5,137
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Natural flood management, land use and climate change trade-offs: the case of Tarland catchment, Scotland

, ORCID Icon &
Pages 1931-1948 | Received 05 Dec 2016, Accepted 20 Jun 2017, Published online: 22 Aug 2017

References

  • Alfieri, L., Feyen, L., and di Baldassarre, G., 2016. Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Climatic Change, 136, 507–521. doi:10.1007/s10584-016-1641-1
  • Allan, R.P. and Soden, B.J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1484. doi:10.1126/science.1160787
  • Andréassian, V., 2004. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291, 1–27. doi:10.1016/j.jhydrol.2003.12.015
  • Archer, N.A.L., et al., 2015. Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest and grassland in a temperate northern climate. Ecohydrology, 9, 585–600. doi:10.1002/eco.1658
  • Archer, D.R., Climent-Soler, D., and Holman, I., 2010. Changes in discharge rise and fall rates applied to impact assessment of catchment land use. Hydrology Research, 41, 13–26. doi:10.2166/nh.2010.092
  • Archer, N.A.L., et al., 2013. Soil characteristics and landcover relationships on soil hydraulic conductivity at a hillslope scale: A view towards local flood management. Journal of Hydrology, 497, 208–222. doi:10.1016/j.jhydrol.2013.05.043
  • Bathurst, J.C., et al., 2011. Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 1: field data analysis. Journal of Hydrology, 400, 281–291. doi:10.1016/j.jhydrol.2010.11.044
  • Bell, V.A., et al., 2012. How might climate change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. Journal of Hydrology, 442, 89–104. doi:10.1016/j.jhydrol.2012.04.001
  • Bens, O., et al., 2007. Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. European Journal of Forest Research, 126, 101–109. doi:10.1007/s10342-006-0133-7
  • Beschta, R.L., et al., 2000. Peakflow responses to forest practices in the western cascades of Oregon, USA. Journal of Hydrology, 233, 102–120. doi:10.1016/S0022-1694(00)00231-6
  • Beven, K., 2012. Rainfall-runoff modelling: the primer. 2nd ed. Chichester, UK: Wiley-Blackwell.
  • Beven, K. and Germann, P., 2013. Macropores and water flow in soils revisited. Water Resources Research, 49, 3071–3092. doi:10.1002/wrcr.20156
  • Blöschl, G., et al., 2007. At what scales do climate variability and land cover change impact on flooding and low flows? Hydrological Processes, 21, 1241–1247. doi:10.1002/(ISSN)1099-1085
  • Bosch, J.M. and Hewlett, J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55, 3–23. doi:10.1016/0022-1694(82)90117-2
  • Bracken, L.J. and Croke, J., 2007. The concept of hydrological connectivity and its contribution to understanding runoff‐dominated geomorphic systems. Hydrological Processes, 21, 1749–1763. doi:10.1002/(ISSN)1099-1085
  • Breuer, L., Eckhardt, K., and Frede, H.-G., 2003. Plant parameter values for models in temperate climates. Ecological Modelling, 169, 237–293. doi:10.1016/S0304-3800(03)00274-6
  • Bronstert, A., et al., 2007. Multi-scale modelling of land-use change and river training effects on floods in the Rhine basin. River Research and Applications, 23, 1102–1125. doi:10.1002/(ISSN)1535-1467
  • Bronstert, A., Niehoff, D., and Bürger, G., 2002. Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities. Hydrological Processes, 16, 509–529. doi:10.1002/hyp.v16:2
  • Brown, I., 2017. Climate change and soil wetness limitations for agriculture: spatial risk assessment framework with application to Scotland. Geoderma, 285, 173–184. doi:10.1016/j.geoderma.2016.09.023
  • Brown, I. and Castellazzi, M., 2014. Scenario analysis for regional decision-making on sustainable multifunctional land uses. Regional Environmental Change, 14, 1357–1371. doi:10.1007/s10113-013-0579-3
  • Brown, I., Castellazzi, M., and Feliciano, D., 2014. Comparing path dependence and spatial targeting of land use in implementing climate change responses. Land, 3, 850–873. doi:10.3390/land3030850
  • Brutsaert, W.H., 1982. Evaporation into the atmosphere: theory, history, and applications. Dordrecht: Reidel Publishing.
  • Calder, I.R., et al., 2003. Impact of lowland forests in England on water resources: application of the Hydrological Land Use Change (HYLUC) model. Water Resources Research, 39. doi:10.1029/2003WR002040
  • Calder, I.R., 2007. Forests and water—ensuring forest benefits outweigh water costs. Forest Ecology and Management, 251, 110–120. doi:10.1016/j.foreco.2007.06.015
  • Calder, I.R. and Aylward, B., 2006. Forest and floods: moving to an evidence-based approach to watershed and integrated flood management. Water International, 31, 87–99. doi:10.1080/02508060608691918
  • Calder, I.R., Nisbet, T., and Harrison, J.A., 2009. An evaluation of the impacts of energy tree plantations on water resources in the United Kingdom under present and future UKCIP02 climate scenarios. Water Resources Research, 45. doi:10.1029/2007WR006657
  • Cannell, M.G., 1999. Environmental impacts of forest monocultures: water use, acidification, wildlife conservation, and carbon storage. New Forestry, 17, 239–262. doi:10.1023/A:1006551018221
  • Castellazzi, M.S., et al., 2010. Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Environmental Modelling & Software, 25, 1881–1889. doi:10.1016/j.envsoft.2010.04.006
  • Chapman, S.C., Stainforth, D.A., and Watkins, N.W., 2015. Limits to the quantification of local climate change. Environmental Research Letters, 10, 094018. doi:10.1088/1748-9326/10/9/094018
  • Christiersen, B.V., Vidal, J.-P., and Wade, S.J., 2012. Using UKCP09 probabilistic climate information for UK water resource planning. Journal of Hydrology, 424, 48–67. doi:10.1016/j.jhydrol.2011.12.020
  • Ciullo, A., et al., 2017. Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems. Hydrological Sciences Journal, 62, 880–891. doi:10.1080/02626667.2016.1273527
  • Cloke, H.L., et al., 2010. Climate impacts on river flow: projections for the Medway catchment UK with UKCIP and CATCHMOD. Hydrological Processes, 24, 3476–3489. doi:10.1002/hyp.7769
  • Cloke, H.L., et al., 2013. Modelling climate impact on floods with ensemble climate projections. Quarterly Journal of the Royal Meteorological Society, 139, 282–297. doi:10.1002/qj.1998
  • Collentine, D. and Futter, M.N., 2016. Realising the potential of natural water retention measures in catchment flood management: trade-offs and matching interests. Journal of Flood Risk Management. doi:10.1111/jfr3.12269
  • Dankers, R. and Feyen, L., 2008. Climate change impact on flood hazard in Europe: an assessment based on high-resolution climate simulations. Journal of Geophysical Research, 113, D19105. doi:10.1029/2007JD009719
  • Deasy, C., Titman, A., and Quinton, J., 2014. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale. Journal of Environmental Management, 132, 304–312. doi:10.1016/j.jenvman.2013.11.027
  • Dixon, K.W., et al., 2016a. Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results? Climatic Change, 135, 395–408. doi:10.1007/s10584-016-1598-0
  • Dixon, S.J., et al., 2016b. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41, 997–1008. doi:10.1002/esp.v41.7
  • Doherty, J. and Skahill, B.E., 2006. An advanced regularization methodology for use in watershed model calibration. Journal of Hydrology, 327, 564–577. doi:10.1016/j.jhydrol.2005.11.058
  • Dwarakish, G.S. and Ganesri, B.P., 2015. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosciences, 1, 1115691. doi:10.1080/23312041.2015.1115691
  • Eldridge, D.J. and Freudenberger, D., 2005. Ecosystem wicks: woodland trees enhance water infiltration in a fragmented agricultural landscape in eastern Australia. Austral Ecology, 30, 336–347. doi:10.1111/aec.2005.30.issue-3
  • Environment Agency, 2010. Working with natural processes to manage flood and coastal erosion risk: a guidance document. Bristol, UK: Environment Agency.
  • Fahey, B. and Jackson, R., 1997. Hydrological impacts of converting native forests and grasslands to pine plantations, South Island, New Zealand. Agricultural and Forest Meteorology, 84, 69–82. doi:10.1016/S0168-1923(96)02376-3
  • Farley, K.A., Jobbagy, E.G., and Jackson, R.B., 2005. Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology, 11, 1565–1576. doi:10.1111/gcb.2005.11.issue-10
  • Feyen, L., et al., 2012. Fluvial flood risk in Europe in present and future climates. Climatic Change, 112, 47–62. doi:10.1007/s10584-011-0339-7
  • Fowler, H.J. and Kilsby, C.G., 2003. A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. International Journal of Climatology, 23, 1313–1334. doi:10.1002/(ISSN)1097-0088
  • Francés, F., et al., 2008. Efficiency of non-structural flood mitigationmeasures: ‘room for the river’ and ‘retaining water inthe landscape’. CRUE Research Report No I-6, London, UK. Available from: http://www.crue-eranet.net/Calls/Room_for_the_River_final_report.pdf [Accessed 5 September 2016]
  • Gädeke, A., et al., 2014. Analysis of uncertainties in the hydrological response of a model‐based climate change impact assessment in a subcatchment of the Spree River, Germany. Hydrological Processes, 28, 3978–3998. doi:10.1002/hyp.v28.12
  • Garner, G., et al., 2015. Hydroclimatology of extreme river flows. Freshwater Biology, 60, 2461–2476. doi:10.1111/fwb.2015.60.issue-12
  • Ghavasieh, A.R., Poulard, C., and Paquier, A., 2006. Effect of roughened strips on flood propagation: assessment on representative virtual cases and validation. Journal of Hydrology, 318, 121–137. doi:10.1016/j.jhydrol.2005.06.009
  • Gonzales-Sosa, E., et al., 2010. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrological Processes, 24, 2382–2399.
  • Green, S., Hendry, S.J., and Redfern, D.B., 2008. Drought damage to pole-stage Sitka spruce and other conifers in north-east Scotland. Scottish Forestry, 62, 10–18.
  • Hess, T.M., et al., 2010. Estimating the impact of rural land management changes on catchment runoff generation in England and Wales. Hydrological Processes, 24, 1357–1368.
  • Hirabayashi, Y., et al., 2008. Global projections of changing risks of floods and droughts in a changing climate. Hydrological Sciences Journal, 53, 754–772. doi:10.1623/hysj.53.4.754
  • Hölzel, H., Rössler, O., and Diekkrüger, B., 2011. Grope in the Dark–Hydrological modelling of the artificial Chicken Creek catchment without validation possibilities. Physics and Chemistry of the Earth, Parts A/B/C, 36, 113–122. doi:10.1016/j.pce.2010.04.017
  • Hümann, M., et al., 2011. Identification of runoff processes–The impact of different forest types and soil properties on runoff formation and floods. Journal of Hydrology, 409, 637–649. doi:10.1016/j.jhydrol.2011.08.067
  • Hundecha, Y. and Bárdossy, A., 2004. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 292, 281–295. doi:10.1016/j.jhydrol.2004.01.002
  • Iacob, O., et al., 2014. Evaluating wider benefits of natural flood management strategies: an ecosystem-based adaptation perspective. Hydrology Research, 45, 774–787. doi:10.2166/nh.2014.184
  • Institute of Hydrology, 1999. Flood estimation handbook, 5 volumes. Wallingford, UK: Centre for Ecology and Hydrology.
  • IPCC (Intergovernmental Panel on Climate Change), 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge, UK: Cambridge University Press.
  • Ivancic, T.J. and Shaw, S.B., 2015. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133, 681–693. doi:10.1007/s10584-015-1476-1
  • Jackson, R.B., et al., 2001. Water in a changing world. Ecological Applications, 11, 1027–1045. doi:10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2
  • Jarvis, N., et al., 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology and Earth System Sciences, 17, 5185–5195. doi:10.5194/hess-17-5185-2013
  • Jasper, K., et al., 2004. Differential impacts of climate change on the hydrology of two alpine river basins. Climate Research, 26, 113–129. doi:10.3354/cr026113
  • Jirků, V., et al., 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 204, 43–58. doi:10.1016/j.geoderma.2013.03.024
  • Jones, P.D., et al., 2009. UK climate projections science report: projections of future daily climate for the UK from the weather generator. Newcastle, UK: University of Newcastle.
  • Jongman, B., Ward, P.J., and Aerts, J.C.J.H., 2012. Global exposure to river and coastal flooding: long term trends and changes. Global Environmental Change, 22, 823–835. doi:10.1016/j.gloenvcha.2012.07.004
  • Jost, G., et al., 2012. A hillslope scale comparison of tree species influence on soil moisture dynamics and runoff processes during intense rainfall. Journal of Hydrology, 420-421, 112–124. doi:10.1016/j.jhydrol.2011.11.057
  • Kay, A.L., et al., 2014a. Probabilistic impacts of climate change on flood frequency using response surfaces I: England and Wales. Regional Environmental Change, 14, 1215–1227. doi:10.1007/s10113-013-0563-y
  • Kay, A.L., et al., 2014b. Probabilistic impacts of climate change on flood frequency using response surfaces II: Scotland. Regional Environmental Change, 14, 1243–1255. doi:10.1007/s10113-013-0564-x
  • Kay, A.L. and Jones, D.A., 2012. Transient changes in flood frequency and timing in Britain under potential projections of climate change. International Journal of Climatology, 32, 489–502. doi:10.1002/joc.v32.4
  • Kundzewicz, Z.W., et al., 2016. Differences in flood hazard projections in Europe–their causes and consequences for decision making. Hydrological Sciences Journal, 62, 1–14.
  • Lane, P.N.J., et al., 2005. The response of flow duration curves to afforestation. Journal of Hydrology, 310, 253–265. doi:10.1016/j.jhydrol.2005.01.006
  • Lane, S.N., et al., 2007. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surface Processes and Landforms, 32, 429–446. doi:10.1002/(ISSN)1096-9837
  • Lane, S.N. and Milledge, D.G., 2013. Impacts of upland open drains upon runoff generation: a numerical assessment of catchment‐scale impacts. Hydrological Processes, 27, 1701–1726. doi:10.1002/hyp.v27.12
  • Lange, B., Lüescher, P., and Germann, P.F., 2009. Significance of tree roots for preferential infiltration in stagnic soils. Hydrology and Earth System Sciences, 13, 1809–1821. doi:10.5194/hess-13-1809-2009
  • Lawrence, J., et al., 2013. Exploring climate change uncertainties to support adaptive management of changing flood-risk. Environmental Science & Policy, 33, 133–142. doi:10.1016/j.envsci.2013.05.008
  • Lehmann, J., Coumou, D., and Frieler, K., 2015. Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501–515. doi:10.1007/s10584-015-1434-y
  • Ludwig, J.A., et al., 2005. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86, 288–297. doi:10.1890/03-0569
  • Marshall, M.R., et al., 2014. The impact of rural land management changes on soil hydraulic properties and runoff processes: results from experimental plots in upland UK. Hydrological Processes, 28, 2617–2629. doi:10.1002/hyp.9826
  • McVicar, T.R., et al., 2007. Developing a decision support tool for China’s re-vegetation program: simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. Forest Ecology and Management, 25, 65–81. doi:10.1016/j.foreco.2007.06.025
  • Merz, B., et al., 2010. Fluvial flood risk management in a changing world. Natural Hazards and Earth Systems Science, 10, 509–527. doi:10.5194/nhess-10-509-2010
  • Merz, R. and Blöschl, G., 2003. A process typology of regional floods. Water Resources Research, 29, 1340.
  • Milly, P., et al., 2002. Increasing risk of great floods in a changing climate. Nature, 415, 514–517. doi:10.1038/415514a
  • Milly, P.C.D., et al., 2008. Stationarity is dead: whither water management? Science, 319, 573–574. doi:10.1126/science.1151915
  • Monteith, J.L., 1975. Vegetation and the Atmosphere. Vol. 1. Principles. London: Academic Press.
  • Morton, D., et al., 2011. Countryside Survey: Final Report for LCM2007- the new UK Land Cover Map. Lancaster, UK: Centre for Ecology & Hydrology.
  • Murphy, J.M., et al., 2009. UK climate projections science report: climate change projections. Exeter, UK: Met Office Hadley Centre.
  • Najafi, M.R., Moradkhani, H., and Jung, I.W., 2011. Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological Processes, 25, 2814–2826. doi:10.1002/hyp.v25.18
  • Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology, 10, 282–290. doi:10.1016/0022-1694(70)90255-6
  • Niehoff, D., Fritsch, U., and Bronstert, A., 2002. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. Journal of Hydrology, 267, 80–93. doi:10.1016/S0022-1694(02)00142-7
  • Nijnik, M., Nijnik, A., and Brown, I., 2016. Exploring the linkages between multi-functional forestry goals and the legacy of spruce plantations in Scotland. Canadian Journal of Forest Research, 46, 1247–1254. doi:10.1139/cjfr-2015-0399
  • Nisbet, T.R. and Thomas, H., 2008. Restoring floodplain woodland for flood alleviation. Final Report. Defra, London, UK. Available from: http://www.forestry.gov.uk/pdf/defra_floodplain_report_15june2008.pdf/ [Accessed 5 April 2016]
  • O’Connell, P.E., et al., 2007. Is there a link between agricultural land-use management and flooding? Hydrology and Earth System Sciences, 11, 96–107. doi:10.5194/hess-11-96-2007
  • Odoni, N.A., and Lane, S.N., 2010. Assessment of the impact of upstream land management measures on flood flows in Pickering Beck using overflow. In: Project RMP55455: Slowing the flow at Pickering, Appendix 12.2. Available from: https://www.forestry.gov.uk/fr/infd-7zucqy [Accessed 3 May 2016]
  • Orr, H., et al., 2008. Climate change in the uplands: a UK perspective on safeguarding regulatory ecosystem services. Climate Research, 37, 77–98. doi:10.3354/cr00754
  • Parrott, A., et al., 2009. Role of rural land use management in flood and coastal risk management. Journal of Flood Risk Management, 2, 272–284. doi:10.1111/jfrm.2009.2.issue-4
  • Pattison, I. and Lane, S.N., 2012. The link between land-use management and fluvial flood risk: A chaotic conception? Progress in Physical Geography, 36, 72–92. doi:10.1177/0309133311425398
  • Peng, S.L., Wu, J., and You, W.H., 2012. Recovery of saturated hydraulic conductivity along a forest successional series from abandoned land to mature, evergreen broad-leaved forest in eastern China. Soil Research, 50, 257–266. doi:10.1071/SR11149
  • Perry, M. and Hollis, D., 2005. The generation of monthly gridded datasets for a range of climatic variables over the UK. International Journal of Climatology, 25, 1041–1054. doi:10.1002/(ISSN)1097-0088
  • Prudhomme, C., et al., 2013. Climate change and river flooding: part 2 sensitivity characterisation for British catchments and example vulnerability assessments. Climatic Change, 119, 949–964. doi:10.1007/s10584-013-0726-3
  • Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Physics, 1, 318–333. doi:10.1063/1.1745010
  • Roberts, J. and Rosier, P., 2005. The impact of broadleaved woodland on water resources in lowland UK: I. Soil water changes below beech woodland and grass on chalk sites in Hampshire. Hydrology and Earth System Sciences, 9, 596–606. doi:10.5194/hess-9-596-2005
  • Robinson, M., et al., 2003. Studies of the impact of forests on peak flows and baseflows: a European perspective. Forest Ecology and Management, 186, 85–97. doi:10.1016/S0378-1127(03)00238-X
  • Rouillard, J.J., et al., 2015. Policy implementation of catchment-scale flood risk management: learning from Scotland and England. Environmental Science & Policy, 50, 155–165. doi:10.1016/j.envsci.2015.02.009
  • Rouquette, J.R., et al., 2011. Synergies and trade-offs in the management of lowland rural floodplains: an ecosystem services approach. Hydrological Sciences Journal, 56, 1566–1581. doi:10.1080/02626667.2011.629785
  • Salazar, S., et al., 2012. A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Natural Hazards and Earth System Science, 12, 3287–3306. doi:10.5194/nhess-12-3287-2012
  • Sayers, P., et al., 2014. Strategic flood management: ten ‘golden rules’ to guide a sound approach. International Journal of River Basin Management, 13, 137–151. doi:10.1080/15715124.2014.902378
  • Schaap, M.G., Leij, F.J., and van Genuchten, M.T., 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176. doi:10.1016/S0022-1694(01)00466-8
  • Schulla, J. and Jasper, K., 2007. Model description WaSiM-ETH. Zürich: Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology.
  • Schwärzel, K., Ebermann, S., and Schalling, N., 2012. Evidence of double funnelling effect of beech trees by visualization of flow pathways using dye tracer. Journal of Hydrology, 470, 184–192. doi:10.1016/j.jhydrol.2012.08.048
  • Scotland’s Soils, 2016. National Soil Inventory of Scotland. Available from: http://www.soils-scotland.gov.uk/data/nsis [Accessed 12 June 2016]
  • Singh, S.K., Liang, J., and Bárdossy, A., 2012. Improving the calibration strategy of the physically-based model WaSiM-ETH using critical events. Hydrological Sciences Journal, 57, 1487–1505. doi:10.1080/02626667.2012.727091
  • Slee, B., et al., 2014. The Squeezed Middle: identifying and addressing conflicting demands on intermediate quality farmland. Land Use Policy, 41, 206–216. doi:10.1016/j.landusepol.2014.06.002
  • Smith, A., et al., 2014. Investigating the application of climate models in flood projection across the UK. Hydrological Processes, 28, 2810–2823. doi:10.1002/hyp.v28.5
  • Steele-Dunne, S., et al., 2008. The impacts of climate change on hydrology in Ireland. Journal of Hydrology, 356, 28–45. doi:10.1016/j.jhydrol.2008.03.025
  • Svensson, C. and Jones, D.A., 2010. Review of rainfall frequency estimation methods. Journal of Flood Risk Management, 3, 1–33. doi:10.1111/j.1753-318X.2010.01079.x
  • Thomas, H. and Nisbet, T.R., 2006. An assessment of the impact of floodplain woodland on flood flows. Water and Environment Journal, 21, 114–126. doi:10.1111/j.1747-6593.2006.00056.x
  • van Dijk, A.I.M., et al., 2009. Forest–flood relation still tenuous. Comment on ‘Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biology, 15, 110–115. doi:10.1111/j.1365-2486.2008.01708.x
  • Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, S.892-898. doi:10.2136/sssaj1980.03615995004400050002x
  • Verbunt, M., Zwaaftink, M.G., and Gurtz, J., 2005. The hydrologic impact of land cover changes and hydropower stations in the Alpine Rhine basin. Ecological Modelling, 187, 71–84. doi:10.1016/j.ecolmodel.2005.01.027
  • Vereecken, H., et al., 2010. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: a review. Vadose Zone Journal, 9, 795–820. doi:10.2136/vzj2010.0045
  • Vogel, R.M. and Fennessey, N.M., 1994. Flow-duration curves. I: new interpretation and confidence intervals. Journal of Water Resources Planning and Management, 120, 485–504. doi:10.1061/(ASCE)0733-9496(1994)120:4(485)
  • Werritty, A., et al., 2006. Use of proxy flood records to improve estimates of flood risk: lower Tay, Scotland. Catena, 66, 107–119. doi:10.1016/j.catena.2005.07.012
  • Whitfield, P.H., 2012. Floods in future climates: a review. Journal of Flood Risk Management, 5, 336–365. doi:10.1111/jfr3.2012.5.issue-4
  • Wilby, R.L., Beven, K.J., and Reynard, N.S., 2008. Climate change and fluvial flood risk in the UK: more of the same? Hydrological Processes, 22, 2511–2523. doi:10.1002/hyp.v22:14
  • Wriedt, G. and Rode, M., 2006. Investigation of parameter uncertainty and identifiability of the hydrological model WaSiM-ETH. Advances in Geosciences, 9, 145–150. doi:10.5194/adgeo-9-145-2006
  • Ye, H., et al., 2017. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century. Science Advances, 3, e1600944. doi:10.1126/sciadv.1600944

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.