., 2013. The intrinsic dependence structure of peak, volume, duration and average intensity of hyetographs and hydrographs. Water Resources Research, 49 (6), 3423–3442. doi:10.1002/wrcr.20221
  • Sheridan, J.M., 1994. Hydrograph time parameters for flatland watersheds. Transactions of the ASAE, 37 (1), 103–113. doi:10.13031/2013.28059
  • Shiau, J.T., 2003. Return period of bivariate distributed extreme hydrological events. Stochastic Environmental Research and Risk Assessment (SERRA), 17, 42–57. doi:10.1007/s00477-003-0125–9
  • Viglione, A., et al., 2010a. Quantifying space-time dynamics of flood event types. Journal of Hydrology, 394 (1–2), 213–229. doi:10.1016/j.jhydrol.2010.05.041
  • Viglione, A., et al., 2010b. Generalised synthesis of space–time variability in flood response: an analytical framework. Journal of Hydrology, 394 (1–2), 198–212. doi:10.1016/j.jhydrol.2010.05.047
  • Viglione, A., et al., 2013. Flood frequency hydrology: 3. A Bayesian analysis. Water Resources Research, 49 (2), 675–692. doi:10.1029/2011WR010782
  • Viglione, A. and Blöschl, G., 2009. On the role of storm duration in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences, 13 (2), 205–216. doi:10.5194/hess-13-205–2009
  • Yue, S., et al., 2002. Approach for describing statistical properties of flood hydrograph. Journal of Hydrologic Engineering, 7 (2), 147–153. doi:10.1061/(ASCE)1084-0699(2002)7:2(147)
  • Zegpi, M. and Fernández, B., 2010. Hydrological model for urban catchments—analytical development using copulas and numerical solution. Hydrological Sciences Journal, 55 (7), 1123–1136. doi:10.1080/02626667.2010.512466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.