1,024
Views
11
CrossRef citations to date
0
Altmetric
Articles

Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall

, &
Pages 36-49 | Received 08 Jan 2014, Accepted 18 Aug 2014, Published online: 23 Nov 2015

References

  • Arnaud, P., et al., 2008a. Régionalisation d’un générateur de pluies horaires sur la France métropolitaine pour la connaissance de l’aléa pluviographique. Hydrological Sciences Journal, 53 (1), 34–47. doi:10.1623/hysj.53.1.34
  • Arnaud, P., et al., 2008b. Regionalization of an hourly rainfall model in French territory for rainfall risk estimation. Hydrological Sciences Journal, 53 (1), 21p.
  • Arnaud, P., et al., 2011. Sensitivity of hydrological models to uncertainty in rainfall input. Hydrological Sciences Journal, 56 (3), 397–410. doi:10.1080/02626667.2011.563742
  • Arnaud, P., Fine, J.-A., and Lavabre, J., 2007. An hourly rainfall generation model applicable to all types of climate. Atmospheric Research, 85 (2), 230–242. doi:10.1016/j.atmosres.2007.01.002
  • Arnaud, P. and Lavabre, J., 1999. Using a stochastic model for generating hourly hyetographs to study extreme rainfalls. Hydrological Sciences Journal, 44 (3), 433–446. doi:10.1080/02626669909492238
  • Arnaud, P. and Lavabre, J., 2002. Coupled rainfall model and discharge model for flood frequency estimation. Water Resources Research, 38 (6), 11-1–11-11. doi:10.1029/2001WR000474
  • Arnaud, P. and Lavabre, J., 2010. Estimation de l’aléa pluvial en France métropolitaine. QUAE ed. Paris: Update Sciences & Technologies, 158 pages.
  • Aubert, Y., 2012. Estimation des valeurs extrêmes de débit par la méthode SHYREG: réflexions sur l’équifinalité dans la modélisation de la transformation pluie en débit. Paris: Université Pierre et Marie Curie.
  • Aubert, Y., et al., 2013. La méthode SHYREG débit, application sur 1605 bassins versants en France Métropolitaine. Hydrological Sciences Journal, 59 (5), 993–1005.
  • Aubert, Y., et al., 2014. Rainfall frequency analysis using a hourly rainfall model calibrated on weather patterns: application on Reunion Island. In: G.R. Abstracts, ed. EGU General Assembly 2014-7220, Vienna. Germany: Copernicus Publications, 1.
  • Blazkova, S. and Beven, K., 2004. Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. Journal of Hydrology, 292 (1–4), 153–172. doi:10.1016/j.jhydrol.2003.12.025
  • Boughton, W. and Droop, O., 2003. Continuous simulation for design flood estimation—a review. Environmental Modelling and Software, 18 (4), 309–318. doi:10.1016/S1364-8152(03)00004-5
  • Cadavid, L., Obeysekera, J.T.B., and Shen, H.W., 1991. Flood‐Frequency Derivation from Kinematic Wave. Journal of Hydraulic Engineering, 117 (4), 489–510. doi:10.1061/(ASCE)0733-9429(1991)117:4(489)
  • Cantet, P. and Arnaud, P., 2014. Extreme rainfall analysis by a stochastic model: impact of the copula choice on the sub-daily rainfall generation. Stochastic Environmental Research and Risk Assessment, 28 (6), 1479–1492. doi:10.1007/s00477-014-0852-0
  • Cantet, P., Bacro, J.-N., and Arnaud, P., 2011. Using a rainfall stochastic generator to detect trends in extreme rainfall. Stochastic Environmental Research and Risk Assessment, 25 (3), 429–441. doi:10.1007/s00477-010-0440-x
  • Carreau, J., et al., 2013. Extreme rainfall analysis at ungauged sites in the South of France: comparison of three approaches. Journal de la Société Française de Statistique, 154 (2), 119–138.
  • Castellarin, A., et al., 2012. Review of applied statistical methods for flood frequency analysis in Europe: WG2 of COST Action ES0901. UK: Centre for Ecology & Hydrology.
  • Cernesson, F., Lavabre, J., and Masson, J.-M., 1996. Stochastic model for generating hourly hyetographs. Atmospheric Research, 42, 149–161. doi:10.1016/0169-8095(95)00060-7
  • Chow, V.T., Maidment, D.R., and Mays, L.W., 1988. Applied hydrology. New York: McGraw-Hill.
  • Coles, S., 2001. An introduction to statistical modeling of extreme values. Heidelberg: Springer-Verlag.
  • Darlymple, T. 1960. Flood-frequency analysis. US Geological Survey Water Supply Paper 1543A.
  • Eagleson, P.S., 1972. Dynamics of flood frequency. Water Resources Research, 8 (4), 878–898. doi:10.1029/WR008i004p00878
  • England, J.F., Jarrett, R.D., and Salas, J.D., 2003. Data-based comparisons of moments estimators using historical and paleoflood data. Journal of Hydrology, 278 (1–4), 172–196. doi:10.1016/S0022-1694(03)00141-0
  • Folton, N. and Lavabre, J. 2006. Regionalization of a monthly rainfall–runoff model for the southern half of France based on a sample of 880 gauged catchments. In: Andréassian et al., eds. Large sample basin experiments for hydrological model parameterization: Results of the MOdel Parameter EXperiment - MOPEX. Wallingford, UK: International Association of Hydrological Sciences. IAHS Publ. 307, 264–277. Available at: http://iahs.info/uploads/dms/13620.27-264-277-47-FOLTON.pdf
  • Folton, N. and Lavabre, J. 2007. Approche par modélisation pluie–débit pour la connaissance régionale de la ressource en eau: application à la moitié du territoire français. La Houille Blanche, n° 03-2007, 64–70.
  • Fouchier, C., 2010. Développement d’une méthodologie pour la connaissance régionale des crues. Montpellier: Université Montpellier II Sciences et techniques du Languedoc.
  • Garavaglia, F., et al., 2011. Reliability and robustness of rainfall compound distribution model based on weather pattern sub-sampling. Hydrology and Earth System Sciences, 15 (2), 519–532. doi:10.5194/hess-15-519-2011
  • Gräler, B., et al., 2013. Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17 (4), 1281–1296. doi:10.5194/hess-17-1281-2013
  • Guillot, P. and Duband, D. 1967. La méthode du Gradex pour le calcul de la probabilité des crues à partir des pluies. Wallingford, UK: International Association of Hydrological Sciences, IAHS Publ. 84. Available at: http://iahs.info/uploads/dms/084063.pdf
  • Hosking, J.R.M. and Wallis, J.R., 1993. Some statistics useful in regional frequency analysis. Water Resources Research, 29 (2), 271–281. doi:10.1029/92WR01980
  • Hosking, J.R.M. and Wallis, J.R., 1997. Regional frequency analysis: an approach based on L-moments. Cambridge: Cambridge University Press.
  • Javelle, P., et al., 2010. Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations. Journal of Hydrology, 394 (1–2), 267–274. doi:10.1016/j.jhydrol.2010.03.032
  • Katz, R.W., Parlange, M.B., and Naveau, P., 2002. Statistics of extremes in hydrology. Advances in Water Resources, 25 (8–12), 1287–1304. doi:10.1016/S0309-1708(02)00056-8
  • Klemeš, V. 1993. Probability of extreme hydrometeorological events – a different approach. In: Extreme hydrological events: Precipitation, floods and droughts, Yokohama. Wallingford, UK: International Association of Hydrological Sciences, IAHS Publ. 213, 167–176.
  • Kochanek, K., et al., 2014. A data-base comparison of flood frequency analysis methods used in France. Natural Hazards and Earth System Sciences, 14, 295–308.
  • Kumaraswamy, P., 1980. A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46 (1–2), 79–88. doi:10.1016/0022-1694(80)90036-0
  • Lang, M. and Lavabre, J., 2007. Estimation de la crue centennale pour la prévention des risques d’inondations. Versailles: Edition Quae.
  • Lavabre, J., et al., 2009. Crue de projet ou cote de projet ? Exemple des barrages écrêteurs de crue du département du Gard. ed. Colloque CFBR-SHF: Dimensionnement et fonctionnement des évacuateurs de crues, Lyon, 20-21 janvier 2009.
  • Lavabre, J., et al. 2010. Crues de projet ou cotes de projet ? Exemple des barrages écrêteurs de crue du département du Gard. La Houille Blanche, n° 2-2010, 58–64.
  • Li, J., et al., 2014. An efficient causative event-based approach for deriving the annual flood frequency distribution. Journal of Hydrology, 510, 412–423. doi:10.1016/j.jhydrol.2013.12.035
  • Llamas, J., 1993. Hydrologie générale principes et applications. 2° édition ed. Paris: Gaëtan Morin.
  • Margoum, M., et al., 1994. Estimation des crues rares et extrêmes: principes du modèle AGREGEE. Hydrologie Continentale, 9 (1), 85–100.
  • Merz, R. and Blöschl, G., 2005. Flood frequency regionalisation—spatial proximity vs. catchment attributes. Journal of Hydrology, 302 (1–4), 283–306. doi:10.1016/j.jhydrol.2004.07.018
  • Muller, A., et al., 2009. Uncertainties of extreme rainfall quantiles estimated by a stochastic rainfall model and by a generalized Pareto distribution. Hydrological Sciences Journal, 54 (3), 417–429. doi:10.1623/hysj.54.3.417
  • Onof, C., Townend, J., and Kee, R., 2005. Comparison of two hourly to 5-min rainfall disaggregators. Atmospheric Research, 77 (1–4), 176–187. doi:10.1016/j.atmosres.2004.10.022
  • Organde, D., et al., 2013. Régionalisation d’une méthode de prédétermination de crue sur l’ensemble du territoire français: la méthode SHYREG. Revue des Sciences de l’Eau, 26 (1), 65–78. doi:10.7202/1014920ar
  • Ouarda, T.B.M.J., et al., 2008. Intercomparison of regional flood frequency estimation methods at ungauged sites for a Mexican case study. Journal of Hydrology, 348 (1–2), 40–58. doi:10.1016/j.jhydrol.2007.09.031
  • Paquet, E., et al., 2013. The SCHADEX method: A semi-continuous rainfall–runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23–37. doi:10.1016/j.jhydrol.2013.04.045
  • Renard, B., et al., 2008. Regional methods for trend detection: assessing field significance and regional consistency. Water Resources Research, 44 (8), W08419. doi:10.1029/2007WR006268
  • Renard, B., et al., 2013. Data-based comparison of frequency analysis methods: A general framework. Water Resources Research, 49 (2), 825–843. doi:10.1002/wrcr.20087
  • Ribatet, M., et al., 2007. A regional Bayesian POT model for flood frequency analysis. Stochastic Environmental Research and Risk Assessment, 21 (4), 327–339. doi:10.1007/s00477-006-0068-z
  • Shen, H.W., Koch, G.J., and Obeysekera, J.T.B., 1990. Physically based flood features and frequencies. Journal of Hydraulic Engineering, 116 (4), 494–514. doi:10.1061/(ASCE)0733-9429(1990)116:4(494)
  • Stedinger, J.R. and Tasker, G.D., 1985. Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared. Water Resources Research, 21 (9), 1421–1432. doi:10.1029/WR021i009p01421
  • Willems, P., et al. 2012. Review of European simulation methods for flood-frequency-estimation. WG3: Flood frequency analysis using rainfall–runoff methods. Report of Cost Action ES0901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.