506
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Impact of floodwaters on vertical water fluxes in the deep vadose zone of an alluvial aquifer in a semi-arid region

, , , &
Pages 136-153 | Received 08 Jun 2017, Accepted 15 Oct 2017, Published online: 05 Jan 2018

References

  • Allen, R.G., et al., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. Rome: Italy: FAO, 1–300.
  • Amouri, M., 1994. Etude hydrogéologique du système aquifère de Sidi Bouzid. Tunisie: Direction Générale des Ressources en Eaux.
  • Besbes, M., et al. 2006. Recharge des aquifères par les crues d’oueds. In: I. Tchiguirinskaia, eds. Frontiers in flood research. Wallingford, UK: International Association of Hydrological Sciences, IAHS Publ. 305, 43–72.
  • Botors, E., et al. 2012. Richards equation-based modeling to estimate flow and nitrate transport in a deep vadose zone. Vadose Zone Journal, 11, 4.
  • Bouraoui, S., 1984. Impact des eaux des rejets de l’usine de cellulose de Kasserine (Tunisie) sur l’environnement. Thesis (PhD). University of Pierre et Marie Curie, Paris 6, France.
  • Butterworth, A., et al. 1999. Hydrological processes and water resources management in a dryland environment III: groundwater recharge and recession in a shallow weathered aquifer. Hydrology and Earth System Sciences, 3, 345–351. doi:10.5194/hess-3-345-1999
  • Camargo, G.G.T. and Kemanian, A.R., 2016. Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. doi:10.1016/j.agrformet.2016.01.013
  • Canadell, J., et al. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583–595. doi:10.1007/BF00329030
  • Cao, G., et al. 2016. Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. Journal of Hydrology, 537, 260–270. doi:10.1016/j.jhydrol.2016.03.049
  • Coes, A.L. and Pool, D.R., 2005. Ephemeral-Stream Channel and basin-floor infiltration and recharge in the Sierra Vista subwatershed of the upper san Pedro basin Southeastern Arizona. (US Geological Survey: USGS Open-File Report 2005.1023, 67).
  • Custodio, E., et al. 2016. Groundwater intensive exploitation and mining in Gran Canaria and Tenerife, Canary Islands, Spain: hydrogeological, environmental, economic and social aspects. Science of the Total Environment, 557–558, 425–437. doi:10.1016/j.scitotenv.2016.03.038
  • Dahan, O., et al. 2004. Multi-variable mixing cell model as a calibration and validation tool for hydrogeologic groundwater modeling. Journal of Hydrology, 293, 115–136. doi:10.1016/j.jhydrol.2004.01.019
  • Dahan, O., et al. 2007. Direct measurements of floodwater infiltration into shallow alluvial aquifers. Journal of Hydrology, 344, 157–170. doi:10.1016/j.jhydrol.2007.06.033
  • DGRE (Direction Générale des Ressources en Eau), 2013. Annuaire de l’exploitation des nappes profondes de la Tunisie. Tunis, Tunisie: Publication de la direction générale des ressources en eau, indice d’archivage 10227.
  • DGRE (Direction Générale des Ressources en Eau), 2015. Annuaire de l’exploitation des nappes profondes de la Tunisie. Tunis, Tunisie: Publication de la direction générale des ressources en eau, indice d’archivage 10227.
  • Diersch, H.J. and Kolditz, O., 1998. Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Advances in Water Resources, 21 (5), 401–425. doi:10.1016/S0309-1708(97)00003-1
  • Diersch, H.-J.G., 2005. FEFLOW Finite Element Subsurface Flow and Transport Simulation System. Volmerstraße, Berlin: Wasy GmbH Institute for Water Resources Planning and Systems Research, Reference Manual WASY, Release 5.3.
  • Ezzeddine, S. and Besbes, M., 1991. Un modèle hydrologique à réservoirs pour la simulation des épandages des crues. Les Annales Maghrébines de l’ingénieur, 5 (2), 105–126.
  • Feddes, R.A., Kowalik, P.J., and Zaradny, H., 1978. Simulation of field water use and crop yield. Simulation monograph. Wageningen, The Netherlands: Pudoc, 188.
  • Flint, A., et al. 2002. Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. Hydrogeology Journal, 10 (1), 180–204. doi:10.1007/s10040-001-0169-1
  • Gee, G.W. and Ward, A.L., 2001. Vadose zone field study: fy 2001 Plan. Status report, PNNL-13451, Rev.1. Richland: Pacific Northwest National Laboratory.
  • Genin, D., et al. 2006. Entre la désertification et développement: la Jeffara Tunisienne. Ouvrage, IRD Editions, Cérès. ISBN 9973-19-683-5.
  • Giordano, M., 2009. Global Groundwater-Issues and Solutions. Annual Review of Environment and Resources, 34, 153–178. doi:10.1146/annurev.environ.030308.100251
  • Gleeson, T., et al. 2010. Commentary: groundwater sustainability strategies. Nature Geoscience, (6), 378–379. doi:10.1038/ngeo881
  • Gleeson, T., et al. 2012. Water balance of global aquifers revealed by groundwater footprint. Nature, 488, 197–200. doi:10.1038/nature11295
  • Healy, R. and Cook, P., 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10, 91–109. doi:10.1007/s10040-001-0178-0
  • Hendricks, F.H.J., et al. 2009. A comparison of seven methods for the inverse modelling of groundwater flow, Application to the characterisation of well catchments. Advances in Water Resources, 32, 851–872. doi:10.1016/j.advwatres.2009.02.011
  • Huo, S.Y., et al. 2014. Changes of vertical groundwater recharge with increase in thickness of vadose zone simulated by one-dimensional variably saturated flow model. Journal of Earth Science, 25 (6), 1043–1050. doi:10.1007/s12583-014-0486-7
  • Hupet, F., et al. 2003. Estimation of root water uptake parameters by inverse modeling with soil water content data. Water Resources Research, 39 (11), 1312. doi:10.1029/2003WR002046
  • Izbicki, J.A., 2002. Geologic and hydrologic controls on the movement of water through a thick, heterogeneous unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California. Water Resources Research, 38 (3), 2–14. doi:10.1029/2000WR000197
  • Jackson, T.J., 2002. Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeology Journal, 10 (1), 40–51. doi:10.1007/s10040-001-0168-2
  • Javaux, M., et al. 2013. Root water uptake: from three dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone Journal, 12 (4), 16. doi:10.2136/vzj2013.02.0042
  • Jun, X. and Chen, Y.D., 2001. Water problems and opportunities in the hydrological sciences in China. Hydrological Sciences Journal, 46 (6), 907–921. doi:10.1080/02626660109492885
  • Jun, X. and Yongyong, Z., 2008. Water security in north China and countermeasure to climate change and human activity. Physics and Chemistry of the Earth, Parts A/B/C, 33 (5), 359–363. doi:10.1016/j.pce.2008.02.009
  • Karlsen, R.H., et al. 2012. A post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes. Journal of Hydrology, 454–455, 7–25. doi:10.1016/j.jhydrol.2012.05.019
  • Kim, J.H. and Jackson, R.B., 2012. A global analysis of groundwater recharge for vegetation, climate and soils. Vadose Zone Journal, 11. doi:10.2136/vzj2011.0021RA
  • Kong, J., et al. 2015. Effects of vadose zone on groundwater table fluctuations in unconfined aquifers. Journal of Hydrology, 528, 397–407. doi:10.1016/j.jhydrol.2015.06.045
  • Koschel, R., 1980. Etude hydrogéologique de la nappe de Hajeb Layoun-Jilma-Ouled Askar. Tunis: DRES, Ministère de l’Agriculture, Projet de coopération technique Tuniso-Allemande No. 6520/7.
  • Lafforgue Bouzaine, A., 1981. Etude hydrologique de l’oued Negada à la station de Bled Lessouda. Tunisie: DRES. ORSTOM, 01–145.
  • Leaney, F.W. and Herczeg, A.L., 1995. Regional recharge to a karst aquifer estimated from chemical and isotopic composition of diffuse and localised recharge, South Australia. Journal of Hydrology, 164 (1–4), 363–387. doi:10.1016/0022-1694(94)02488-W
  • Lu, X.H., et al. 2011. Groundwater recharge at five representative sites in the Hebei Plain, China. Ground Water, 49 (2), 286–294. doi:10.1111/j.1745-6584.2009.00667.x
  • Lu, X.H. and Jin, M.G., 2007. One-dimensional unsaturated flow modeling in luan representative zone of the north china plain. Journal of China University of Geosciences, 18, 59–61.
  • Marei, A., et al. 2010. Estimating groundwater recharge using the chloride mass-balance method in the West Bank, Palestine. Hydrological Sciences Journal, 55 (5), 780–791. doi:10.1080/02626667.2010.491987
  • Martínez-Santos, P. and Andreu, J.M., 2010. Lumped and distributed approaches to model natural recharge in semiarid karst aquifers. Journal of Hydrology, 388, 389–398. doi:10.1016/j.jhydrol.2010.05.018
  • Mattern, S. and Vanclooster, M., 2010. Estimating travel time of recharge water through a deep vadose zone using a transfer function model. Environmental Fluid Mechanics, 10 (1–2), 121–135. doi:10.1007/s10652-009-9148-1
  • Min, L., Yanjun, S., and Hongwei, P., 2015. Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain. Journal of Hydrology, 527, 305–315. doi:10.1016/j.jhydrol.2015.04.064
  • Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, 513–522. doi:10.1029/WR012i003p00513
  • Nazoumou, Y., 2002. Impact des barrages sur la recharge des nappes en zone aride: Etude par modélisation numérique sur le cas de Kairouan (Tunisie centrale). Thesis (PhD). ENIT, Tunisie, 264.
  • Nimmo, J.R., et al. 2002. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin Site. Water Resources Research, 38 (10), 33–13. doi:10.1029/2001WR000735
  • Ounaïes, S., Schäfer, G., and Trémolières, M., 2013. Quantification of vertical water fluxes in the vadose zone using particle-size distribution and pedology-based approaches to model soil heterogeneities. Hydrological Processes, 27, 2306–2324. doi:10.1002/hyp.9365
  • Peters, A., 2016. Modified conceptual model for compensated root water uptake- A simulation study. Journal of Hydrology, 534, 1–10. doi:10.1016/j.jhydrol.2015.12.047
  • Poeter, E.P. and Hill, M.C., 1997. Inverse models: A necessary next step in ground-water modeling. Ground Water, 35, 250–260. doi:10.1111/j.1745-6584.1997.tb00082.x
  • Raats, P.A.C., 1974. Steady flows of water and salt in uniform soil profiles with plant roots1. Soil Science Society of America Journal, 38, 717–722. doi:10.2136/sssaj1974.03615995003800050012x
  • Scanlon, B.R., et al. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20, 3335–3370. doi:10.1002/hyp.6335
  • SCET, 1990. Etude de facitbilité de l’irrigation par épandage des eaux des crues de l’oued El Fekka et recharge de la nappe de Sidi Bouzid. Phase 1: identification de sites. Phase 2: etude de faisabilité. Tunisie: Rapport interne, SCET.
  • Schaap, M.G., Leij, F.J., and Van Genuchten, M.T., 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251 (3–4), 163–176. doi:10.1016/S0022-1694(01)00466-8
  • Sha, T., et al. 2003. Sustaining Asia’s groundwater boom: an overview of issues and evidence. Natural Resources Forum, 27, 130–141. doi:10.1111/1477-8947.00048
  • Shang, H., et al. 2016. An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China. Journal of Hydrology, 543, 386–394. doi:10.1016/j.jhydrol.2016.10.012
  • Simonot, M., 1996. Plaine de Sidi Bouzid: etude de l’impact de l’épandage des crues sur la recharge de la nappe phréatique. Final rapport. DGRE. Tunisia. Rome, Italy: FIDA, 01–40.
  • Šimůnek, J. and Hopmans, J.W., 2009. Modeling compensated root water and nutrient uptake. Ecological Modelling, 220 (4), 505–521. doi:10.1016/j.ecolmodel.2008.11.004
  • Sonnenborg, T.O., et al. 2003. Transient modeling of regional groundwater flow using parameter estimates from steady-state automatic calibration. Journal of Hydrology, 273, 188–204. doi:10.1016/S0022-1694(02)00389-X
  • Turkeltaub, T., Dahan, O., and Kurtzman, D., 2014. Investigation of groundwater recharge under agricultural fields using transient deep vadose zone data. Vadose Zone Journal, 13, 4. doi:10.2136/vzj2013.10.0176
  • Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898. doi:10.2136/sssaj1980.03615995004400050002x
  • Van Genuchten, M.T., 1987. A numerical model for water and solute movement in and below the root zone. Research Report 121. US Salinity Lab. Riverside. CA: ARS USDA.
  • Van Genuchten, M.T. and Gupta, S.K., 1993. A reassessment of the crop tolerance response function. Indian Society of Soil Science, 41 (4), 730–737.
  • Vázquez-Suñé, E., et al. 2010. An approach to identify urban groundwater recharge. Hydrology and Earth System Sciences, 14, 2085–2097. doi:10.5194/hess-14-2085-2010
  • Vrugt, J.A., Hopmans, J.W., and Šimunek, J., 2001. Calibration of a two-dimensional root water uptake model for a sprinkler-irrigated almond tree. Soil Science Society of America Journal, 65 (4), 1027–1037. doi:10.2136/sssaj2001.6541027x
  • Wada, Y., et al. 2010. Global depletion of groundwater resources. Geophysical Research Letters, 37, 20. doi:10.1029/2010GL044571
  • Yeh, T.C.J., Ye, M., and Khaleel, R., 2005. Estimation of effective unsaturated hydraulic conductivity tensor using spatial moments of observed moisture plume. Water Resources Research, 41 (3), W03014. doi:10.1029/2004WR003736
  • Zhang, G.H., et al. 2007. Influence of unsaturated zone thickness on precipitation infiltration for recharge of groundwater. Journal of Hydraulic Engineering, 38 (5), 611–617.
  • Zhu, C., 2000. Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling. Water Resources Research, 36, 2607–2620. doi:10.1029/2000WR900172
  • Zinsou, D.S., 1998. Impact de l’épandage des eaux des crues de l’Oued Fekka sur la recharge de la nappe de Sidi Bouzid. Tunisie: DEA, ENIT, 109.
  • Zouaghi, T., 2008. Distribution des séquences de dépôt du Crétacé (Aptien—Maastrichtien) en subsurface: rôle de la déformation tectonique, l’halocinèse et évolution géodynamique (Atlas Central Tunisien). Thesis (PhD). University Tunis El Manar. Tunisie.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.