901
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of artificial neural networks to predict daily streamflow in a semi-arid area

&
Pages 1801-1812 | Received 15 Sep 2014, Accepted 13 Apr 2015, Published online: 27 Apr 2016

References

  • ABHM, 2008. Etude du plan directeur d’aménagement intégré des ressources en eau du bassin de la Moulouya. Mission I: Evaluation des ressources en eau et état de leur utilisation, sous mission I.2a. Hydrogéologie, C, 7–27.
  • Arnold, J.G. and Allen, P.M., 1999. Validation of automated methods for estimating baseflow and groundwater recharge from stream flow records. Journal of American Water Resources Association, 35, 411–424.
  • Banerjee, P., et al., 2011. Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology, 398 (3–4), 212–220. doi:10.1016/j.jhydrol.2010.12.016.
  • Bennett, C., Rodney, A.S., and Cara, D.B., 2013. ANN-based residential water end-use demand forecasting model. Expert Systems with Applications, 40 (4), 1014–1023. doi:10.1016/j.eswa.2012.08.012.
  • Bowden, G.J., Dandy, G.C., and Maier, H.R., 2005. Input determination for neural network models in water resources applications: part 1 – background and methodology. Journal of Hydrology, 301, 75–92. doi:10.1016/j.jhydrol.2004.06.021.
  • Campolo, M., Andreussi, P., and Soldati, A., 1999. River flood forecasting with a neural network model. Water Resources Research, 35 (4), 1191–1197. doi:10.1029/1998WR900086.
  • De Vos, N.J., 2003. Rainfall-runoff modeling using artificial. Master Thesis. Delft Netherlands, Civil Engineering Informatics Group & Section of Hydrology & Ecology, p. 11.
  • De Vos, N.J. and Rientjes, T.H.M., 2005. Constraints of artificial neural networks for rainfall–runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences, 9 (1/2), 111–126. doi:10.5194/hess-9-111-2005.
  • Eckhardt, K., 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19 (2), 507–515. doi:10.1002/(ISSN)1099-1085.
  • Funahashi, K.I., 1989. On the approximate realization of continuous mappings by neural networks. Neural Networks, 2 (3), 183–192. doi:10.1016/0893-6080(89)90003-8.
  • Genereux, D.P. and Hooper, R.P., 1998. Oxygen and hydrogen isotopes in rainfall–runoff studies. In: C. Kendall and J.J. McDonnell, eds. Isotopes in catchment hydrology. Amsterdam: Elsevier, 319–346.
  • Gupta, H.V., Hsu, K., and Sorooshian, S., 2000. Artificial neural networks in hydrology, effective and efficient modeling for stream forecasting. Amsterdam: Kluwer Academic Publishers.
  • Hall, F.R., 1968. Base-flow recessions — a review. Water Resources Research, 4 (5), 973–983. doi:10.1029/WR004i005p00973.
  • Hamidi, N. and Kayaalp, N., 2008. Estimation of the amount of suspended sediment in the tigris river using artificial neural networks. Clean Soil Air Water, 36, 380–386.
  • Hornik, K., 1991. Approximation capabilities of multi-layer feedforward networks. Neural Networks, 4 (2), 251–257. doi:10.1016/0893-6080(91)90009-T.
  • Hornik, K., Stinchcombe, M., and White, H., 1989. Multi-layer feedforward networks are universal approximators. Neural Networks, 2 (5), 359–366. doi:10.1016/0893-6080(89)90020-8.
  • Huo, Z., et al., 2012. Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China. Journal of Hydrology, 420–421, 159–170. doi:10.1016/j.jhydrol.2011.11.054.
  • Jain, A. and Srinivasulu, S., 2004. Development of effective and efficient rainfall–runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research, 40 (4), 4302. doi:10.1029/2003WR002355.
  • Kalteh, A.M., 2013. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers & Geosciences, 54, 1–8. doi:10.1016/j.cageo.2012.11.015.
  • Karamouz, M., Razavi, S., and Araghinejad, S., 2008. Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study. Hydrological Processes, 22, 229–241. doi:10.1002/(ISSN)1099-1085.
  • Kawaguchi, K., 2000. A multithreaded software model for backpropagation. Thesis. Faculty of the Graduate School of the University of Texas.
  • Kirby, W., 1972. Computer oriented Wilson-Hilferty transformation that preserves the first three moments and the lower bound of the Pearson type 3 distribution. Water Resources Research, 8 (5), 1251–1254. doi:10.1029/WR008i005p01251.
  • Kisi, Ö., 2008. Constructing neural network sediment estimation models using a data-driven algorithm. Mathematics and Computers in Simulation, 79, 94–103. doi:10.1016/j.matcom.2007.10.005.
  • Kisi, O., Ozkan, C., and Akay, B., 2012. Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm. Journal of Hydrology, 428–429 (27), 94–103. doi:10.1016/j.jhydrol.2012.01.026.
  • Kitanidis, P.K. and Bras, R.L., 1980. Real-time forecasting with a conceptual hydrologic model, 2: applications and results. Water Resources Research, 16 (6), 1034–1044. doi:10.1029/WR016i006p01034.
  • Krishna, B., Satyaji Rao, Y.R., and Vijaya, T., 2008. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes, 22, 1180–1188. doi:10.1002/(ISSN)1099-1085.
  • Lafdani, E.K.A., Nia, M., and Ahmadi, A., 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50–62. doi:10.1016/j.jhydrol.2012.11.048.
  • Lerma, S. and Leonardo, O., 1992. A neural network approach to a dimensionality reduction problem. Master’s thesis. The University of Texas at El Paso.
  • Lin, H.T., et al., 2010. Estimating anisotropic aquifer parameters by artificial neural networks. Hydrological Processes, 24, 3237–3250. doi:10.1002/hyp.7750.
  • Lyne, V.D. and Hollick, M., 1979. Stochastic time variable rainfall-runoff modeling. In: Proceedings of the hydrology and water resources symposium. Perth: National Committee on Hydrology and Water Resources of the Institution of Engineers, 89–92.
  • Marco, J.B., Harboe, R., and Sala, J.D., 1993. Stochastic hydrology and its use in water resources systems simulation and optimization series. Springer, 237. doi:10.1007/978-94-011-1697-8.
  • Mekanik, F., et al., 2013. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11–21. doi:10.1016/j.jhydrol.2013.08.035.
  • Melesse, A.M., et al., 2011. Suspended sediment load prediction of river systems: an artificial neural network approach. Agricultural Water Management, 98 (5), 855–866. doi:10.1016/j.agwat.2010.12.012.
  • Minns, A.W., 1998. Artificial neural networks as subsymbolic process descriptors. Ph. D. dissertation. UNESCO–IHE, Delft University.
  • Mohanty, S., et al., 2013. Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi–Surua Inter-basin of Odisha, India. Journal of Hydrology, 495, 38–51. doi:10.1016/j.jhydrol.2013.04.041.
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10, 282–290. doi:10.1016/0022-1694(70)90255-6.
  • Nathan, R.J. and McMahon, T.A., 1990. Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26 (7), 1465–1473. doi:10.1029/WR026i007p01465.
  • Nourani, V., Mogaddam, A.A., and Nadiri, A.O., 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes, 22, 5054–5066. doi:10.1002/hyp.v22:26.
  • Pashova, L. and Popova, S., 2011. Daily sea level forecast at tide gauge Burgas, Bulgaria using artificial neural networks. Journal of Sea Research, 66 (2), 154–161. doi:10.1016/j.seares.2011.05.012.
  • Robert, J.M., et al., 2008. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling & Software, 23 (10–11), 1289–1299. doi:10.1016/j.envsoft.2008.03.008.
  • Salas, J.D., Markus, M., and Tokar, A.S., 2000. Streamflow forecasting based on artificial neural networks. Artificial neural networks in hydrology. Water Science and Technology Library, Springer, 36, 23–51.
  • Samani, N., Gohari-Moghadam, M., and Safavi, A.A., 2007. A simple neural network model for the determination of aquifer parameters. Journal of Hydrology, 340 (1–2), 1–11. doi:10.1016/j.jhydrol.2007.03.017.
  • Sklash, M.G., Farvolden, R.N., and Fritz, P., 1976. A conceptual model of watershed response to rainfall, developed through the use of oxygen-I 8 as a natural tracer. Canadian Journal of Earth Sciences, 13, 271–283. doi:10.1139/e76-029.
  • Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S., 2002. A data-driven algorithm for constructing artificial neural network rainfall–runoff models. Hydrological Processes, 16, 1325–1330. doi:10.1002/(ISSN)1099-1085.
  • Sudheer, K.P., Nayak, P.C., and Ramasatri, K.S., 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes, 17, 677–686. doi:10.1002/hyp.5103.
  • Tallaksen, L.M., 1995. A review of base flow recession analysis. Journal of Hydrology, 165, 349–370. doi:10.1016/0022-1694(94)02540-R.
  • Tiwari, M.K. and Chatterjee, C., 2010. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). Journal of Hydrology, 382 (1–4), 20–33. doi:10.1016/j.jhydrol.2009.12.013.
  • Tsung-yi, P. and Wang, R., 2004. State space neural networks for short term rainfall-runoff forecasting. Journal of Hydrology, 297, 34–50. doi:10.1016/j.jhydrol.2004.04.010.
  • Wilson, E.B. and Hilferty, M.M., 1931. The distribution of chi-square. Proceedings of the National Academy of Sciences, 17, 684–688. doi:10.1073/pnas.17.12.684.
  • Wu, C., Chau, K., and Li, Y., 2009. Methods to improve neural network performance in daily flows prediction. Journal of Hydrology, 372 (1–4), 80–93. doi:10.1016/j.jhydrol.2009.03.038.
  • Wu, C.L. and Chau, K.W., 2011. Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399 (3–4), 394–409. doi:10.1016/j.jhydrol.2011.01.017.
  • Wu, C.L., Chau, K.W., and Fan, C., 2010. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. Journal of Hydrology, 389 (1–2), 146–167. doi:10.1016/j.jhydrol.2010.05.040.
  • Yilmaz, A.G., Imteaz, M.A., and Jenkins, G., 2011. Catchment flow estimation using artificial neural networks in the mountainous Euphrates Basin. Journal of Hydrology, 410 (1–2), 134–140. doi:10.1016/j.jhydrol.2011.09.031.
  • Zemzami, M., et al., 2013. Design flood estimation in ungauged catchments and statistical characterization using principal components analysis: application of Gradex method in Upper Moulouya. Hydrological Processes, 27 (2), 186–195. doi:10.1002/hyp.v27.2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.