741
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

On the prediction of persistent processes using the output of deterministic models

ORCID Icon & ORCID Icon
Pages 2083-2102 | Received 04 Apr 2017, Accepted 10 Jul 2017, Published online: 06 Sep 2017

References

  • Aloysius, N.R., et al., 2016. Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. Journal of Geophysical Research, 121 (1), 130–152. doi:10.1002/2015JD023656
  • Anagnostopoulos, G.G., et al., 2010. A comparison of local and aggregated climate model outputs with observed data. Hydrological Sciences Journal, 55 (7), 1094–1110. doi:10.1080/02626667.2010.513518
  • Baddeley, A., Rubak, E., and Turner, R., 2015. Spatial point patterns: methodology and applications with R. London: Chapman and Hall/CRC Press.
  • Bromiley, P., 2014. Products and convolutions of Gaussian probability density functions. University of Manchester, Tina Memo No. 2003-003 [online]. Available from: http://tina.wiau.man.ac.uk/docs/memos/2003-003.pdf
  • Chen, F., Jiao, M., and Chen, J., 2013. The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments. Acta Meteorologica Sinica, 27 (2), 199–210. doi:10.1007/s13351-013-0205-9
  • Chowdhury, S. and Sharma, A., 2011. Global sea surface temperature forecasts using a pairwise dynamic combination approach. Journal of Climate, 24, 1869–1877. doi:10.1175/2010JCLI3632.1
  • de Finetti, B., 1974. Theory of probability. New York: Wiley.
  • Dessai, S. and Hulme, M., 2004. Does climate adaptation policy need probabilities? Climate Policy, 4 (2), 107–128. doi:10.1080/14693062.2004.9685515
  • Eaton, M.L., 2007. Multivariate statistics: a vector space approach. Lecture Notes-Monograph Series. Volume. 53. Beachwood, OH: Institute of Mathematical Statistics.
  • Ehret, U., et al., 2012. HESS opinions “Should we apply bias correction to global and regional climate model data?”. Hydrology and Earth System Sciences, 16, 3391–3404. doi:10.5194/hess-16-3391-2012
  • Fatichi, S., Ivanov, V.Y., and Caporali, E., 2012. Investigating interannual variability of precipitation at the global scale: is there a connection with seasonality? Journal of Climate, 25, 5512–5523. doi:10.1175/JCLI-D-11-00356.1
  • Golub, G.H. and Van Loan, C.F., 1996. Matrix computations. 3rd ed. Baltimore: John Hopkins University Press.
  • Groves, D.G., Yates, D., and Tebaldi, C., 2008. Developing and applying uncertain global climate change projections for regional water management planning. Water Resources Research, 44, 12. doi:10.1029/2008WR006964
  • Hawkins, E., et al., 2014. Uncertainties in the timing of unprecedented climates. Nature, 511, E3–E5. doi:10.1038/nature13523
  • Hawkins, E. and Sutton, R., 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society, 90, 1095–1107. doi:10.1175/2009BAMS2607.1
  • Hawkins, E. and Sutton, R., 2011. The potential to narrow uncertainty in projections of regional precipitation change. Climate Dynamics, 37 (1), 407–418. doi:10.1007/s00382-010-0810-6
  • Hemelrijk, J., 1966. Underlining random variables. Statistica Neerlandica, 20 (1), 1–7. doi:10.1111/j.1467-9574.1966.tb00488.x
  • Hewitt, A.J., et al., 2016. Sources of uncertainty in future projections of the carbon cycle. Journal of Climate, 29, 7203–7213. doi:10.1175/JCLI-D-16-0161.1
  • Hibbard, K.A., et al., 2007. A strategy for climate change stabilization experiments. Eos, Transactions American Geophysical Union, 88 (20), 217–221. doi:10.1029/2007EO200002
  • Horn, R.A. and Zhang, F., 2005. Basic properties of the Schur complement. In: F. Zhang, ed. The Schur complement and its applications. New York: Springer US. doi:10.1007/b105056
  • Horrace, W.C., 2005. Some results on the multivariate truncated normal distribution. Journal of Multivariate Analysis, 94 (1), 209–221. doi:10.1016/j.jmva.2004.10.007
  • Iliopoulou, T., et al., 2016. Revisiting long-range dependence in annual precipitation. Journal of Hydrology. doi:10.1016/j.jhydrol.2016.04.015
  • Johnson, F. and Sharma, A., 2009. Measurement of GCM skill in predicting variables relevant for hydroclimatological assessments. Journal of Climate, 22, 4373–4382. doi:10.1175/2009JCLI2681.1
  • Katz, R.W., 2002. Techniques for estimating uncertainty in climate change scenarios and impact studies. Climate Research, 20, 167–185. doi:10.3354/cr020167
  • Klemeš, V., 1986. Operational testing of hydrological simulation models. Hydrological Sciences Journal, 1, 13–24. doi:10.1080/02626668609491024
  • Knutti, R. and Sedláček, J., 2013. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369–373. doi:10.1038/nclimate1716
  • Koutroulis, A.G., et al., 2015. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Climate Dynamics, 47 (5), 1881–1898. doi:10.1007/s00382-015-2938-x
  • Koutsoyiannis, D., 2002. The Hurst phenomenon and fractional Gaussian noise made easy. Hydrological Sciences Journal, 47 (4), 573–595. doi:10.1080/02626660209492961
  • Koutsoyiannis, D., 2003. Climate change, the Hurst phenomenon, and hydrological statistics. Hydrological Sciences Journal, 48 (1), 3–24. doi:10.1623/hysj.48.1.3.43481
  • Koutsoyiannis, D., 2006a. A toy model of climatic variability with scaling behaviour. Journal of Hydrology, 322 (1–4), 25–48. doi:10.1016/j.jhydrol.2005.02.030
  • Koutsoyiannis, D., 2006b. Nonstationarity versus scaling in hydrology. Journal of Hydrology, 324 (1–4), 239–254. doi:10.1016/j.jhydrol.2005.09.022
  • Koutsoyiannis, D., et al., 2008a. On the credibility of climate predictions. Hydrological Sciences Journal, 53 (4), 671–684. doi:10.1623/hysj.53.4.671
  • Koutsoyiannis, D., Efstratiadis, A., and Georgakakos, K.P., 2007. Uncertainty assessment of future hydroclimatic predictions: a comparison of probabilistic and scenario-based approaches. Journal of Hydrometeorology, 8 (3), 261–281. doi:10.1175/JHM576.1
  • Koutsoyiannis, D. and Montanari, A., 2007. Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resources Research, 43 (5), W05429. doi:10.1029/2006WR005592
  • Koutsoyiannis, D. and Montanari, A., 2014. Negligent killing of scientific concepts: the stationarity case. Hydrological Sciences Journal, 60 (7–8), 1174–1183. doi:10.1080/02626667.2014.959959
  • Koutsoyiannis, D., Yao, H., and Georgakakos, A., 2008b. Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods. Hydrological Sciences Journal, 53 (1), 142–164. doi:10.1623/hysj.53.1.142
  • Krzysztofowicz, R., 1985. Bayesian models of forecasted time series. Journal of the American Water Resources Association, 21 (5), 805–814. doi:10.1111/j.1752-1688.1985.tb00174.x
  • Krzysztofowicz, R., 1987. Markovian forecast processes. Journal of the American Statistical Association, 82 (397), 31–37. doi:10.2307/2289121
  • Krzysztofowicz, R., 1992. Bayesian correlation score: a utilitarian measure of forecast skill. Monthly Weather Review, 120, 208–220. doi:10.1175/1520-0493(1992)120<0208:BCSAUM>2.0.CO;2
  • Krzysztofowicz, R., 1999a. Bayesian forecasting via deterministic model. Risk Analysis, 19 (4), 739–749. doi:10.1111/j.1539-6924.1999.tb00443.x
  • Krzysztofowicz, R., 1999b. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research, 35 (9), 2739–2750. doi:10.1029/1999WR900099
  • Krzysztofowicz, R., 2001. Integrator of uncertainties for probabilistic river stage forecasting: precipitation-dependent model. Journal of Hydrology, 249 (1–4), 69–85. doi:10.1016/S0022-1694(01)00413-9
  • Krzysztofowicz, R., 2002. Bayesian system for probabilistic river stage forecasting. Journal of Hydrology, 268 (1–4), 16–40. doi:10.1016/S0022-1694(02)00106-3
  • Krzysztofowicz, R., 2010. Decision criteria, data fusion and prediction calibration: a Bayesian approach. Hydrological Sciences Journal, 55 (6), 1033–1050. doi:10.1080/02626667.2010.505894
  • Krzysztofowicz, R. and Evans, W.B., 2008. The role of climatic autocorrelation in probabilistic forecasting. Monthly Weather Review, 136 (12), 4572–4592. doi:10.1175/2008MWR2375.1
  • Krzysztofowicz, R. and Maranzano, C.J., 2004. Bayesian system for probabilistic stage transition forecasting. Journal of Hydrology, 299 (1–2), 15–44. doi:10.1016/j.jhydrol.2004.02.013
  • Kundzewicz, Z.W. and Stakhiv, E.Z., 2010. Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55 (7), 1085–1089. doi:10.1080/02626667.2010.513211
  • Lawrimore, J.H., et al., 2011. An overview of the global historical climatology network monthly mean temperature data set, version 3. Journal of Geophysical Research, 116, D19121. doi:10.1029/2011JD016187
  • Lee, D.T. and Schachter, B.J., 1980. Two algorithms for constructing a Delaunay triangulation. International Journal of Computer & Information Sciences, 9 (3), 219–242. doi:10.1007/BF00977785
  • Macilwain, C., 2014. A touch of the random. Science, 344 (6189), 1221–1223. doi:10.1126/science.344.6189.1221
  • Maloney, E.D., et al., 2014. North American climate in CMIP5 experiments: part III: assessment of twenty-first-century projections. Journal of Climate, 27, 2230–2270. doi:10.1175/JCLI-D-13-00273.1
  • Markonis, Y. and Koutsoyiannis, D., 2016. Scale-dependence of persistence in precipitation records. Nature Climate Change, 6, 399–401. doi:10.1038/nclimate2894
  • Marty, R., et al., 2015. Combining the Bayesian processor of output with Bayesian model averaging for reliable ensemble forecasting. Journal of the Royal Statistical Society C, 64 (1), 75–92. doi:10.1111/rssc.12062
  • Masui, T., et al., 2011. An emission pathway for stabilization at 6 Wm−2 radiative forcing. Climatic Change, 109, 59–76. doi:10.1007/s10584-011-0150-5
  • Matthes, J.H., et al., 2016. Benchmarking historical CMIP5 plant functional types across the Upper Midwest and Northeastern United States. Journal of Geophysical Research, 121 (2), 523–535. doi:10.1002/2015JG003175
  • Meinshausen, M., et al., 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241. doi:10.1007/s10584-011-0156-z
  • Menne, M.J., et al., 2012a. Global historical climatology network - daily (GHCN-Daily), version 3.22. NOAA National Climatic Data Center. doi:10.7289/V5D21VHZ
  • Menne, M.J., et al., 2012b. An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29, 897–910. doi:10.1175/JTECH-D-11-00103.1
  • Montanari, A. and Grossi, G., 2008. Estimating the uncertainty of hydrological forecasts: a statistical approach. Water Resources Research, 44 (12), W00B08. doi:10.1029/2008WR006897
  • Montanari, A. and Koutsoyiannis, D., 2012. A blueprint for process-based modelling of uncertain hydrological systems. Water Resources Research, 48, 9. doi:10.1029/2011WR011412
  • Montanari, A. and Koutsoyiannis, D., 2014. Modeling and mitigating natural hazards: stationarity is immortal!. Water Resources Research, 50, 9748–9756. doi:10.1002/2014WR016092
  • Moss, R.H., et al., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. doi:10.1038/nature08823
  • Nasrollahi, N., et al., 2015. How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resources Research, 51 (4), 2847–2864. doi:10.1002/2014WR016318
  • Notz, D., 2015. How well must climate models agree with observations?. Philosophical Transactions of the Royal Society A, 373, 2052. doi:10.1098/rsta.2014.0164
  • Pirtle, Z., Meyer, R., and Hamilton, A., 2010. What does it mean when climate models agree? A case for assessing independence among general circulation models. Environmental Science & Policy, 13 (5), 351–361. doi:10.1016/j.envsci.2010.04.004
  • Pokhrel, P., Robertson, D.E., and Wang, Q.J., 2013. A Bayesian joint probability post-processor for reducing errors and quantifying uncertainty in monthly streamflow predictions. Hydrology and Earth Systems Sciences, 17, 795–804. doi:10.5194/hess-17-795-2013
  • Potter, K., et al., 2009. Visualization of uncertainty and ensemble data: exploration of climate modeling and weather forecast data with integrated ViSUS-CDAT systems. Journal of Physics: Conference Series, 180 (012089). doi:10.1088/1742-6596/180/1/012089
  • Santer, B.D., et al., 2013. Identifying human influences on atmospheric temperature. Proceedings of the National Academy of Sciences of the United States of America, 110 (1), 26–33. doi:10.1073/pnas.1210514109
  • Schneider, S.H., 2002. Can we estimate the likelihood of climatic changes at 2100? Climatic Change, 52 (4), 441–451. doi:10.1023/A:1014276210717
  • Sheffield, J., et al., 2013a. North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology. Journal of Climate, 26, 9209–9245. doi:10.1175/JCLI-D-12-00592.1
  • Sheffield, J., et al., 2013b. North American climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. Journal of Climate, 26, 9247–9290. doi:10.1175/JCLI-D-12-00593.1
  • Smith, P.J., et al., 2012. Adaptive correction of deterministic models to produce probabilistic forecasts. Hydrology and Earth Systems Sciences, 16, 2783–2799. doi:10.5194/hess-16-2783-2012
  • Smith, R.L., et al., 2009. Bayesian modeling of uncertainty in ensembles of climate models. Journal of the American Statistical Association, 104 (485), 97–116. doi:10.1198/jasa.2009.0007
  • Strobach, E. and Bel, G., 2015. Improvement of climate predictions and reduction of their uncertainties using learning algorithms. Atmospheric Chemistry and Physics, 15, 8631–8641. doi:10.5194/acp-15-8631-2015
  • Taylor, K.E., Stouffer, R.J., and Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485–498. doi:10.1175/BAMS-D-11-00094.1
  • Tian, D., Guo, Y., and Dong, W., 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Advances in Atmospheric Sciences, 32 (4), 487–496. doi:10.1007/s00376-014-4102-7
  • Turner, R., 2016. deldir: delaunay triangulation and Dirichlet (Voronoi) tessellation. R package version 0.1-12 [online]. Available from: https://CRAN.R-project.org/package=deldir
  • Tyralis, H., 2016. HKprocess: Hurst-Kolmogorov process. R package version 0.0-2 [online]. Available from: https://CRAN.R-project.org/package=HKprocess
  • Tyralis, H., et al., 2017. On the long-range dependence properties of annual precipitation using a global network of instrumental measurements. In review.
  • Tyralis, H. and Koutsoyiannis, D., 2011. Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process. Stochastic Environmental Research & Risk Assessment, 25 (1), 21–33. doi:10.1007/s00477-010-0408-x
  • Tyralis, H. and Koutsoyiannis, D., 2014. A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables. Climate Dynamics, 42 (11–12), 2867–2883. doi:10.1007/s00382-013-1804-y
  • Uusitalo, L., et al., 2015. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environmental Modelling & Software, 63, 24–31. doi:10.1016/j.envsoft.2014.09.017
  • Wang, Q.J., Robertson, D.E., and Chiew, F.H.S., 2009. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resources Research, 45 (5), W05407. doi:10.1029/2008WR007355
  • Wei, W.W.S., 2006. Time series analysis, univariate and multivariate methods. 2nd ed. Boston, MA: Pearson Addison Wesley.
  • Woldemeskel, F.M., et al., 2014. A framework to quantify GCM uncertainties for use in impact assessment studies. Journal of Hydrology, 519 (Part B), 1453–1465. doi:10.1016/j.jhydrol.2014.09.025
  • Xu, J., Powell Jr, A.M., and Zhao, L., 2013. Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models. Geoscientific Model Development, 6, 1705–1714. doi:10.5194/gmd-6-1705-2013
  • Yip, S., et al., 2011. A simple, coherent framework for partitioning uncertainty in climate predictions. Journal of Climate, 24, 4634–4643. doi:10.1175/2011JCLI4085.1
  • Ylhäisi, J.S., et al., 2015. Quantifying sources of climate uncertainty to inform risk analysis for climate change decision-making. Local Environment, 20 (7), 811–835. doi:10.1080/13549839.2013.874987
  • Zeileis, A. and Grothendieck, G., 2005. zoo: S3 infrastructure for regular and irregular time series. Journal of Statistical Software, 14 (6), 1–27. doi:10.18637/jss.v014.i06
  • Zhao, L., et al., 2011. A hydrologic post-processor for ensemble streamflow predictions. Advances in Geosciences, 29, 51–59. doi:10.5194/adgeo-29-51-2011
  • Zhao, L., et al., 2015b. Uncertainties of the global-to-regional temperature and precipitation simulations in CMIP5 models for past and future 100 years. Theoretical and Applied Climatology, 122 (1), 259–270. doi:10.1007/s00704-014-1293-x
  • Zhao, T., et al., 2015a. Quantifying predictive uncertainty of streamflow forecasts based on a Bayesian joint probability model. Journal of Hydrology, 528, 329–340. doi:10.1016/j.jhydrol.2015.06.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.