6,677
Views
118
CrossRef citations to date
0
Altmetric
Original Articles

Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals

, , &
Pages 1001-1009 | Received 01 Feb 2014, Accepted 05 Sep 2014, Published online: 24 Mar 2016

References

  • Abtew, W., Melesse, M.A., and Dessalegne, T., 2009. El Nino southern oscillation link to the Blue Nile River Basin hydrology. Hydrological Process, 23 (26), 3653–3660.
  • Abyaneh, H.Z., et al., 2011. Performance evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration. Journal of Irrigation and Drainage Engineering, 137 (5), 280–286. doi:10.1061/(ASCE)IR.1943-4774.0000298
  • Azadi, S. and Sepaskhah, A.R., 2012. Annual precipitation forecast for west, southwest, and south provinces of Iran using artificial neural networks. Theoretical and Applied Climatology, 109 (1–2), 175–189. doi:10.1007/s00704-011-0575-9
  • Berg, N., et al., 2013. El Niño-Southern Oscillation impacts on winter winds over Southern California. Climate Dynamics, 40 (1–2), 109–121. doi:10.1007/s00382-012-1461-6
  • Cañón, J., González, J., and Valdés, J., 2007. Precipitation in the Colorado River Basin and its low frequency associations with PDO and ENSO signals. Journal of Hydrology, 333 (2–4), 252–264. doi:10.1016/j.jhydrol.2006.08.015
  • Chattopadhyay, S., 2007. Feed forward artificial neural network model to predict the average summer monsoon rainfall in India. Acta Geophysica, 55 (3), 369–382. doi:10.2478/s11600-007-0020-8
  • Chiu, S.L., 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2 (3), 267–278.
  • Courville, T. and Thompson, B. 2001. Use of structure coefficients in published multiple regression articles: β is not enough. Educational and Psychological Measurement, 61 (2), 229–248. doi:10.1177/0013164401612006
  • Dahamsheh, A. and Aksoy, H., 2009. Artificial neural network models for forecasting intermittent monthly precipitation in arid regions. Meteorological Applications, 16 (3), 325–337. doi:10.1002/met.127
  • Dastorani, M.T., et al., 2010. Application of ANN and ANFIS models on dryland precipitation prediction (Case study: Yazd in Central Iran). Journal of Applied Sciences, 10 (20), 2387–2394. doi:10.3923/jas.2010.2387.2394
  • El-Shafie, A., Jaafer, O., and Seyed, A., 2011. Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. International Journal of the Physical Sciences, 6 (12), 2875–2888.
  • Fallah-Ghalhary, G.A., et al., 2010. Spring rainfall prediction based on remote linkage controlling using adaptive neuro-fuzzy inference system (ANFIS). Theoretical and Applied Climatology, 101 (1–2), 217–233. doi:10.1007/s00704-009-0194-x
  • Famini, G.R., Penski, C.A., and Wilson, L.Y., 1992. Using theoretical descriptors in quantitative structure activity relationships: some physicochemical properties. Journal of Physical Organic Chemistry, 5 (7), 395–408. doi:10.1002/poc.610050704
  • Faria, R., Duncan, J.C., and Brereton, R.G., 2007. Dynamic mechanical analysis and chemometrics for polymer identification. Polymer Testing, 26 (3), 402–412. doi:10.1016/j.polymertesting.2006.12.012
  • Farokhnia, A., Morid, S., and Byun, H.-R., 2011. Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques. Theoretical and Applied Climatology, 104 (1–2), 71–81. doi:10.1007/s00704-010-0317-4
  • Firat, M. and Güngör, M., 2007. River flow estimation using adaptive neuro fuzzy inference system. Mathematics and Computers in Simulation, 75, 87–96. doi:10.1016/j.matcom.2006.09.003
  • Gámiz-Fortis, S.R., et al., 2010. Potential predictability of an Iberian river flow based on its relationship with previous winter global SST. Journal of Hydrology, 385 (1–4), 143–149. doi:10.1016/j.jhydrol.2010.02.010
  • Grantz, K., et al., 2005. A technique for incorporating large-scale climate information in basin-scale ensemble stream flow forecasts. Water Resources Research, 41 (10), 1–13. doi:10.1029/2004WR003467
  • Günaydın, O., 2009. Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environmental Geology, 57 (1), 203–215. doi:10.1007/s00254-008-1300-6
  • Hsu, K.-L., Gupta, H.V., and Sorooshian, S., 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31 (10), 2517–2530. doi:10.1029/95WR01955
  • Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing, 70 (1–3), 489–501. doi:10.1016/j.neucom.2005.12.126
  • Jang, J.-S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. doi:10.1109/21.256541
  • Jang, J.-S.R. and Sun, C.-T., 1995. Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83 (3), 378–406. doi:10.1109/5.364486
  • Jeong, C.H., et al., 2012. Monthly precipitation forecasting with a neuro-fuzzy model. Water Resources Management, 26 (15), 4467–4483. doi:10.1007/s11269-012-0157-3
  • Jolliffe, I.T., Jones, B., and Morgan, B.J.T., 1980. Cluster analysis of the elderly at home: a case study. In: E. Diday et al., eds. Data analysis and informatics. Amsterdam: North-Holland, 745–757.
  • Kaiser, H.F., 1970. A second generation little jiffy. Psychometrika, 35, 401–415. doi:10.1007/BF02291817
  • Kaiser, H.F., 1974. An index of factorial simplicity. Psychometrika, 39, 31–36. doi:10.1007/BF02291575
  • Kalra, A. and Ahmad, S., 2009. Using oceanic–atmospheric oscillations for long lead time streamflow forecasting. Water Resources Research, 45 (3), 1–18. doi:10.1029/2008WR006855
  • Kalra, A., et al.,2013. Using large-scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River Basins. Hydrological Processes, 27 (11), 1543–1559. doi:10.1002/hyp.9236
  • Karabork, M.C., Kahya, E., and Karaca, M., 2005. The influences of the Southern and North Atlantic Oscillations on climatic surface variables in Turkey. Hydrological Processes, 19 (6), 1185–1211. doi:10.1002/hyp.5560
  • Kim, T. and Valdés, J., 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, 8 (6), 319–328. doi:10.1061/(ASCE)1084-0699(2003)8:6(319)
  • Kim, T.-W., Yoo, C., and Ahn, J.-H., 2008. Influence of climate variation on seasonal precipitation in the Colorado River Basin. Stochastic Environmental Research and Risk Assessment, 22 (3), 411–420. doi:10.1007/s00477-007-0126-1
  • Kisi, O. and Shiri, J., 2011. Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resources Management, 25 (13), 3135–3152. doi:10.1007/s11269-011-9849-3
  • Kumar, D.N., Reddy, M.J., and Maity, R., 2007. Regional rainfall forecasting using large scale climate teleconnections and artificial intelligence techniques. Journal of Intelligent Systems, 16 (4), 307–322.
  • Kurtulus, B. and Razack, M., 2010. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neuro-fuzzy. Journal of Hydrology, 381 (1–2), 101–111. doi:10.1016/j.jhydrol.2009.11.029
  • Quraishi, M.Z. and Mouazen, A.M., 2013. Development of a methodology for in situ assessment of topsoil dry bulk density. Soil and Tillage Research, 126, 229–237. doi:10.1016/j.still.2012.08.009
  • Ringnér, M., 2008. What is principal component analysis? Nature Biotechnology, 26 (3), 303–304. doi:10.1038/nbt0308-303
  • Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning representations by back-propagating errors. Nature, 323, 533–536. doi:10.1038/323533a0
  • Sanikhani, H. and Kisi, O., 2012. River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resources Management, 26 (6), 1715–1729. doi:10.1007/s11269-012-9982-7
  • Seleshi, Y. and Zanke, U., 2004. Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24 (8), 973–983. doi:10.1002/joc.1052
  • Shrestha, S. and Kazama, F., 2007. Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22 (4), 464–475. doi:10.1016/j.envsoft.2006.02.001
  • Sigaroodi, S.K., et al., 2014. Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharlu Basin in Iran. Hydrology and Earth System Sciences, 18 (5), 1995–2006. doi:10.5194/hess-18-1995-2014.
  • Takagi, T. and Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15 (1), 116–132. doi:10.1109/TSMC.1985.6313399
  • Tomassetti, B., Verdecchia, M., and Giorgi, F., 2009. NN5: A neural network based approach for the downscaling of precipitation fields – model description and preliminary results. Journal of Hydrology, 367 (1–2), 14–26. doi:10.1016/j.jhydrol.2008.12.017
  • Trafalis, T.B., et al., 2002. Data mining techniques for improved WSR-88D rainfall estimation. Computers & Industrial Engineering, 43 (4), 775–786. doi:10.1016/S0360-8352(02)00139-0
  • Turkes, M. and Elart, E., 2003. Precipitation changes and variability in Turkey linked to the North Atlantic oscillation during the period 1930-2000. International Journal of Climatology, 23 (14), 1771–1796. doi:10.1002/joc.962
  • Valverde Ramírez, M.C., De Campos Velho Maria, H.F., and Ferreira, N.J., 2005. Artificial neural network technique for rainfall forecasting applied to the São Paulo region. Journal of Hydrology, 301 (1–4), 146–162. doi:10.1016/j.jhydrol.2004.06.028
  • Wallace, J.M., 2000. North Atlantic oscillation/annular mode: two paradigms -one phenomenon. Quarterly Journal of the Royal Meteorological Society, 126 (564), 791–805. doi:10.1256/smsqj.56401
  • Zientek, L.R., Capraro, M.M., and Capraro, R.M., 2008. Reporting practices in quantitative teacher education research: one look at the evidence cited in the AERA panel report. Educational Researcher, 37 (4), 208–216. doi:10.3102/0013189X08319762

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.