1,598
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Use of ACRU, a distributed hydrological model, to evaluate how errors from downscaled rainfall are propagated in simulated runoff in uMngeni catchment, South Africa

ORCID Icon, &
Pages 1995-2011 | Received 26 Jul 2016, Accepted 20 Apr 2017, Published online: 08 Aug 2017

References

  • Acocks, J.P.H., 1988. Veld types of South Africa. 3rd ed. Pretoria: Government Printers.
  • Andréassian, V., et al. 2001. Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models. Journal of Hydrology, 250 (1–4), 206–223. doi:10.1016/S0022-1694(01)00437-1
  • Arnell, N.W. and Gosling, S.N., 2013, The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486 (1), 351–364. doi:10.1016/j.jhydrol.2013.02.010
  • Beven, K. and Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. In: B. E Moore, ed. Terrain analiysis and distributed modelling in hydrology. Chichester: John Wiley & Sons, 227–246.
  • Beven, K. and Freer, J., 2001, Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249 (1–4), 11–29. doi:10.1016/S0022-1694(01)00421-8
  • Beven, K.J., 2011. Rainfall-runoff modelling: the primer. Chichester: John Wiley & Sons.
  • Bezuidenhout, C.N., 2005. Development and evaluation of model-based operational yield forecasts in the South African sugar industry. ( PhD). University of KwaZulu-Natal, South Africa.
  • Borga, M., 2002, Accuracy of radar rainfall estimates for streamflow simulation. Journal of Hydrology, 267 (1–2), 26–39. doi:10.1016/S0022-1694(02)00137-3
  • Borga, M., Degli Esposti, S., and Norbiato, D., 2006. Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty. Water Resources Research, 42 (8). doi:10.1029/2005WR004559
  • Bringi, V., et al. 2001. An areal rainfall estimator using differential propagation phase: evaluation using a C-band radar and a dense gauge network in the tropics. Journal of Atmospheric and Oceanic Technology, 18 (11), 1810–1818. doi:10.1175/1520-0426(2001)018<1810:AAREUD>2.0.CO;2
  • Chen, H., Xu, C.-Y., and Guo, S., 2012, Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology, 434–435 (0), 36–45. doi:10.1016/j.jhydrol.2012.02.040
  • Chiew, F., et al. 2010. Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates. Journal of Hydrology, 387 (1–2), 10–23. doi:10.1016/j.jhydrol.2010.03.025
  • Coutinho, J., et al., 2014. Characterization of sub-daily rainfall properties in three raingauges located in northeast Brazil. Proceedings of the International Association of Hydrological Sciences, 364, 345–350. doi:10.5194/piahs-364-345-2014
  • Fand, B.B., et al. 2014. Predicting the impact of climate change on regional and seasonal abundance of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: pseudococcidae) using temperature-driven phenology model linked to GIS. Ecological Modelling, 288 (0), 62–78. doi:10.1016/j.ecolmodel.2014.05.018
  • Gabellani, S., et al. 2007. Propagation of uncertainty from rainfall to runoff: A case study with a stochastic rainfall generator. Advances in Water Resources, 30 (10), 2061–2071. doi:10.1016/j.advwatres.2006.11.015
  • Gorard, S., 2005, Revisiting a 90-year-old debate: the advantages of the mean deviation. British Journal of Educational Studies, 53 (4), 417–430. doi:10.1111/j.1467-8527.2005.00304.x
  • Gosling, S., et al. 2011. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences, 15 (1), 279–294. doi:10.5194/hess-15-279-2011
  • Graham, L.P., et al. 2011. Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa. Physics and Chemistry of the Earth, Parts A/B/C, 36 (14–15), 727–735. doi:10.1016/j.pce.2011.07.084
  • Gush, M., et al. 2002. A new approach to modelling streamflow reductions resulting from commercial afforestation in South Africa. The Southern African Forestry Journal, 196 (1), 27–36. doi:10.1080/20702620.2002.10434615
  • Hargreaves, G.H. and Samani, Z.A., 1985, Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1 (2), 96–99. doi:10.13031/2013.26773
  • Hewitson, B. and Crane, R., 2006, Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa. International Journal of Climatology, 26 (10), 1315–1337. doi:10.1002/(ISSN)1097-0088
  • Hewitson, B.C., and Tadross, M.A., 2011. Developing regional climate change projections. In: R.E. Schulze, B.C. Hewitson, K.R. Barichievy, M.A. Tadross, R.P. Kunz, M.J.C. Horan, T.G. Lumsden, eds. Methodological approaches to assessing eco-hydrological responses to climate change in South Africa. Report K5/1562. Pretoria: Water Research Commission.
  • Honti, M., Scheidegger, A., and Stamm, C., 2014, The importance of hydrological uncertainty assessment methods in climate change impact studies. Hydrology and Earth System Sciences, 18 (8), 3301–3317. doi:10.5194/hess-18-3301-2014
  • Hossain, F., et al. 2004. Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty. Hydrological Processes, 18 (17), 3277–3291. doi:10.1002/hyp.5659
  • Hostache, R., et al. 2011. Propagation of uncertainties in coupled hydro-meteorological forecasting systems: A stochastic approach for the assessment of the total predictive uncertainty. Atmospheric Research, 100 (2–3), 263–274. doi:10.1016/j.atmosres.2010.09.014
  • Hughes, D., 2004, Three decades of hydrological modelling research in South Africa. South African Journal of Science, 100 (11 & 12), 638–642.
  • Hughes, D., 2013. A review of 40 years of hydrological science and practice in southern Africa using the Pitman rainfall-runoff model. Journal of Hydrology, 501, 111–124. doi:10.1016/j.jhydrol.2013.07.043
  • Hughes, D., 2016. Hydrological modelling, process understanding and uncertainty in a southern African context: lessons from the northern hemisphere. Hydrological Processes, 30 (14), 2419–2431. doi:10.1029/2008WR006833
  • Hughes, D., Kapangaziwiri, E., and Sawunyama, T., 2010, Hydrological model uncertainty assessment in southern Africa. Journal of Hydrology, 387 (3–4), 221–232. doi:10.1016/j.jhydrol.2010.04.010
  • Hughes, D., Mantel, S., and Mohobane, T., 2014, An assessment of the skill of downscaled GCM outputs in simulating historical patterns of rainfall variability in South Africa. Hydrology Research, 45 (1), 134–147. doi:10.2166/nh.2013.027
  • Ji, F., et al. 2014. Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theoretical and Applied Climatology, 115 (1–2), 297–304. doi:10.1007/s00704-013-0904-2
  • Kapangaziwiri, E., Hughes, D., and Wagener, T., 2012, Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern Africa. Hydrological Sciences Journal, 57 (5), 1000–1019. doi:10.1080/02626667.2012.690881
  • Kienzle, S.W., et al. 2012. Simulating the hydrological impacts of climate change in the upper North Saskatchewan River basin, Alberta, Canada. Journal of Hydrology, 412–413 (0), 76–89. doi:10.1016/j.jhydrol.2011.01.058
  • Kusangaya, S., et al., 2014. Impacts of climate change on water resources in southern Africa: A review. Physics and Chemistry of the Earth, Parts A/B/C, 67, 47–54. doi:10.1016/j.pce.2013.09.014
  • Kusangaya, S., et al., 2016. An evaluation of how downscaled climate data represents historical precipitation characteristics beyond the means and variances. Global and Planetary Change, 144, 129–141. doi:10.1016/j.gloplacha.2016.07.014
  • Li, F., et al. 2013. The impact of climate change on runoff in the southeastern Tibetan Plateau. Journal of Hydrology, 505 (0), 188–201. doi:10.1016/j.jhydrol.2013.09.052
  • Li, F., Zhang, G., and Xu, Y.J., 2014, Spatiotemporal variability of climate and streamflow in the Songhua River Basin, northeast China. Journal of Hydrology, 514 (0), 53–64. doi:10.1016/j.jhydrol.2014.04.010
  • Liu, Y., et al. 2012. Quantifying uncertainty in catchment-scale runoff modeling under climate change (case of the Huaihe River, China). Quaternary International, 282 (0), 130–136. doi:10.1016/j.quaint.2012.04.029
  • Liu, Y. and Gupta, H.V., 2007, Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resources Research, 43 (7), W07401. doi:10.1029/2006WR005756
  • Lumsden, T., Schulze, R., and Hewitson, B., 2009, Evaluation of potential changes in hydrologically relevant statistics of rainfall in Southern Africa under conditions of climate change. Water Sa, 35 (5), 649–656. doi:10.4314/wsa.v35i5.49190
  • Mazvimavi, D., 2010, Climate change, water availability and supply. SARUA Leadership Dialogue Series, 2 (4), 81–97.
  • Moulin, L., Gaume, E., and Obled, C., 2009, Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrology and Earth System Sciences, 5 (4), 2067–2110. doi:10.5194/hessd-5-2067-2008
  • Najafi, M., Moradkhani, H., and Jung, I., 2011, Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological Processes, 25 (18), 2814–2826. doi:10.1002/hyp.v25.18
  • Nikolopoulos, E.I., et al. 2010. Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. Journal of Hydrometeorology, 11 (2), 520–532. doi:10.1175/2009JHM1169.1
  • Nikulin, G., et al. 2012. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. Journal of Climate, 25 (18), 6057–6078. doi:10.1175/JCLI-D-11-00375.1
  • NWA, 1998. National Water Act, Act No. 36 of 1998. Pretoria, RSA: Government Printers.
  • Ogden, F., et al. 2000. Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. Journal of Hydrology, 228 (1–2), 82–100. doi:10.1016/S0022-1694(00)00146-3
  • Pappenberger, F., et al. 2005. Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS). Hydrology and Earth System Sciences Discussions, 9 (4), 381–393. doi:10.5194/hess-9-381-2005
  • Praskievicz, S. and Chang, H., 2009, A review of hydrological modelling of basin-scale climate change and urban development impacts. Progress in Physical Geography, 33 (5), 650–671. doi:10.1177/0309133309348098
  • Sawunyama, T. and Hughes, D., 2008, Application of satellite-derived rainfall estimates to extend water resource simulation modelling in South Africa. Water Sa, 34 (1), 1–10.
  • Schulze, R., 1995. Hydrology and agrohydrology: A text to accompany the ACRU 3.00 agrohydrological modelling system. Pretoria, South Africa: Water Research Commission.
  • Schulze, R., 2005. Climate change and water resources in Southern Africa: studies on scenarios, impacts, vulnerabilities and adaptation. Pretoria, South Africa: Water Research Commission.
  • Schulze, R., 2011. Methodological approaches to assessing eco-hydrological responses to climate change in South Africa. Pretoria, South Africa: Water Research Commission.
  • Schulze, R., Kunz, R., and Knoesen, D., 2003. Atlas of climate change and water resources in South Africa. Pretoria, South Africa: Water Research Commission.
  • Schulze, R. and Maharaj, M., 2004. Development of a database of gridded daily temperatures for Southern Africa. Pretoria, South Africa: Water Research Commission.
  • Schulze, R., and Perks, L., 2000. Assessment of the impact of climate change on hydrology and water resources in South Africa. ACRUcons Report 33. Pretoria: Water Research Commission.
  • Senarath, S.U., et al. 2000. On the calibration and verification of two‐dimensional, distributed, Hortonian, continuous watershed models. Water Resources Research, 36 (6), 1495–1510. doi:10.1029/2000WR900039
  • Sharif, H.O., et al. 2002. Numerical simulations of radar rainfall error propagation. Water Resources Research, 38 (8). doi:10.1029/2001WR000525
  • Sharif, H.O., et al. 2004. Statistical analysis of radar rainfall error propagation. Journal of Hydrometeorology, 5 (1), 199–212. doi:10.1175/1525-7541(2004)005<0199:SAORRE>2.0.CO;2
  • Smithers, J. and Schulze, R., 1995. ACRU Agrohydrological Modelling System: User manual, version 3.00. (Report TT70/95). Pretoria: Water Research Commission.
  • Smithers, J., Schulze, R., and Kienzle, S., 1997, Design flood estimation using a modelling approach: a case study using the ACRU model. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 240, 365–376.
  • Summerton, M., 2008. A preliminary assessment of the impact of climate change on the water resources of the uMgeni catchment. Report Number 160.8/R001/2008. Pietermaritzburg: Umgeni Water, Planning Services Department.
  • Summerton, M., and Schulze, R., 2009. A framework for determining the possible impacts of a changing climate on water supply. In: Starrett, S. eds. World environmental and water resources congress 2009@ great rivers, 2012, Kansas City, MO, 4623–4633.
  • Summerton, M., Schulze, R., and Graham, P., 2010. Impacts of a changing climate on hydrology and water supply in the Mgeni catchment, South Africa. In: Walsh, C. eds. Proceedings of the British hydrological society third international symposium, managing consequences of a changing global environment, Newcastle UK.
  • Summerton, M., Schulze, R., and Liebscher, H., 2009, Hydrological consequences of a changing climate: the Umgeni Water utility case study. IAHS Publication, 327, 237.
  • Tadross, M., Jack, C., and Hewitson, B., 2005, On RCM‐based projections of change in southern African summer climate. Geophysical Research Letters, 32 (23), 23–35. doi:10.1029/2005GL024460
  • Tarboton, K. and Schulze, R., 1992. Distributed hydrological modelling system for the mgeni catchment. Pretoria, South Africa: Water Research Commission.
  • Teng, J., et al. 2012. Assessment of an analogue downscaling method for modelling climate change impacts on runoff. Journal of Hydrology, 472–473 (0), 111–125. doi:10.1016/j.jhydrol.2012.09.024
  • Vaze, J., et al. 2010. Climate non-stationarity–validity of calibrated rainfall–runoff models for use in climate change studies. Journal of Hydrology, 394 (3–4), 447–457. doi:10.1016/j.jhydrol.2010.09.018
  • Warburton, M., Schulze, R., and Jewitt, G., 2010, Confirmation of ACRU model results for applications in land use and climate change studies. Hydrology and Earth System Sciences, 14 (12), 2399–2414. doi:10.5194/hess-14-2399-2010
  • Warburton, M., Schulze, R., and Maharaj, M., 2005. Is South Africa’s temperature changing? An analysis of trends from daily records, 1950–2000. In: Schulze, R. eds. Climate change and water resources in southern Africa: studies on scenarios, impacts, vulnerabilities and adaptation (WRC Report 1430/1/05). Pretoria: Water Research Commission, 275–295.
  • Warburton, M.L., Schulze, R.E., and Jewitt, G.P., 2012. Hydrological impacts of land use change in three diverse South African catchments. Journal of Hydrology, 414, 118–135. doi:10.1016/j.jhydrol.2011.10.028
  • Zhang, X., Xu, Y.-P., and Fu, G., 2014, Uncertainties in SWAT extreme flow simulation under climate change. Journal of Hydrology, 515 (0), 205–222. doi:10.1016/j.jhydrol.2014.04.064
  • Zhijia, L., et al., 2004. Coupling between weather radar rainfall data and a distributed hydrological model for real-time flood forecasting. Hydrological Sciences Journal, 49 (6), 945–958.
  • Zhu, D., Peng, D., and Cluckie, I., 2013, Statistical analysis of error propagation from radar rainfall to hydrological models. Hydrology and Earth System Sciences, 17 (4), 1445–1453. doi:10.5194/hess-17-1445-2013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.