1,444
Views
64
CrossRef citations to date
0
Altmetric
Original Articles

Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data

, &
Pages 63-73 | Received 23 Jan 2017, Accepted 04 Oct 2017, Published online: 12 Dec 2017

References

  • Abdullah, S.S., et al., 2015. Extreme learning machines: a new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527, 184–195. doi:10.1016/j.jhydrol.2015.04.073
  • Adamowski, J. and Chan, H.F., 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407 (1), 28–40. doi:10.1016/j.jhydrol.2011.06.013
  • Ahmed, K., Shahid, S., and bin Harun, S., 2015. Statistical downscaling of rainfall in an arid coastal region: a radial basis function neural network approach. Applied Mechanics and materials. 735, 190–194.
  • Banerjee, P., Prasad, R., and Singh, V., 2009. Forecasting of groundwater level in hard rock region using artificial neural network. Environmental Geology, 58 (6), 1239–1246. doi:10.1007/s00254-008-1619-z
  • Barzegar, R., Adamowski, J., and Asghari Moghaddam, A., 2016. Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stochastic Environmental Research and Risk Assessment, 30 (7), 1797–1819.
  • Bhattacharyya, S. and Pendharkar, P.C., 1998. Inductive, evolutionary, and neural computing techniques for discrimination: a comparative study. Decision Sciences, 29 (4), 871–899. doi:10.1111/deci.1998.29.issue-4
  • Bueno-Crespo, A., García-Laencina, P.J., and Sancho-Gómez, J.L., 2013. Neural architecture design based on extreme learning machine. Neural Networks, 48, 19–24. doi:10.1016/j.neunet.2013.06.010
  • Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I., 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309 (1), 229–240. doi:10.1016/j.jhydrol.2004.12.001
  • Deo, R.C., et al., 2017. Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stochastic Environmental Research and Risk Assessment, 31 (5), 1211–1240.
  • Deo, R.C. and Şahin, M., 2014. Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmospheric Research, 153, 512–525. doi:10.1016/j.atmosres.2014.10.016
  • Deo, R.C. and Şahin, M., 2016. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environmental Monitoring and Assessment, 188 (2), 1–24.
  • Ding, S., et al., 2015. Deep extreme learning machine and its application in EEG classification. Mathematical Problems in Engineering, 2015, Article ID 129021, 1–11. doi:10.1155/2015/129021
  • Emamgholizadeh, S., Moslemi, K., and Karami, G., 2014. Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resources Management, 28 (15), 5433–5446. doi:10.1007/s11269-014-0810-0
  • Fernando, D.A.K. and Jayawardena, A.W., 1998. Runoff forecasting using RBF networks with OLS algorithm. Journal of Hydrologic Engineering, 3 (3), 203–209. doi:10.1061/(ASCE)1084-0699(1998)3:3(203)
  • Garg, V., 2014. Modeling catchment sediment yield: a genetic programming approach. Natural Hazards, 70, 39–50. doi:10.1007/s11069-011-0014-3
  • Ghose, D.K., Panda, S.S., and Swain, P., 2010. Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. Journal of Hydrology, 394 (3), 296–304. doi:10.1016/j.jhydrol.2010.09.003
  • Huang, G.B., 2014. An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Computation, 6 (3), 376–390. doi:10.1007/s12559-014-9255-2
  • Huang, G.B., Zhu, Q.Y., and Siew, C.K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference, 25–29 July. Budapest: IEEE.
  • Huang, G.B., Zhu, Q.Y., and Siew, C.K., 2006. Extreme learning machine: theory and applications. Neurocomputing, 70 (1), 489–501. doi:10.1016/j.neucom.2005.12.126
  • Jolly, I.D., McEwan, K.L., and Holland, K.L., 2008. A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology, 1 (1), 43–58. doi:10.1002/eco.6
  • Juan, C., Wang, G., and Tianxu, M., 2015. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology, 529, 1211–1220. doi:10.1016/j.jhydrol.2015.09.038
  • Khalil, B., et al., 2015. Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models. Hydrogeology Journal, 23 (1), 121–141. doi:10.1007/s10040-014-1204-3
  • Kisi, O., 2006. Evapotranspiration estimation using feed-forward neural networks. Hydrology Research, 37 (3), 247–260. doi:10.2166/nh.2006.010
  • Kisi, O., et al., 2016. Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Computers and Electronics in Agriculture, 122, 112–117. doi:10.1016/j.compag.2016.01.026
  • Kisi, O. and Parmar, K.S., 2016. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. Journal of Hydrology, 534, 104–112. doi:10.1016/j.jhydrol.2015.12.014
  • Krishna, B., Satyaji Rao, Y., and Vijaya, T., 2008. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes, 22 (8), 1180–1188. doi:10.1002/(ISSN)1099-1085
  • Mirzavand, M., et al., 2017. Evaluating groundwater level fluctuation by support vector regression and neuro-fuzzy methods: a comparative study. Natural Hazards. doi:10.1007/s11069-015-1602-4
  • Mirzavand, M. and Ghazavi, R., 2015. A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. Water Resour Manage, 29, 1315–1328. doi:10.1007/s11269-014-0875-9
  • Mohammadi, K., et al., 2015. Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214–225. doi:10.1016/j.compag.2015.08.008
  • Mohanty, S., et al., 2010. Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resources Management, 24 (9), 1845–1865. doi:10.1007/s11269-009-9527-x
  • Nikoo, M., et al., 2016. Flood-routing modeling with neural network optimized by social-based algorithm. Natural Hazards, 82, 1–24. doi:10.1007/s11069-016-2176-5
  • Okkan, U., 2011. Application of Levenberg-Marquardt optimization algorithm based multilayer neural networks for hydrological time series modeling. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 1 (1), 53–63.
  • Sajjadi, S., et al., 2016. Extreme learning machine for prediction of heat load in district heating systems. Energy and Buildings, 122, 222–227. doi:10.1016/j.enbuild.2016.04.021
  • Senthil Kumar, A.R., et al., 2005. Rainfall‐runoff modelling using artificial neural networks: comparison of network types. Hydrological Processes, 19 (6), 1277–1291. doi:10.1002/(ISSN)1099-1085
  • Shamshirband, S., et al., 2015. Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for city of Bandar Abass, Iran. Journal of Atmospheric and Solar-Terrestrial Physics, 134, 109–117. doi:10.1016/j.jastp.2015.09.014
  • Sokolov-Mladenović, S., et al., 2016. Economic growth forecasting by artificial neural network with extreme learning machine based on trade, import and export parameters. Computers in Human Behavior, 65, 43–45. doi:10.1016/j.chb.2016.08.014
  • Valizadeh, N., et al., 2017. Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art. Natural Hazards, 86, 1377–1392. doi:10.1007/s11069-017-2740-7
  • Yu, J.W. and Yu, J., 2012. Rainfall time series forecasting based on modular RBF neural network model coupled with SSA and PLS. Journal of Theoretical and Applied Computer Science, 6 (2), 3–12.
  • Zounemat-Kermani, M., 2012. Hourly predictive Levenberg–marquardt ANN and multi linear regression models for predicting of dew point temperature. Meteorology and Atmospheric Physics, 117 (3–4), 181–192. doi:10.1007/s00703-012-0192-x
  • Zounemat-Kermani, M., Kisi, O., and Rajaee, T., 2013. Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Applied Soft Computing, 13 (12), 4633–4644. doi:10.1016/j.asoc.2013.07.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.