3,005
Views
61
CrossRef citations to date
0
Altmetric
Original Articles

A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation

, , , &
Pages 1891-1930 | Received 29 Aug 2015, Accepted 20 Feb 2017, Published online: 04 Aug 2017

References

  • Adler, R.F., et al., 1993. Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. Journal of Applied Meteorology, 32, 335–356. doi:10.1175/1520-0450(1993)0322.0.CO;2
  • Ajmal, M., et al., 2015a. Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. Journal of Hydro-Environment Research, 9 (4), 592–603. doi:10.1016/j.jher.2014.11.003
  • Ajmal, M., et al., 2015b. Evolution of a parsimonious rainfall–runoff model using soil moisture proxies. Journal of Hydrology, 530, 623–633. doi:10.1016/j.jhydrol.2015.10.019
  • Ajmal, M., et al., 2016b. Runoff estimation using the NRCS slope-adjusted curve number in mountainous watersheds. Journal of Irrigation and Drainage Engineering, 141, 04014058. doi:10.1061/(ASCE)IR.1943-4774.0000805
  • Ajmal, M., Khan, T.K., and Kim, T.-W., 2016a. A CN-based ensembled hydrological model for enhanced watershed runoff prediction. Water, 8, 20. doi:10.3390/w8010020
  • Akhondi, S., 2001. An investigation of curve number model in flood estimation using Geographical Information System. Thesis (MSc). Tarbiat Modares University, Tehran, Iran.
  • Anagnostou, E.N., 2004. Overview of overland satellite rainfall estimation for hydro-meteorological applications. Surveys in Geophysics, 25 (5–6), 511–537. doi:10.1007/s10712-004-5724-6
  • Andrews, R.G., 1954. The use of relative infiltration indices in computing runoff. In: V.P. Singh, ed. Rainfall–runoff relationship. Littleton, CO: Water Resources Publications.
  • Arnold, J.G., et al., 1990. SWRRB-A basin scale simulation model for soil and water resources management. College Station, TX: A&M University Press.
  • Aron, G., Miller, A.C., and Lakatos, D.F., 1977. Infiltration formula based on SCS curve numbers. Journal of Irrigation and Drainage Division ASCE, 103 (4), 419–427.
  • Artan, G., et al., 2007. Users’ manual for the geospatial stream flow model (GeoSFM). Reston, VA: US Geological Survey, Open-File Report 2007–1440.
  • Ashenafi, Y. and Hailu, D., 2014. Assessment of the use of remotely sensed rainfall products for runoff simulation in the Upper Blue Nile basin of Ethiopia. Journal of EEA, 31, 1–9.
  • Ashish, P., et al., 2003. Estimation of run-off for agricultural watershed using SCS curve number and Geographical Information System. Available from: http://www.gisdevelopment.net.
  • Aubert, D., Loumagne, C., and Oudin, L., 2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall runoff model. Journal of Hydrology, 280, 145–161. Available from http://www.wcc.nrcs.usda.gov/water/quality/common/techpaper/don1.pdf
  • Awadallah, A.G., et al., 2016. Reliability assessment of water structures subject to data scarcity using the SCS-CN model. Hydrological Sciences Journal, 61 (4), 696–710. doi:10.1080/02626667.2015.1027709
  • Babu, P.S. and Mishra, S.K., 2012. An improved SCS-CN inspired model. Journal of Hydrologic Engineering, ASCE, 17 (11), 1164–1172. doi:10.1061/(ASCE)HE.1943-5584.0000435
  • Baltas, E.A., Dervos, N.A., and Mimikou, M.A., 2007. Determination of the SCS initial abstraction ratio in an experimental watershed in Greece. Hydrology and Earth System Sciences, 11, 1825–1829. doi:10.5194/hess-11-1825-2007
  • Bartlett, M.S., et al., 2016. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall–runoff response. Water Resources Research, 52, 4608–4627. doi:10.1002/2015WR018439
  • Beck, H.E., et al., 2009. Improving curve number based storm runoff estimates using soil moisture proxies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2 (4), 250–259. doi:10.1109/JSTARS.2009.2031227
  • Behrangi, A., et al., 2011. Hydrologic evaluation of satellite precipitation products over a mid-size basin. Journal of Hydrology, 397, 225–237. doi:10.1016/j.jhydrol.2010.11.043
  • Bhanumurty, V., et al., 2003. Application of remote sensing and GIS in water resources development. Water and Energy International, 60 (2), 38–50.
  • Bhaskar, N.R., Wesley, P.J., and Devulapalli, R.S., 1992. Hydrologic parameter estimation using geographic information systems. Journal of Water Resources Planning and Management, 118, 492–512. doi:10.1061/(ASCE)0733-9496(1992)118:5(492)
  • Bhunya, P.K., et al., 2009. A simple conceptual model of sediment yield. Water Resources Management, 24 (8), 1697–1716. doi:10.1007/s11269-009-9520-4
  • Bitew, M.M. and Gebremichael, M., 2011. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resources Research, 47 (6), W06526. doi:10.1029/2010WR009917
  • Blanchard, B.J., et al., 1981. Estimation of soil moisture with API algorithms and microwave emission. Water Resources Bulletin, 17, 767–774. doi:10.1111/j.1752-1688.1981.tb01296.x
  • Bonta, J.V., 1997. Determination of watershed curve number using derived distributions. Journal of Irrigation and Drainage Engineering, ASCE, 123 (1), 28–36. doi:10.1061/(ASCE)0733-9437(1997)123:1(28)
  • Bosznay, M., 1989. Generalization of SCS curve number method. Journal of Irrigation and Drainage Engineering, 115 (1), 139–144. doi:10.1061/(ASCE)0733-9437(1989)115:1(139)
  • Brocca, L., et al., 2009b. Assimilation of observed soil moisture data in storm rainfall–runoff modelling. Journal of Hydrologic Engineering, ASCE, 14 (2), 153–165. doi:10.1061/(ASCE)1084-0699(2009)14:2(153)
  • Brocca, L., et al., 2010. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 14, 1881–1893. doi:10.5194/hess-14-1881-2010
  • Brocca, L., et al., 2013. Detecting threshold hydrological response through satellite soil moisture data. Die Bodenkultur, 64, 7–12.
  • Brocca, L., Melone, F., and Moramarco, T., 2008. On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrological Processes, 22, 629–642. doi:10.1002/(ISSN)1099-1085
  • Brocca, L., Melone, F., and Moramarco, T., 2009a. Antecedent wetness conditions based on ERS scatterometer data in support to rainfall–runoff modeling. Journal of Hydrology, 364, 73–87. doi:10.1016/j.jhydrol.2008.10.007
  • Brooner, W.G., et al., 1987. Remote sensing technologies and spatial data applications relevant to HEC programs and mission. Davis, CA: USACE, Final report, contract no. DACWO5-87-C-0012, US Army Corps of Engineers.
  • Camici, S., et al., 2011. Design soil moisture estimation by comparing continuous and storm-based rainfall–runoff modelling. Water Resources Research, 47, W05527. doi:10.1029/2010WR009298
  • Carsel, R., et al., 1997. PRZM 3.1 user’s manual, national exposure research lab, office of research and development. Athens, GA: US Environmental Protection Agency.
  • Castillo, V., Gomez-Plaza, A., and Martınez-Mena, M., 2003. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. Journal of Hydrology, 284 (1–4), 114–130. doi:10.1016/S0022-1694(03)00264-6
  • Central Unit for Soil Conservation (Hydrology and Sedimentation), 1972. Handbook of hydrology. India: Soil Conservation Division, Ministry of Agriculture, Govt. of India.
  • Chakraborti, A.K., 1993. Strategies for watershed management planning using remote sensing techniques. Journal of the Indian Society of Remote Sensing, 21 (2), 87–97. doi:10.1007/BF02996346
  • Chatterjee, C., et al., 2001. Runoff curve number estimation for a basin using remote sensing and GIS. Asian Pacific Remote Sensing and GIS Journal, 14, 1–8.
  • Chaudhary, A., Mishra, S.K., and Pandey, A., 2013. Experimental verification of effect of slope on runoff and curve numbers. Journal of Indian Water Resources Society, 33 (1), 40–46.
  • Chen, C.L., 1982. Infiltration formulas by curve number procedure. Journal of Hydraulics Division, ASCE, 108 (7), 823–829.
  • Choi, J.-Y., Engel, B.A., and Chung, H.W., 2002. Daily streamflow modelling and assessment based on the curve-number technique. Hydrological Processes, 16 (16), 3131–3150. doi:10.1002/(ISSN)1099-1085
  • Chow, V.T., Maidment, D.R., and Mays, L.W., eds., 1988. Applied hydrology. New York: Mc-Graw-Hill.
  • Collischonn, B., Collischonn, W., and Tucci, C.E.M., 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360 (1–4), 207–216. doi:10.1016/j.jhydrol.2008.07.032
  • Coustau, M., et al., 2012. Flood modelling with a distributed event-based parsimonious rainfall–runoff model: case of the karstic Lez river catchment. Natural Hazards and Earth System Sciences, 12, 1119–1133. doi:10.5194/nhess-12-1119-2012
  • Crow, W.T. and Ryu, D., 2009. A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals. Hydrology and Earth System Sciences, 13, 1–16. doi:10.5194/hess-13-1-2009
  • Curtis, S., Crawford, T.W., and Lecce, S.A., 2007. A comparison of TRMM to other basin-scale estimates of rainfall during the 1999 Hurricane Floyd flood. Natural Hazards, 43, 187–198. doi:10.1007/s11069-006-9093-y
  • DeVantier, B.A. and Feldman, A.D., 1993. Review of GIS applications in hydrologic modeling. Journal of Water Resources Planning and Management, ASCE, 119, 246–261. doi:10.1061/(ASCE)0733-9496(1993)119:2(246)
  • Dhawale, A.W., 2013. Runoff estimation for Darewadi watershed using RS and GIS. International Journal of Recent Technology and Engineering, 1 (6), 46–50.
  • Durbude, D.G., Jain, M.K., and Mishra, S.K., 2011. Long-term hydrologic simulation using SCS-CN based improved soil moisture accounting procedure. Hydrological Processes, 25 (4), 561–579. doi:10.1002/hyp.7789
  • Ebert, E., Janowiak, J.E., and Kidd, C., 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88, 1–18. doi:10.1175/BAMS-88-1-47
  • Ebrahimian, M., et al., 2012. Runoff estimation in step slope watershed with standard and slope-adjusted Curve Number Methods. Polish Journal Environmental Studies, 21 (5), 1191–1202.
  • Efstratiadis, A., et al., 2014. Flood design recipes vs. reality: can predictions for ungauged basins be trusted? Natural Hazards Earth System Sciences, 14, 1417–1428. doi:10.5194/nhess-14-1417-2014
  • Elhakeem, M. and Papanicolaou, A., 2009. Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resources Management, 23 (12), 2455–2473. doi:10.1007/s11269-008-9390-1
  • Eli, R.N. and Lamont, S.J., 2010. Curve numbers and urban runoff modelling – application limitations. In: S. Struck and K. Lichten, eds.. Low impact development 2010: redefining water in the city (Proceedings of the 2010 International Low Impact Development Conference, San Francisco, CA, April 11-14, 2010). ASCE, 405–418. doi:10.1061/9780784410998
  • Fan, F.L., et al., 2013. Estimating composite curve number using an improved SCS-CN method with remotely sensed variables in Guangzhou, China. Remote Sensing, 5, 1425–1438. doi:10.3390/rs5031425
  • Foerster, J. and Milne-Home, W.A., 1995. Application of AGNPS to model nutrient generation rates under different farming management practices at the Gunnedah Research Centre catchment. Australian Journal of Experimental Agriculture, 35, 961–967. doi:10.1071/EA9950961
  • Fry, L., et al., 2013. Identifying stream gage networks for maximizing the effectiveness of regional water balance modeling. Water Resources Research, 49 (5), 2689–2700. doi:10.1002/wrcr.20233
  • Gabellani, S., et al., 2008. General calibration methodology for a combined Horton-SCS infiltration scheme in flash flood modelling. Natural Hazards Earth System Sciences, 8, 1317–1327. doi:10.5194/nhess-8-1317-2008
  • Gajbhiye, S. and Mishra, S.K., 2012. Application of NRSC-SCS curve number model in runoff estimation using RS and GIS. In: IEEE International conference on advances in engineering, science and management (ICAESM 2012). IEEE, 346–352. Available from: http://ieeexplore.ieee.org/document/6216286/ [Accessed 20 May 2017].
  • Gamage, S.H.P.W., Hewa, G.A., and Beecham, S., 2015. Modelling hydrological losses for varying rainfall and moisture conditions in South Australian catchments. Journal of Hydrology. Regional Studies, 4, 1–21.
  • Garen, D. and Moore, D.S., 2005. Curve number hydrology in water quality modeling: uses, abuses, and future directions. Journal of the American Water Resources Association, 41 (2), 377–388. doi:10.1111/jawr.2005.41.issue-2
  • Garg, V., et al., 2013. Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method. International Journal of Hydrology Science and Technology, 3, 141–159. doi:10.1504/IJHST.2013.057626
  • Gassman, P.W., et al., 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transaction of the American Society of Agriculture Engineering, 50 (4), 1211–1250.
  • Geetha, K., et al., 2007. Modifications to SCS-CN method for long term hydrologic simulation. Journal of Irrigation and Drainage Engineering, ASCE, 133 (5), 475–486. doi:10.1061/(ASCE)0733-9437(2007)133:5(475)
  • Golding, B.L., 1979. Discussion of Runoff curve number with varying site moisture” by Hawkins, R. H. Journal of Irrigation and Drainage Division, ASCE, 105 (IR4), 441–442.
  • Gonzalez, A., Temimi, M., and Khanbilvardi, R., 2015. Adjustment to the curve number (NRCS-CN) to account for the vegetation effect on hydrological processes. Hydrological Sciences Journal, 60 (4), 591–605. doi:10.1080/02626667.2014.898119
  • Goodrich, D.C., et al., 1994. Runoff simulation sensitivity to remotely sensed initial soil water content. Water Resources Research, 30, 1393–1405. doi:10.1029/93WR03083
  • Gourley, D.C., et al., 2010. Impacts of polarimetric radar observations on hydrologic simulation. Journal of Hydrometeorology, 11, 781–796. doi:10.1175/2010JHM1218.1
  • Green, W. H., and Ampt, G., 1911, Studies on soil physics, 1. The flow of air and water through soils. The Journal of Agricultural Science, 4, 1–24.
  • Grimaldi, S., Petroselli, A., and Romano, N., 2013. Green-Ampt Curve-Number mixed procedure as an empirical tool for rainfall–runoff modelling in small and ungauged basins. Hydrological Processes, 27 (8), 1253–1264. doi:10.1002/hyp.9303
  • Grimaldi, S., Petroselli, A., and Serinaldi, F., 2012a. A continuous simulation model for design-hydrograph estimation in small and ungauged watersheds. Hydrological Sciences Journal, 57, 1035–1051. doi:10.1080/02626667.2012.702214
  • Grimaldi, S., Petroselli, A., and Serinaldi, F., 2012b. Design hydrograph estimation in small and ungauged watersheds: continuous simulation method versus event-based approach. Hydrological Processes, 26, 3124–3134. doi:10.1002/hyp.v26.20
  • Grohmann, C.H., 2004. Morphometric analysis in geographic information systems: applications of free software GRASS and R. Computers & Geosciences, 30, 1055–1067. doi:10.1016/j.cageo.2004.08.002
  • Grove, M., Harbor, J., and Engel, B., 1998. Composite vs. Distributed curve numbers: effects on estimates of storm runoff depths. Journal of the American Water resources Association, 34, 1015–1023. doi:10.1111/jawr.1998.34.issue-5
  • Gumbo, B., et al., 2002. Coupling of digital elevation model and rainfall–runoff model in storm drainage network design. Physics and Chemistry of the Earth, Parts A/B/C, 27 (11–22), 755–764. doi:10.1016/S1474-7065(02)00063-3
  • Gundalia, M. and Dholakia, M., 2014. Impact of monthly curve number on daily runoff estimation for Ozat catchment in India. Open Journal of Modern Hydrology, 4, 144–155. doi:10.4236/ojmh.2014.44014
  • Gupta, P.K. and Panigrahy, S., 2008. Predicting the spatio-temporal variation of run-off generation in India using remotely sensed input and Soil Conservation Service curve number model. Current Science, 95 (11), 1580–1587.
  • Harbor, J.M., 1994. A practical method for estimating the impact of land use change on surface runoff, groundwater recharge, and wetland hydrology. Journal of the American Planning Association, 60 (1), 95–108. doi:10.1080/01944369408975555
  • Harris, A. and Hossain, F., 2008. Investigating the optimal configuration of conceptual hydrologic models for satellite-rainfall–based flood prediction. IEEE Geoscience and Remote Sensing Letters, 5 (3), 532–536. doi:10.1109/LGRS.2008.922551
  • Hawkins, R.H., 1978. Runoff curve number with varying site moisture. Journal of Irrigation and Drainage Engineering, ASCE, 104 (4), 389–398.
  • Hawkins, R.H., 1984. A comparison of predicted and observed runoff curve numbers. In: Proceeding of ASCE, Irrigation and Drainage Division, special conference. Flagstaff AZ: ASCE, 702–709.
  • Hawkins, R.H., et al., 1985. Runoff probability storm depth and curve numbers. Journal of irrigation and drainage division. Asce, 111 (4), 330–340.
  • Hawkins, R.H., 1993. Asymptotic determination of runoff curve numbers from data. Journal of Irrigation and Drainage Engineering, ASCE, 119 (2), 334–345. doi:10.1061/(ASCE)0733-9437(1993)119:2(334)
  • Hawkins, R.H., et al., 2009. Curve number hydrology: state of the practice. Reston, VA: American Society of Civil Engineers, 106. ISBN 978-0-7844-1044-2.
  • Hawkins, R.H., Hjelmfelt Jr., A.T., and Zevenbergen, A.W., 1985. Runoff probability, storm depth and curve numbers. Journal of Irrigation and Drainage Engineering, 111 (4), 330–340. doi:10.1061/(ASCE)0733-9437(1985)111:4(330)
  • Hawkins, R.H. and Ward, T.J., 1998. Site and cover effects on event runoff, Jornada experimental range, New Mexico. Rangeland management and water resources. In: Proceedings from American Water Resources Association (AWRA). Reno, NV, 361–370.
  • Hernández-Guzmán, R. and Ruiz-Luna, A., 2013. SARA – an enhanced curve number-based tool for estimating direct runoff. Journal of Hydroinformatics, 15, 881–887. doi:10.2166/hydro.2013.145
  • Hjelmfelt Jr., A.T., 1980. Empirical investigation of curve number technique. Journal of Hydraulics and Engineering Division, ASCE, 106 (HY9), 1471–1476.
  • Hjelmfelt Jr., A.T., 1991. Investigation of curve number procedure. Journal of hydraulic Engineering, 117 (6), 725–737. doi:10.1061/(ASCE)0733-9429(1991)117:6(725)
  • Hjelmfelt, A.T., et al., 2001. Curve numbers, recent developments. In: XXIX IAHR Congress Proceedings, Beijing, China. IAHR: International Association for Hydro-Environment Engineering and Research.
  • Hjelmfelt Jr., A.T., Kramer, K.A., and Burwell, R.E., 1982. Curve numbers as random variables. In: Proceedings of the international Symposium of Rainfall–Runoff Modeling. Littleton, CO: Water Resource Publications, 365–373.
  • Hlaing, K.T., Haruyama, S., and Aye, M.M., 2008. Using GIS-based distributed soil loss modeling and morphometric analysis to prioritize watershed for soil conservation in Bago river basin of lower Myanmar. Frontiers of Earth Science in China, 2, 465–478. doi:10.1007/s11707-008-0048-3
  • Hong, Y., et al., 2006. Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resources Research, 42, W08421. doi:10.1029/2005WR004398
  • Hong, Y., et al., 2007. A first approach to global runoff simulation using satellite rainfall estimation. Water Resources Research, 43 (8), W080502. doi:10.1029/2006WR005739
  • Hossain, F. and Lettenmaier, D.P., 2006. Flood prediction in the future: recognizing hydrologic issues in anticipation of the global precipitation measurement mission. Water Resources Research, 42, W11301. doi:10.1029/2006WR005202
  • Huang, M., et al., 2006. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess plateau of China. Hydrological Processes, 20 (3), 579–589. doi:10.1002/hyp.5925
  • Huber, W.C., et al., 1976. Environmental resources management studies in the Kissimmee River basin. Gainsville, FL: Department of Environmental Engineering and Science, University of Florida, Report ENV-05–76-3.
  • Huffman, G.J., et al., 2007. The TRMM multi-satellite precipitation analysis: quasi global, multiyear, combined sensor precipitation estimates at fine scale. Journal of Hydrometeorology, 8 (1), 38–55. doi:10.1175/JHM560.1
  • Ishidaira, H., et al., 2008. Estimating the evolution of vegetation cover and its hydrological impact in the Mekong River basin in the 21st century. Hydrological Processes, 22, 1395–1405. doi:10.1002/hyp.6948
  • Jacobs, J.H. and Srinivasan, R., 2005. Effects of curve number modification on runoff estimation using WSR-88D rainfall data in Texas watersheds. Journal of Soil and Water Conservation, 60 (5), 274–279.
  • Jacobs, J.M., et al., 2004. SMEX02: field scale variability, time stability and similarity of soil moisture. Remote Sensing of Environment, 92, 436–446. doi:10.1016/j.rse.2004.02.017
  • Jain, M.K., et al., 2006. Enhanced runoff curve number model incorporating storm duration and a non-linear Ia-S relation. Journal of Hydrologic Engineering, ASCE, 11 (6), 631–635. doi:10.1061/(ASCE)1084-0699(2006)11:6(631)
  • Jain, M.K., Durbude, D.G., and Mishra, S.K., 2012. Improved CN-based long-term hydrologic simulation model. Journal of Hydrologic Engineering, ASCE, 17, 1204–1220. doi:10.1061/(ASCE)HE.1943-5584.0000592
  • Jakeman, A. J., and Hornberger, G. M., 1993. How much complexity is warranted in a rainfall-runoff model? Water Resources Research, 29(8), 2637-2649.
  • Jasrotia, A.S., Dhiman, S.D., and Aggarwal, S.P., 2002. Rainfall–runoff and soil erosion modeling using remote sensing and GIS technique – A case study of Tons watershed. Journal of the Indian Society of Remote Sensing, 30 (3), 167–180. doi:10.1007/BF02990649
  • Javed, A., Khanday, M.Y., and Ahmed, R., 2009. Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 37, 261–274. doi:10.1007/s12524-009-0016-8
  • Jena, S.K., et al., 2012. RS and Geographical Information System–based evaluation of distributed and composite curve number techniques. Journal of Hydrologic Engineering, 17 (11), 1278–1286. doi:10.1061/(ASCE)HE.1943-5584.0000651
  • Jha, R.K., Mishra, S.K., and Pandey, A., 2014. Experimental verification of effect of slope, soil, and AMC of a fallow land on runoff curve number. Journal of Indian Water Resources Society, 34 (2), 40–47.
  • Jiao, P., et al., 2015. Improved SCS-CN method based on storage and depletion of antecedent daily precipitation. Water Resources Management, 29 (13), 4753–4765. doi:10.1007/s11269-015-1088-6
  • Jobard, I. and Desbois, M., 1994. Satellite estimation of the tropical precipitation using the METEOSAT and SSM/I data. Atmospheric Research, 34 (1–4), 285–298. doi:10.1016/0169-8095(94)90097-3
  • Joycee, C.S.D. and Santhi, M.H., 2015. Assessment of surface runoff from sub basin of Kodayar using NRCS-CN model with GIS. Indian Journal of Science and Technology, 8 (13). doi:10.17485/ijst/2015/v8i13/60403
  • Kabiri, R., Chan, A., and Bai, R., 2013. Comparison of SCS and Green-Ampt methods in surface runoff-flooding simulation for Klang watershed in Malaysia. Open Journal of Modern Hydrology, 3 (3), 102–114. doi:10.4236/ojmh.2013.33014
  • Kadam, A.K., et al., 2012. Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of western India, using SCS-CN method. Water Resources Management, 26 (9), 2537–2554. doi:10.1007/s11269-012-0031-3
  • Kalma, J.D., McVicar, T.R., and McCabe, M., 2008. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29 (4–5), 421–469. doi:10.1007/s10712-008-9037-z
  • Kamuju, N., 2015. Rainfall–runoff estimation and comparative analysis using advanced geospatial digital hydrological modelling tools, ArcCN-runoff and ArcSWAT. SSRG International Journal of Geo Informatics and Geological Science, 2 (4), 1–6.
  • Kannan, N., et al., 2007. Development of a continuous soil moisture accounting procedure for curve number methodology and its behavior with different evapotranspiration methods. Hydrological Processes, 22, 2114–2121. doi:10.1002/hyp.6811
  • Kannan, N., Santhi, C., and Arnold, J.G., 2008. Development of an automated procedure for estimation of the spatial variation of runoff in large river basins. Journal of Hydrology, 359, 1–15. doi:10.1016/j.jhydrol.2008.06.001
  • Karimi, P. and Bastiaanssen, W.G.M., 2015. Spatial evapotranspiration, rainfall and land use data in water accounting – part 1: review of the accuracy of the remote sensing data. Hydrology and Earth System Sciences, 19, 507–532. doi:10.5194/hess-19-507-2015
  • Kherde, R.V.K. and Sawant, P.H., 2013. Integrating geographical information systems (GIS) with hydrological modeling-applicability and limitations. International Journal of Engineering and Technology, 5 (4), 3374–3381.
  • Kibbler, D.F., 1982. Recommended hydrologic procedures for computing urban runoff from small developing watersheds in Pennsylvania. University Park, PA: Institute for Research on Land and Water Resources, The Pennsylvania State University.
  • Kidd, C. and Levizzani, V., 2011. Status of satellite precipitation retrievals. Hydrology and Earth System Sciences, 15, 1109–1116. doi:10.5194/hess-15-1109-2011
  • Kim, N.W. and Lee, J., 2008. Temporally weighted average curve number method for daily runoff simulation. Hydrological Processes, 22 (25), 4936–4948. doi:10.1002/hyp.v22:25
  • Kite, G.W. and Pietroniro, A., 1996. Remote sensing applications in hydrological modelling. Hydrological Sciences Journal, 41 (4), 563–591. doi:10.1080/02626669609491526
  • Knisel, W.G., 1980 CREAMS: a field-scale model for chemical, runoff and erosion from agricultural management systems. Washington, DC: US Department of Agriculture, USDA Conservation Research Report. No. 26.
  • Korkalainen, T.H.J., Lauren, A.M., and Kokkonen, T.S., 2007. A GIS based analysis of catchment properties within a drumlin field. Boreal Environment Research, 12, 489–500.
  • Krysanova, V., Wechsung, F., and Arnold, J.G., 2000. SWIM user manual. Potsdam, Germany: Potsdam Institute for Climate Impact Research (PIK).
  • Kumar, D.N. and Reshmidev, T.V., 2013. Remote sensing applications in water resources. Journal of the Indian Institute of Science, 93 (2), 163–187.
  • Lal, M., Mishra, S.K., and Pandey, A., 2015. Physical verification of the effect of land features and antecedent moisture on runoff curve number. Catena, 133, 318–327. doi:10.1016/j.catena.2015.06.001
  • Lantz, D. G., and Hawkins, R. H., 2001. Discussion of long-term hydrologic impact of urbanization: a tale of two models. Journal of Water Resources Planning and Management, ASCE. 127, 13–19. doi:10.1061/(ASCE)0733
  • Leonard, R.A., Knisel, W.G., and Still, D.A., 1987. GLEAMS: groundwater loading effects of agricultural management systems. Transactions of the ASAE, 30 (5), 1403–1418. doi:10.13031/2013.30578
  • Lim, K.J., et al., 2006. Effects of initial abstraction and urbanization on estimated runoff using CN technology. Journal of the American Water Resources Association, 42, 629–643. doi:10.1111/j.1752-1688.2006.tb04481.x
  • Lin, C., Greenwald, D., and Banin, A., 2003. Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Science Society of America Journal, 67, 487–493. doi:10.2136/sssaj2003.4870
  • Lyon, S.W., et al., 2004. Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation. Hydrological Processes, 18, 2757–2771. doi:10.1002/hyp.v18:15
  • Maidment, D.R., 1996. GIS and hydrological modeling - an assessment of progress. In: Paper presented at The Third International Conference on GIS and Environmental Modeling, Santa Fe, NM. Available from: maidment/GISHydro/meetings/santafe/santafe.htm.
  • Mancini, M. and Rosso, R., 1989. Using GIS to assess spatial variability of SCS curve number at the basin scale. Wallingford, UK:International Association of Hydrological Sciences, New direction for surface water modeling, IAHS Publ. No. 181, 435–444.
  • Massari, C., et al., 2014. Using globally available soil moisture indicators for flood modelling in Mediterranean catchments. Hydrology and Earth System Sciences, 18, 839–853. doi:10.5194/hess-18-839-2014
  • Massari, C., et al., 2015. The use of H-SAF soil moisture products for operational hydrology: flood modelling over Italy. Hydrology, 2, 2–22. doi:10.3390/hydrology2010002
  • McCuen, R.H., 1989. Hydrologic analysis and design. Englewood Cliffs, NJ: Prentice Hall.
  • McCuen, R.H., 2002. Approach to confidence interval estimation for curve numbers. Journal of Hydrologic Engineering, 7 (1), 43–48. doi:10.1061/(ASCE)1084-0699(2002)7:1(43)
  • Mednick, A.C., 2010. Does soil data resolution matter? State soil geographic database versus soil survey geographic database in rainfall–runoff modeling across Wisconsin. Journal of Soil and Water Conservation, 65 (3), 190–199. doi:10.2489/jswc.65.3.190
  • Meier, P., Frömelt, A., and Kinzelbach, W., 2011. Hydrological real-time modelling in the Zambezi river basin using satellite-based soil moisture and rainfall data. Hydrology and Earth System Sciences, 15 (3), 999–1008. doi:10.5194/hess-15-999-2011
  • Menziani, M., et al., 2001. TDR soil moisture measurements at the Lago Maggiore MAP target area: preliminary results. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26 (5–6), 431–436. doi:10.1016/S1464-1909(01)00031-4
  • Merritt, W.S., Letcher, R.A., and Jakeman, A.J., 2003. A review of erosion and sediment transport models. Environmental modelling & Software, 18, 761–799. doi:10.1016/S1364-8152(03)00078-1
  • Merz, B. and Plate, E.J., 1997. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Resources Research, 33 (12), 2909–2922. doi:10.1029/97WR02204
  • Michel, C., Vazken, A., and Charles, P., 2005. Soil Conservation Service curve number method: how to mend a wrong soil moisture accounting procedure? Water Resources Research, 41 (2), W02011. doi:10.1029/2004WR003191
  • Milewski, A., et al., 2009. A remote sensing solution for estimating runoff and recharge in arid environments. Journal of Hydrology, 373 (1–2), 1–14. doi:10.1016/j.jhydrol.2009.04.002
  • Mishra, A., et al., 2009. Study of intense rainfall events over India using Kalpana-IR and TRMM-precipitation radar observations. Current Science, 97, 689–695.
  • Mishra, S.K., et al., 1998. An SCS-CN-based long-term daily flow simulation model a hilly catchment. In: Proc. of international symposium on hydrology of ungauged streams in hilly regions for small hydro power development. New Delhi, India: AHEC, 59–81.
  • Mishra, S.K., et al., 2005. Long-term hydrologic simulation using storage and source area concepts. Hydrological Processes, 19 (14), 2845–2861. doi:10.1002/hyp.5735
  • Mishra, S.K., et al., 2006a. An improved Ia–S relation incorporating antecedent moisture in SCS-CN methodology. Water Resources Management, 20, 643–660. doi:10.1007/s11269-005-9000-4
  • Mishra, S.K., et al., 2006b. SCS-CN based modeling of sediment yield. Journal of Hydrology, 324, 301–322. doi:10.1016/j.jhydrol.2005.10.006
  • Mishra, S.K., et al., 2008a. Comparison of AMC-dependent CN-conversion formulae. Water Resources Management, 22, 1409–1420. doi:10.1007/s11269-007-9233-5
  • Mishra, S.K., et al., 2008b. A rain duration and modified AMC dependent SCS-CN procedure for long duration rainfall– runoff events. Water Resources Management, 22 (7), 861–876. doi:10.1007/s11269-007-9196-6
  • Mishra, S.K., et al., 2014a. Experimental verification of the effect of slope and landuse on SCS runoff curve number. Water Resources Management, 28 (11), 3407–3416. doi:10.1007/s11269-014-0582-6
  • Mishra, S.K., et al., 2014b. Relationship between runoff curve number and PET. Journal of Hydrologic Engineering, 19 (2), 355–365. doi:10.1061/(ASCE)HE.1943-5584.0000780
  • Mishra, S.K., Babu, P.S., and Singh, V.P., 2007. SCS-CN method revisited. In: V.P. Singh, ed. Advances in hydraulics and hydrology. Colorado: Water Resources Publication (WRP), 36 p.
  • Mishra, S.K., Jain, M.K., and Singh, V.P., 2004. Evaluation of the SCS-CN-based model incorporating antecedent moisture. Water Resources Management, 18 (6), 567–589. doi:10.1007/s11269-004-8765-1
  • Mishra, S.K. and Singh, V.P., 1999. Another look at SCS-CN method. Journal of Hydrologic Engineering, ASCE, 4 (3), 257–264. doi:10.1061/(ASCE)1084-0699(1999)4:3(257)
  • Mishra, S.K. and Singh, V.P., 2002a. SCS-CN method: part-I: derivation of SCS-CN based models. Acta Geophysica Polonica, 50 (3), 457–477.
  • Mishra, S.K. and Singh, V.P., 2003a. Derivation of SCS-CN parameter S from linear Fokker-Planck equation. Acta Geophysica Polonica, 51 (2), 180–202.
  • Mishra, S.K. and Singh, V.P., 2003b. Soil Conservation Service curve number (SCS-CN) methodology. Dordrecht, The Netherlands: Kluwer.
  • Mishra, S.K. and Singh, V.P., 2004a. Long-term hydrological simulation based on the Soil Conservation Service curve number. Hydrological Processes, 18 (7), 1291–1313. doi:10.1002/(ISSN)1099-1085
  • Mishra, S.K. and Singh, V.P., 2004b. Validity and extension of the SCS-CN method for computing infiltration and rainfall–excess rates. Hydrological Processes, 18 (17), 3323–3345. doi:10.1002/(ISSN)1099-1085
  • Mishra, S.K. and Singh, V.P., 2006. A relook at NEH-4 curve number data and antecedent moisture condition criteria. Hydrological Processes, 20 (13), 2755–2768. doi:10.1002/(ISSN)1099-1085
  • Mishra, S.K. and Singh, V.P., 2002b. SCS-CN based hydrologic simulation package. In: V.P. Singh and D.K. Frevert, eds. Mathematical models in small watershed hydrology. Littleton, CO: Water Resources Publications, 391–464.
  • Mockus, V., 1949. Estimation of total (peak rates of) surface runoff for individual storms. Exhibit A of Appendix B, Interim Survey Rep. Washington, DC: Grand (Neosho) River Watershed, USDA.
  • Moglen, G.E., 2000. Effect of orientation of spatially distributed curve number in runoff calculations. Journal of American Water Resources Association, 36 (6), 1391–1400. doi:10.1111/j.1752-1688.2000.tb05734.x
  • Musgrave, G.W., 1955. How much of the rain enters the soil?, Yearbook of agriculture 1955: water. Washington, DC: USDA.
  • Nagarajan, N. and Poongothai, S., 2012. Spatial mapping of runoff from a watershed using SCS-CN method with remote sensing and GIS. Journal of Hydrologic Engineering, 17 (11), 1268–1277. doi:10.1061/(ASCE)HE.1943-5584.0000520
  • Narain, S., et al., 2015. SCS-CN-based simulation of pollutants removal. Journal of Civil and Environmental Engineering, 5 (2), 168.
  • Narayana, V.V.D., 1993. Soil and water conservation research in India. New Delhi, India: Indian Council of Agricultural Research.
  • Natural Resources Conservation Service (NRCS), 2001. National engineering handbook Section 4: hydrology. Washington, DC: USDA.
  • Nayak, T., Verma, M.K., and Hema Bindu, S., 2012. SCS curve number method in Narmada basin. International Journal of Geomatics and Geosciences, 3 (1), 219–228.
  • Nayak, T.R. and Jaiswal, R.K., 2003. Rainfall–runoff modeling using satellite data and GIS for Bebas River in Madhya Pradesh. Journal of Institution of Engineers, 84, 47–50.
  • Neitsch, S.L., et al., 2002. Soil and water assessment tool (SWAT): theoretical documentation, version 2000. College Station, TX: Texas Water Resources Institute, TWRI Report TR-191.
  • Njoku, E.G., et al., 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41 (2), 215–229. doi:10.1109/TGRS.2002.808243
  • Nourani, V., Singh, V.P., and Delafrouz, H., 2009. Three geomorphological rainfall–runoff models based on the linear reservoir concept. Catena, 76, 206–214. doi:10.1016/j.catena.2008.11.008
  • Ojha, C., 2012. Simulating turbidity removal at a river bank filtration site in India using SCS-CN approach. Journal of Hydrologic Engineering, ASCE, 17 (11), 1240–1244. doi:10.1061/(ASCE)HE.1943-5584.0000498
  • Owens, J. S., et al., 2003. Cover-runoff equations to improve simulation of runoff in pasture growth models. Australian Journal Of Soil Research, 41, doi:10.1071/SR03047-0004-9573/03/0801467
  • Pandey, A., et al., 2003. Estimation of runoff for agricultural watershed using SCS curve number and Geographic Information System. Available from: htpp://www.GISdevelopment.net.
  • Pandey, A. and Sahu, A.K., 2002. Generation of curve number using remote sensing and geographic information system. In: Water resources, Map India Conference. Available from: http://[email protected]/.
  • Pandit, A. and Gopalakrishnan, G., 1996. Estimation of annual storm runoff coefficients by continuous simulation. Journal of Irrigation and Drainage Engineering, ASCE, 122 (4), 211–220. doi:10.1061/(ASCE)0733-9437(1996)122:4(211)
  • Pankaj, A. and Kumar, P., 2009. GIS-based morphometric analysis of five major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37, 157–166. doi:10.1007/s12524-009-0007-9
  • Patil, J.P., et al., 2008. Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biomass Engineering, 100, 137–146.
  • Petty, G. and Krajewski, W.F., 1996. Satellite estimation of precipitation over land. Hydrological Sciences Journal, 41, 433–451. doi:10.1080/02626669609491519
  • Pfister, L., et al., 2003. Predicting peak discharge through empirical relationships between rainfall, groundwater level and basin humidity in the Alzette River basin Grand-Duchy of Luxembourg. Journal of Hydrology and Hydromechanics, 51 (3), 210–220.
  • Plummer, A. and Woodward, D.E., 2002. The origin and derivation of Ia/S in the runoff curve number system. Available from: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044210.pdf
  • Ponce, V.M., 1989. Engineering hydrology: principles and practice. Englewood Cliffs, NJ: Prentice-Hall.
  • Ponce, V.M. and Hawkins, R.H., 1996. Runoff curve number: has it reached maturity? Journal of Hydrologic Engineering, ASCE, 1 (1), 11–19. doi:10.1061/(ASCE)1084-0699(1996)1:1(11)
  • Prakash, S., et al., 2009. Combined use of microwave and IR data for the study of Indian monsoon rainfall. In: ISPRS archives XXXVIII-8/W3 workshop proceedings: impact of climate change on agriculture. Ahmedabad, India, 227–230.
  • Ragan, R.M. and Jackson, T.M., 1980. Runoff synthesis using Landsat and SCS model. Journal of Hydraulics Division, ASCE, 106 (5), 667–678.
  • Rallison, R.E., 1980. Origin and evaluation of the SCS runoff equation. In: Proceeding of symposium Watershed Management. Idaho: ASCE, 912–924.
  • Ramakrishnan, D., Bandyopadhyay, A., and Kusuma, K.N., 2009. SCS-CN and GIS based approach for identifying potential water harvesting sites in the Kali watershed, Mahi river basin, India. Journal of Earth System Sciences, 118 (4), 355–368. doi:10.1007/s12040-009-0034-5
  • Ramasastri, K.S. and Seth, S.M., 1985. Rainfall–runoff relationships. Roorkee, UP: National Institute of Hydrology, Rep. RN – 20.
  • Randusová, B., et al., 2015. Comparison of CN estimation approaches. International Journal of Engineering Research and Science, 1 (7), 34–40.
  • Rietz, P.D. and Hawkins, R.H., 2000. Effects of landuse on runoff curve number. In: Watershed management 2000, ASCE, Proceedings of the Watershed Management Symposium. Fort Collins, CO, CD ROM, 11 p.
  • Ritchie, J.C., Zimba, P.V., and Everitt, J.H., 2003. Remote sensing techniques to assess water quality. Photogrammetric Engineering & Remote Sensing, 69, 695–704. doi:10.14358/PERS.69.6.695
  • Roberts, G. and Crane, S.B., 1997. Temporal variations in near surface soil moisture at two contrasting sites in the Wye catchment and their control on storm streamflow generation. Hydrology and Earth System Sciences, 1 (3), 453–461. doi:10.5194/hess-1-453-1997
  • Romero, P., et al., 2007. Curve number values for oliveorchards under different soil management. Journal of Soil and Water Conservation, 71 (6), 1758–1769.
  • Rosenthal, W.D., Harlan, J.C., and Blanchard, B.J., 1982. Case study: estimating antecedent precipitation index from Head Capacity Mapping Mission day thermal infrared data. IAHS Bulletin, 27 (4), 415–426.
  • Sagintayev, Z., et al., 2011. A remote sensing contribution to hydrologic modeling in arid and inaccessible watersheds, Pishin Lora basin, Pakistan. Hydrological Processes, 26, 85–99. doi:10.1002/hyp.8114
  • Sahu, R.K., et al., 2007. An advanced soil moisture accounting procedure for SCS curve number method. Hydrological Processes, 21 (21), 2827–2881. doi:10.1002/hyp.6503
  • Sahu, R.K., Mishra, S.K., and Eldho, T.I., 2010. An improved AMC-coupled runoff curve number model. Hydrological Processes, 24 (20), 2834–2839. doi:10.1002/hyp.v24:20
  • Sahu, R.K., Mishra, S.K., and Eldho, T.I., 2012a. Improved storm duration and antecedent moisture condition coupled SCS-CN concept-based model. Journal of Hydrologic Engineering, ASCE, 17 (11), 1173–1179. doi:10.1061/(ASCE)HE.1943-5584.0000443
  • Sahu, R.K., Mishra, S.K., and Eldho, T.I., 2012b. Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India. ISH Journal of Hydraulic Engineering, 18 (1), 27–36. doi:10.1080/09715010.2012.662425
  • Sandholt, I., et al., 2003. Integration of earth observation data in distributed hydrological models: the Senegal River basin. Canadian Journal of Remote Sensing, 29 (6), 701–710. doi:10.5589/m03-045
  • Savvidou, E., et al., 2016. A curve number approach to formulate hydrological response units within distributed hydrological modelling. Hydrology and Earth System Sciences Discussions, 1–34. doi:10.5194/hess-2016-627
  • Schneider, L.E. and McCuen, R.H., 2005. Statistical guidelines for curve number generation. Journal of Irrigation and Drainage Engineering, 131 (3), 282–290. doi:10.1061/(ASCE)0733-9437(2005)131:3(282)
  • Schroeder, P.R., et al., 1994. The hydrologic evaluation of landfill performance (HELP) model: engineering documentation for version 3. Washington, DC: US Environmental Protection Agency Office of Research and Development, EPA/600/R-94/168b.
  • Schultz, G.A., 1988. Remote sensing in hydrology. Journal of Hydrology, 100 (1–3), 239–265. doi:10.1016/0022-1694(88)90187-4
  • Schultz, G.A., 1996. Remote sensing applications to hydrology: runoff. Hydrological Sciences Journal, 41, 453–475. doi:10.1080/02626669609491520
  • SCS, 1956, 1964, 1971, 1972, 1985, 1993, 2004. National engineering handbook section 4: hydrology, chapter 4. Soil Conservation Service. Washington, DC: USDA.
  • Shaffer, M.J., Halvorson, A.D., and Pierce, F.J., 1991. Nitrate leaching and economic analysis package (NLEAP): model description and application. In: R.F. Follett, et al., eds. Managing nitrogen for groundwater quality and farm profitability. Madison, WI: Soil Science Society of America, 285–322.
  • Sharma, K.D. and Singh, S., 1992. Runoff estimation using Landsat Thematic Mapper data and the SCS model. Hydrological Sciences Journal, 37 (1), 39–52. doi:10.1080/02626669209492560
  • Sharma, T., et al., 2001. Hydrologic response of a watershed to landuse changes: A remote sensing and GIS approach. International Journal of Remote Sensing, 22 (11), 2095–2108. doi:10.1080/01431160117359
  • Sharpley, A.N. and Williams, J.R., 1990. EPIC—erosion/productivity impact calculator: 1. Model documentation. Washington, DC: US Government Printing Office, USDA Technical Bulletin No. 1768.
  • Sherman, L.K., 1949. Streamflow from rainfall by the unit graph method. Engineering News Record, 108, 501–505.
  • Sherman, L.K., 1942. Hydrograph of runoff. In: O.E. Meinzer, ed. Physics of the earth, vol. 9, hydrology. New York: McGraw-Hill.
  • Shi, Z.-H., et al., 2009. Research on the SCS-CN initial abstraction ratio using rainfall–runoff event analysis in the Three Gorges area, China. Catena, 77, 1–7. doi:10.1016/j.catena.2008.11.006
  • Shirmohammadi, A., et al., 1997. Evaluation of curve number procedures to predict runoff in GLEAMS. Journal of the American Water Resources Association, 33, 1069–1076. doi:10.1111/jawr.1997.33.issue-5
  • Shrestha, R.K., Mishra, S.K., and Pandey, A., 2013. Curve number affected by slope of experimental plot having maize crop. Journal of Indian Water Resources Society, 33 (2), 42–50.
  • Sindhu, D., Shivakumar, B.L., and Ravikumar, A.S., 2013. Estimation of surface runoff In Nallur Amanikere watershed using SCS-CN method. International Journal of Research in Engineering and Technology, 2 (13), 404–409. doi:10.15623/ijret.2013.0213076
  • Singh, P., Gupta, A., and Singh, M., 2014. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 17, 111–121. doi:10.1016/j.ejrs.2014.09.003
  • Singh, P.K., et al., 2008. A sediment graph model based on SCS-CN method. Journal of Hydrology, 349, 244–255. doi:10.1016/j.jhydrol.2007.11.004
  • Singh, P.K., et al., 2010. An updated hydrological review on recent advancements in soil conservation service curve-number technique. Journal of Water and Climate Change, 1 (2), 118–134. doi:10.2166/wcc.2010.022
  • Singh, P.K., et al., 2013. SCS-CN based quantification of potential of rooftop catchments and computation of ASRC for rainwater harvesting. Water Resources Management, 27, 2001–2012. doi:10.1007/s11269-013-0267-6
  • Singh, P.K., et al., 2015. Development of a modified SMA based MSCS-CN model for runoff estimation. Water Resources Management, 29 (11), 4111–4127. doi:10.1007/s11269-015-1048-1
  • Singh, V.P., 1992. Elementary hydrology. Englewood Cliffs, NJ: Prentice Hall.
  • Skaugen, T., Peerebom, I.O., and Nilsson, A., 2015. Use of a parsimonious rainfall–runoff model for prediction hydrological response in ungauged basins. Hydrological Processes, 29, 1999–2013. doi:10.1002/hyp.10315
  • Smith, R.E., 1978. A proposed infiltration model for use in simulation of field-scale watershed hydrology. In: Presented at U.S. Dep. Agric. Agric. Res. Serv. Nonpoint Pollution Modeling Workshop.
  • Smith, R.E., 1997. Discussion of runoff curve number: has it reached maturity? by Ponce, V.M., and Hawkins, R.H. Journal of Hydrologic Engineering, 2 (3), 145–148. doi:10.1061/(ASCE)1084-0699(1997)2:3(145)
  • Smith, R.E. and Williams, J.R., 1980. Simulation of surface water hydrology. In: W.G. Knisel, eds. CREAMS: a field scale model for chemicals. Conservation Research Report No.26. Washington, DC: USDA, 643.
  • Sobhani, G., 1975. A review of selected small watershed design methods for possible adoption to Iranian conditions. MS Thesis, Utah State University, Logan, UT.
  • Sorooshian, S., et al., 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81, 2035–2046. doi:10.1175/1520-0477(2000)0812.3.CO;2
  • Soulis, K.X., et al., 2009. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrology and Earth System Sciences, 13, 605–615. doi:10.5194/hess-13-605-2009
  • Soulis, K.X. and Valiantzas, J.D., 2012. SCS-CN parameter determination using rainfall–runoff data in heterogeneous watersheds -the two-CN system approach. Hydrology and Earth System Sciences, 16, 1001–1015. doi:10.5194/hess-16-1001-2012
  • Soulis, K.X. and Valiantzas, J.D., 2013. Identification of the SCS-CN parameter spatial distribution using rainfall–runoff data in heterogeneous watersheds. Water resources Management, 27, 1737–1749. doi:10.1007/s11269-012-0082-5
  • Springer, E.P., et al., 1980. Curve numbers from watershed data. In: Symposium on “Watershed Management”. New York, NY: Boios, ID: ASCE, 938–950.
  • Srinivasan, R. and Engel, B.A., 1994. A spatial decision support system for assessing agricultural nonpoint source pollution. Journal of the American Water Resources Association, 30 (3), 441–452. doi:10.1111/jawr.1994.30.issue-3
  • Steefel, C.I. and Van Cappellen, P., 1998. Reactive transport modeling of natural systems. Journal of Hydrology, 209, 1–7.
  • Steenhuis, T.S., et al., 1995. SCS runoff equation revisited for variable-source runoff areas. Journal of Irrigation and Drainage Engineering, ASCE, 121 (3), 234–238. doi:10.1061/(ASCE)0733-9437(1995)121:3(234)
  • Still, D.A. and Shih, S.F., 1984. Using Landsat data to estimate runoff. ASAE Summer Meeting. Paper no. 80-2018. St. Joseph, MI.
  • Still, D.A. and Shih, S.F., 1985. Using Landsat to classify land use for assessing the basin-wide runoff index. Journal of American Water Resources Association, 21 (6), 931–940. doi:10.1111/j.1752-1688.1985.tb00188.x
  • Still, D.A. and Shih, S.F., 1991. Satellite data and geographic information system in runoff curve number prediction. In: Proceeding of the International Conference on Computer Application in Water Resources, Taipei, Taiwan, 1014–1021.
  • Stuebe, M.M. and Johnston, D.M., 1990. Runoff volume estimation using GIS technique. Water Resources Bulletin, 26 (4), 611–620. doi:10.1111/j.1752-1688.1990.tb01398.x
  • Su, F.G., Hong, Y., and Lettenmaier, D.P., 2008. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology, 9 (4), 622–640. doi:10.1175/2007JHM944.1
  • Suresh., Babu, P., and Mishra, S. K., 2012. Improved SCS-CN inspired model. Journal of Hydrologic Engineering, 17 (11), 1164-1172. doi: 10.1061/(ASCE)HE.1943-5584.0000435
  • Svoboda, A., 1991. Changes in flood regime by use of the modified curve number method. Hydrological Sciences Journal, 36 (5), 461–470. doi:10.1080/02626669109492531
  • Tauer, W. and Humborg, G., 1992. Runoff irrigation in the Sahel zone: remote sensing and GIS for determining potential sites. Technical Centre for Agriculture and Rural Co-operation. Netherlands: GIS publishers.
  • Tedela, N.H., et al., 2012. Runoff curve number for 10 small forested watersheds in the mountains of the Eastern United States. Journal of Hydrologic Engineering, 17, 1188–1198. doi:10.1061/(ASCE)HE.1943-5584.0000436
  • Tejaswini, N.B., Shetty, A., and Hegde, V.S., 2011. Land use scenario analysis and prediction of runoff using SCS‐CN method: A case study from the Gudgudi tank, Haveri District, Karnataka, India. International Journal of Earth Sciences and Engineering, 4 (5), 845–853.
  • Temimi, M., et al., 2010. A combination of remote sensing data and topographic attributes for the spatial and temporal monitoring of soil wetness. Journal of Hydrology, 388 (1–2), 28–40. doi:10.1016/j.jhydrol.2010.04.021
  • Thakuriah, G. and Ranjan, S., 2014. Estimation of surface runoff using NRCS curve number procedure in Buriganga Watershed, Assam, India – A geospatial approach. International Research Journal of Earth Sciences, 2 (5), 1–7.
  • Tischler, M., et al., 2007. A GIS framework for surface-layer soil moisture estimation combining satellite radar measurements and land surface modeling with soil physical property estimation. Environmental Modelling & Software, 22, 891–898. doi:10.1016/j.envsoft.2006.05.022
  • Tiwari, K.N., et al., 1997. Watershed parameters extraction using GIS and remote sensing for Hydrologic modelling. Journal of Asian-Pacific Remote Sensing and GIS, 10 (1), 43–52.
  • Todd, M., et al., 2001. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. Journal of Atmospheric and Oceanic Technology, 18, 742–755. doi:10.1175/1520-0469(2001)0582.0.CO;2
  • Topno, A., Singh, A.K., and Vaishya, R.C., 2015. SCS-CN Runoff estimation for Vindhyachal region using remote sensing and GIS. International Journal of Advanced Remote Sensing and GIS, 4 (1), 1214–1223. doi:10.23953/cloud.ijarsg.108
  • Tramblay, Y., et al., 2010. Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. Journal of Hydrology, 380 (3–4), 305–317. doi:10.1016/j.jhydrol.2009.11.006
  • Tramblay, Y., et al., 2012. Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrology and Earth System Sciences, 16, 4375–4386. doi:10.5194/hess-16-4375-2012
  • Tripathi, M.P., et al., 2002. Runoff modelling of a small watershed using satellite data and GIS. Journal of the Indian Society of Remote Sensing, 30 (1–2), 39–52. doi:10.1007/BF02989975
  • Tyagi, J.V., et al., 2008. SCS-CN based time distributed sediment yield model. Journal of Hydrology, 352 (3–4), 388–403. doi:10.1016/j.jhydrol.2008.01.025
  • USDA, 1986. Urban hydrology for small watersheds. Washington, DC: United States Department of Agriculture, Technical Release 55 (TR-55).
  • Van Mullem, J., et al., 2002. Runoff curve number method: beyond the handbook. In: Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, 1–10. Available from: https://acwi.gov/hydrology/mtsconfwkshops/conf_proceedings/second_fihmc_nevada.pdf
  • Van Mullem, J.A., 1991. Runoff and peak discharges using Green-Ampt infiltration model. Journal of Hydraulic Engineering, ASCE, 117 (3), 354–370. doi:10.1061/(ASCE)0733-9429(1991)117:3(354)
  • Vicente, G.A. and Anderson, J.R., 1994. A new rain retrieval technique that combines geosynchronous IR and MW polar orbit data for hourly rainfall estimates. Case study: Kwajalein and TOGA-COARE. In: American Meteorological Society, ed. Proceeding of the 7th conference on satellite meteorology and oceanography. AMS, 34–37.
  • Wagner, W., Lemoine, G., and Rott, H., 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70, 191–207. doi:10.1016/S0034-4257(99)00036-X
  • Walter, M.T. and Stephen, B.S., 2005. Discussion of: “Curve number hydrology in water quality modeling: uses, abuses, and future directions” by David C. Garen and Daniel S. Moore. Journal of American Water Resources Association, 41 (6), 1491–1492. doi:10.1111/jawr.2005.41.issue-6
  • Wang, S.G., et al., 2011. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER). Hydrology and Earth System Sciences, 15 (5), 1415–1426. doi:10.5194/hess-15-1415-2011
  • Wang, T., et al., 2012a. Climate WNA – high-resolution spatial climate data for western North America. Journal of Applied Meteorology and Climatology, 51, 16–29. doi:10.1175/JAMC-D-11-043.1
  • Wang, X., et al., 2008. Simulation of an agricultural watershed using an improved curve number method in SWAT. Transactions of the American Society of Agricultural and Biological Engineering, 51 (4), 1323–1339.
  • Wang, X., et al., 2010. Simulated wetland conservationrestoration effects on water quantity and quality at watershed scale. Journal of Environmental Management, 91, 1511–1525. doi:10.1016/j.jenvman.2010.02.023
  • Wang, X., Liu, T., and Yang, W., 2012b. Development of a robust runoff-prediction model by fusing the rational equation and a modified SCS-CN method. Hydrological Sciences Journal, 57, 1118–1140. doi:10.1080/02626667.2012.701305
  • Weiler, M., et al., 2003. How does rainfall become runoff? A combined tracer and runoff transfer function approach. Water Resources Research, 39 (11), 1315. doi:10.1029/2003WR002331
  • White, D., 1988. Grid-based application of runoff curve numbers. Journal of Water Resources Planning and Management, ASCE, 114 (6), 601–612. doi:10.1061/(ASCE)0733-9496(1988)114:6(601)
  • Wight, J.R. and Skiles, J.W., 1987. SPUR: simulation of production and utilization of rangelands. Documentation and users guide. Washington, DC: US Department of Agriculture -Agricultural Research Service, 372.
  • Williams, J. R., Arnold, J. G., and Srinivasan, R., 2000. The APEX model. Temple, TX: Texas A&M Blackland Research Center, BRC Report No. 00–06.
  • Williams, J.R., et al., 2012. Evolution of the SCS runoff curve number method and its application to continuous runoff simulation. Journal of Hydrologic Engineering, 17(11),1221–1229.
  • Williams, J.R. and Izaurralde, R.C., 2005. The APEX model. Temple, TX: Texas A&M Blackland Research Center, BRC Report no. 2005-2.
  • Williams, J.R. and LaSeur, V., 1976. Water yield model using SCS curve numbers. Journal of Hydraulic Engineering, 102 (9), 1241–1253.
  • Woodward, D.E., et al., 2002. Curve number method: origins, applications and limitations. Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, 1–10. Available from: http://www.wcc.nrcs.usda.gov/water/quality/common/techpapers/curve.html.
  • Woodward, D.E., et al., 2003. Runoff curve number method: examination of the initial abstraction ratio. In: Paul Bizier and Paul DeBarry, eds.World Water & Environ. Resources Congress 2003 and related symposia, 23–26 June 2003. Philadelphia, PA: EWRI, ASCE, 23–26.
  • Woodward, D.E., et al., 2010. Discussion of “modifications to SCS-CN method for long-term hydrologic simulation” by K. Geetha, S. K. Mishra, T. I. Eldho, A. K. Rastogi, and R. P. Pandey. Journal of Irrigation and Drainage Engineering, 136 (6), 444–446. doi:10.1061/(ASCE)IR.1943-4774.0000231
  • Woodward, D.E. and Gbuerek, W.J., 1992. Progress report ARS/SCS curve number work group. In: Proceedings ASCE, Water Forum, 92. New York: ASCE, 378–382.
  • Xue, X., et al., 2013. Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu basin of Bhutan: are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 499, 91–99. doi:10.1016/j.jhydrol.2013.06.042
  • Yilmaz, K., et al., 2010. Evaluation of a satellite based global flood monitoring system. International Journal of Remote Sensing, 31, 3763–3782. doi:10.1080/01431161.2010.483489
  • Yilmaz, K.K., et al., 2005. Intercomparison of rain gauge, radar and satellite-based precipitation estimates with emphasis on hydrologic forecasting. Journal of Hydrometeorology, 6 (4), 497–517. doi:10.1175/JHM431.1
  • Yong, B., et al., 2010. Hydrologic evaluation of multi satellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resources Research, 46 (7), W07542. doi:10.1029/2009WR008965
  • Young, R.A., et al., 1989. AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation, 44 (2), 168–173.
  • Yu, B., 1998. Theoretical justification of SCS method for runoff estimation. Journal of Irrigation and Drainage Engineering, 124 (6), 306–310. doi:10.1061/(ASCE)0733-9437(1998)124:6(306)
  • Yuan, Y., et al., 2001. Modified SCS curve number method for predicting sub surface drainage flow. Transactions of the ASCE, 44 (6), 1673–1682.
  • Yuan, Y., et al., 2014. Initial abstraction and curve numbersfor semiarid watersheds in south eastern Arizona. Hydrological Processes, 28, 774–783. doi:10.1002/hyp.9592
  • Zende, A.M. and Atal, K.R., 2015. Identification of rainwater harvesting structure for Yerala river using remote sensing and GIS. In: E-proceedings of the 36th IAHR World Congress. The Hague, The Netherlands: IAHR.
  • Zende, A.M., Nagarajan, R., and Atal, K.R., 2014. Analysis of surface runoff from Yerala River Basin using SCS-CN and GIS. International Journal of Geomatics and Geosciences, 4 (3), 508–516.
  • Zhan, X. and Huang, M.-L., 2004. ArcCN-runoff: an ArcGIS tool for generating curve number and runoff maps. Environmental Modelling & Software, 19 (10), 875–879. doi:10.1016/j.envsoft.2004.03.001
  • Zhang, H., Haan, C.T., and Nofziger, D.L., 1990. Hydrologic modeling with GIS: an overview. Applied Engineering in Agriculture, 6 (4), 453–458. doi:10.13031/2013.26413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.