1,222
Views
11
CrossRef citations to date
0
Altmetric
Special issue: Modelling Temporally-variable Catchments

Graphical tools based on Turc-Budyko plots to detect changes in catchment behaviour

Outils basés sur le graphique de Turc-Budyko pour détecter les changements de comportement des bassins versants

, , &
Pages 1394-1407 | Received 07 Jan 2014, Accepted 06 Jun 2014, Published online: 24 Jul 2015

REFERENCES

  • Allen, R.G., et al., 1998. Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56, 15. Rome: Food and Agriculture Organization of the United Nations (FAO).
  • Andréassian, V. and Perrin, C., 2012. On the ambiguous interpretation of the Turc-Budyko nondimensional graph. Water Resources Research, 48, W10601. doi:10.1029/2012WR012532
  • Budyko, M.I., 1974. Climate and life. International geophysics series. New York: Academic Press.
  • Cornish, P. and Vertessy, R., 2001. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest. Journal of Hydrology, 242 (1–2), 43–63. doi:10.1016/S0022–1694(00)00384–X
  • Coron, L., et al., 2012. Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resources Research, 48, W05552. doi:10.1029/2011WR011721
  • Donohue, R.J., McVicar, T.R., and Roderick, M.L., 2010. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386 (1–4), 186–197. doi:10.1016/j.jhydrol.2010.03.020
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377 (1–2), 80–91. doi:10.1016/j.jhydrol.2009.08.003
  • Hornbeck, J.W., et al., 1993. Long-term impacts of forest treatments on water yield: a summary for northeastern USA. Journal of Hydrology, 150 (2–4), 323–344. doi:10.1016/0022–1694(93)90115–P
  • Ivkovic, K.M., 2009. A top–down approach to characterise aquifer–river interaction processes. Journal of Hydrology, 365 (3–4), 145–155. doi:10.1016/j.jhydrol.2008.11.021
  • Kingston, D.G., et al., 2009. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophysical Research Letters, 36 (20), L20403. doi:10.1029/2009GL040267
  • Kling, H., Fuchs, M., and Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424–425, 264–277. doi:10.1016/j.jhydrol.2012.01.011
  • Kuczera, G., 1987. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. Journal of Hydrology, 94 (3–4), 215–236. doi:10.1016/0022–1694(87)90054–0
  • Le Moine, N., Andréassian, V., and Mathevet, T., 2008. Confronting surface- and groundwater balances on the La Rochefoucauld-Touvre karstic system (Charente, France). Water Resources Research, 44, W03403. doi:10.1029/2007WR005984
  • Le Moine, N., et al., 2007. How can rainfall–runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resources Research, 43, W06428. doi:10.1029/2006WR005608
  • Lebecherel, L., Andréassian, V., and Perrin, C., 2013. On regionalizing the Turc-Mezentsev water balance formula. Water Resources Research, 49, 7508–7517. doi:10.1002/2013WR013575
  • Lørup, J.K., Refsgaard, J.C., and Mazvimavi, D., 1998. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: case studies from Zimbabwe. Journal of Hydrology, 205 (3–4), 147–163. doi:10.1016/S0168–1176(97)00311–9
  • Merz, R., Parajka, J., and Blöschl, G., 2011. Time stability of catchment model parameters: implications for climate impact analyses. Water Resources Research, 47, W02531. doi:10.1029/2010WR009505
  • Mezentsev, V., 1955. More on the computation of total evaporation (Yechio raz o rastchetie srednevo summarnovo ispareniia. Meteorologiya i Gidrologiya, 5, 24–26.
  • Milly, P.C.D. and Dunne, K.A., 2011. On the hydrologic adjustment of climate-model projections: the potential pitfall of potential evapotranspiration. Earth Interactions, 15 (1), 1–14. doi:10.1175/2010EI363.1
  • Moisselin, J-M., et al., 2002. Les changements climatiques en France au XXè siècle. Etude des longues séries homogénéisées de données de température et de précipitations. La Météorologie, 8, 45–56. 10.4267/2042/36233
  • Montanari, A., et al., 2013. “Panta Rhei”—Everything Flows: Change in hydrology and society—the IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 58 (6), 1256–1275. doi:10.1080/02626667.2013.809088
  • Monteith, J.L.. 1965. Evaporation and environment. Symposia of the Society for Experimental Biology (in The State and Movement of Water in Living Organisms), Vol. 19, 205–234. Cambridge, UK: Cambridge University Press.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I. A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022–1694(70)90255–6
  • Oudin, L., et al., 2005. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. Journal of Hydrology, 303 (1–4), 290–306. doi:10.1016/j.jhydrol.2004.08.026
  • Perrin, C., Michel, C., and Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279 (1–4), 275–289. doi:10.1016/S0022-1694(03)00225-7
  • Potter, N.J. and Zhang, L., 2009. Inter-annual variability of catchment water balance in Australia. Journal of Hydrology, 369 (1–2), 120–129. doi:10.1016/j.jhydrol.2009.02.005
  • Ruelland, D., et al., 2012. Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change. Journal of Hydrology, 424–425, 207–216. doi:10.1016/j.jhydrol.2012.01.002
  • Shaw, S.B. and Riha, S.J., 2011. Assessing temperature-based PET equations under a changing climate in temperate, deciduous forests. Hydrological Processes, 25 (9), 1466–1478. doi:10.1002/hyp.7913
  • Sperna Weiland, F.C., et al., 2012. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study. Hydrology and Earth System Sciences, 16 (3), 983–1000. doi:10.5194/hess-16-983–2012
  • Swift, L.W. and Swank, W.T., 1981. Long term responses of streamflow following clearcutting and regrowth. Hydrological Sciences Bulletin, 26 (3), 245–256. doi:10.1080/02626668109490884
  • Thirel, G., et al., 2015. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, 60 (7–8), doi:10.1080/02626667.2014.967248.
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, 38 (1), 55–94. doi:10.2307/210739
  • Turc, L., 1954. Le bilan d’eau des sols : relation entre les précipitations, l’évapotranspiration et l’écoulement. Annales agronomiques, Série A, 5, 491–595.
  • Valéry, A., 2010. Modélisation précipitations débit sous influence nivale : élaboration d’un module neige et évaluation sur 380 bassins versants. Thesis (PhD). AgroParisTech, Paris.
  • Valéry, A., Andréassian, V., and Perrin, C., 2014. As simple as possible but not simpler’: what is useful in a temperature-based snow-accounting routine? Part 2–Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.058
  • Vaze, J., et al., 2010. Climate non-stationarity—validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394 (3–4), 447–457. doi:10.1016/j.jhydrol.2010.09.018
  • Vidal, J.-P., et al., 2010. A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology, 30 (11), 1627–1644. doi:10.1002/joc.2003
  • Watson, F., et al., 2001. Improved methods to assess water yield changes from paired-catchment studies: application to the Maroondah catchments. Forest Ecology and Management, 143 (1–3), 189–204. doi:10.1016/S0378–1127(00)00517–X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.