1,266
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Space–time forecasting of groundwater level using a hybrid soft computing model

, , &
Pages 561-574 | Received 09 Sep 2015, Accepted 09 Aug 2016, Published online: 11 Nov 2016

References

  • Ahmadi, S.H. and Sedghamiz, A., 2007. Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring and Assessment, 129, 277–294. doi:10.1007/s10661-006-9361-z
  • Babovic, V. and Keijzer, M., 2002, Rainfall runoff modelling based on genetic programming. Nordic Hydrology, 33, 331–343.
  • Bhagwat, P.P. and Maity, R., 2012, Multistep-ahead river flow prediction using LS-SVR at daily scale. Journal of Water Resource and Protection, 2012 (4), 528–539. doi:10.4236/jwarp.2012.47062
  • Bhagwat, P.P. and Maity, R., 2013, Hydroclimatic streamflow prediction using least square-support vector regression. ISH Journal of Hydraulic Engineering, 19 (3), 320–328. doi:10.1080/09715010.2013.819705
  • Bhat, S., et al., 2015, Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA. Environmental Monitoring and Assessment, 187 (1), 4183. doi:10.1007/s10661-014-4183-x
  • Chung, J.W. and Rogers, J.D., 2012, Interpolations of groundwater table elevation in dissected uplands. Ground Water, 50 (4), 598–607. doi:10.1111/j.1745-6584.2011.00889.x
  • Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I.K., 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309, 229–240. doi:10.1016/j.jhydrol.2004.12.001
  • Dash, N.B., et al., 2010. Hybrid neural modeling for groundwater level prediction. Neural Computing and Applications, 19, 1251–1263. doi:10.1007/s00521-010-0360-1
  • Dhar, A., 2013, Geostatistics-based design of regional groundwater monitoring framework. ISH Journal of Hydraulic Engineering, 19 (2), 80–87. doi:10.1080/09715010.2013.787713
  • Dhar, A., Sahoo, S., and Sahoo, M., 2015. Identification of groundwater potential zones considering water quality aspect. Environmental Earth Sciences, 74, 5663–5675. doi:10.1007/s12665-015-4580-7
  • Fallah-Mehdipour, E., Haddad, O.B., and Marino, M.A., 2013, Prediction and simulation of monthly groundwater levels by genetic programming. Journal of Hydroenvironment Research, 7, 253–260.
  • Goovaerts, P., 1997. Geostatistics for natural resources evaluation. New York: Oxford University Press.
  • Haykin, S., 1994. Neural networks. New York: Macmillan College Publishing Company.
  • Hwang, S.H., Ham, D.H., and Kim, J.H., 2012, Forecasting performance of LS-SVM for nonlinear hydrological time series. KSCE Journal of Civil Engineering, 16 (5), 870–882. doi:10.1007/s12205-012-1519-3
  • Isaaks, E.H. and Srivastava, R.M., 1989. An introduction to applied geostatistics. New York: Oxford University Press.
  • Jain, A. and Srinivasulu, S., 2004. Development of effective and efficient rainfall runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research, 40, W04302. doi:10.1029/2003WR002355
  • Jha, M.K. and Sahoo, S., 2015. Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater. Hydrological Processes, 29, 671–691. doi:10.1002/hyp.v29.5
  • JNNURM, 2006. Kanpur City development plan. Jawaharlal Nehru National Urban Renewal Mission (JNNURM). JPS Associates (P) Ltd. Consultants. Available from: http://jnnurm.nic.in/wp-content/uploads/2010/12/CDP_Kanpur.pdf [ Accessed 22 May, 2014].
  • Kholghi, M. and Hosseini, S.M., 2009. Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging. Environmental Modeling & Assessment, 14, 729–737. doi:10.1007/s10666-008-9174-2
  • Kitanidis, P.K., 1997. Introduction to geostatistics: applications in hydrogeology. Cambridge: Cambridge University Press.
  • Lallahem, S., et al., 2005. On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307, 92–111. doi:10.1016/j.jhydrol.2004.10.005
  • Machiwal, D., et al., 2012, Modelling short-term spatial and temporal variability of groundwater level using geostatistics and GIS. Natural Resources Research, 21 (1), 117–136. doi:10.1007/s11053-011-9167-8
  • Nash, J.E. and Sutcliffe, J.V., 1970, River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6
  • Nayak, P.C., Rao, Y.R.S., and Sudheer, K.P., 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 20, 77–90. doi:10.1007/s11269-006-4007-z
  • Nourani, V., Mogaddam, A.A., and Nadiri, A.O., 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes, 22, 5054–5066. doi:10.1002/hyp.v22:26
  • Samsudin, R., Saad, P., and Shabri, A., 2011. River flow time series using least squares support vector machines. Hydrology and Earth System Sciences, 15, 1835–1852. doi:10.5194/hess-15-1835-2011
  • Shabri, A. and Suhartono, 2012, Streamflow forecasting using least-squares support vector machines. Hydrological Sciences Journal, 57 (7), 1275–1293. doi:10.1080/02626667.2012.714468
  • Sheta, A.F. and Mahmoud, A., 2001. Forecasting using genetic programming. In Proceedings of the 33rd Southeastern symposium on system theory. Athens, OH, 343–347. doi:10.1109/SSST.2001.918543
  • Shiri, J., et al., 2013. Predicting groundwater level fluctuations with meteorological effect implications- a comparative study among soft computing techniques. Computers & Geosciences, 56, 32–44. doi:10.1016/j.cageo.2013.01.007
  • Sreekanth, J. and Datta, B., 2010. Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology, 343, 245–256. doi:10.1016/j.jhydrol.2010.08.023
  • Suykens, J.A.K. and Vandewalle, J., 1999. Least squares support vector machine classifiers. Neural Processing Letters, 9, 293–300. doi:10.1023/A:1018628609742
  • Ta’any, R., Tahboub, A., and Saffarini, G., 2009, Geostatistical analysis of spatiotemporal variability of groundwater fluctuations in Amman-Zarqa basin, Jordan: a case study. Environmental Geology, 57 (3), 525–535. doi:10.1007/s00254-008-1322-0
  • Tapoglou, E., et al., 2014. A spatio-temporal hybrid neural network-kriging model for groundwater level simulation. Journal of Hydrology, 519, 3193–3203. doi:10.1016/j.jhydrol.2014.10.040
  • Trichakis, I.C., Nikolos, I.K., and Karatzas, G.P., 2011, Artificial Neural Network (ANN) based modelling for karstic groundwater level simulation. Water Resources Management, 25 (4), 1143–1152. doi:10.1007/s11269-010-9628-6
  • Varouchakis, E.A. and Hristopulos, D.T., 2013a. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and geographic features as auxiliary variables. Advances in Water Resources, 52, 34–49. doi:10.1016/j.advwatres.2012.08.002
  • Varouchakis, E.A. and Hristopulos, D.T., 2013b. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environmental Monitoring Assessment, 185, 1–19. doi:10.1007/s10661-012-2527-y
  • Wang, W., et al., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374, 294–306. doi:10.1016/j.jhydrol.2009.06.019
  • Wang, W., et al., 2006. Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324, 383–399. doi:10.1016/j.jhydrol.2005.09.032
  • Wong, W.K., Xia, M., and Chu, W.C., 2010. Adaptive neural network model for time-series forecasting. European Journal of Operational Research, 201, 807–816. doi:10.1016/j.ejor.2010.05.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.