453
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Spatial variation of the vegetative roughness in Mediterranean torrential streams affected by check dams

, , &
Pages 114-135 | Received 24 Mar 2017, Accepted 25 Oct 2017, Published online: 04 Jan 2018

References

  • Aberle, J. and Järvelä, J., 2013. Flow resistance of emergent rigid and flexible vegetation floodplain vegetation. Journal of Hydraulic Research, 51 (1), 33–45. doi:10.1080/00221686.2012.754795
  • Abood, M.M., et al., 2006. Manning roughness coefficient for grass-lined channel. Journal of Science and Technology, 13 (4), 317–330.
  • Alcaraz, F., et al. 1999. La vegetación. In: Instituto Tecnológico GeoMinero de España, ed. Atlas del Medio Natural de la región de Murcia. Madrid: Instituto Tecnológico GeoMinero de España, 15–35.
  • Arcement, G.J. and Schneider, V.R., 1989. Guide for selecting manning’s roughness coefficients for natural channels and flood plains. Denver, CO: US Geological Survey, US Geological Survey Water-Supply Paper 2339.
  • Boix-Fayos, C., et al., 2007. Effects of check-dams, reforestation and land-use changes on river channel morphology: case study of the Rogativa catchment (Murcia, Spain). Geomorphology, 91, 103–123. doi:10.1016/j.geomorph.2007.02.003
  • Boix-Fayos, C., et al., 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes, 22, 4922–4935. doi:10.1002/hyp.7115
  • Bombino, G., et al., 2010. The influence of check dams on fluvial processes and riparian vegetation in mountain reaches of torrents. Journal of Agricultural Engineering, 3, 37–47. doi:10.4081/jae.2010.3.37
  • Bombino, G., et al., 2014. Check dam influence on vegetation species diversity in mountain torrents of the Mediterranean environment. Ecohydrology, 7, 678–691. doi:10.1002/eco.1389
  • Castillo, C., Pérez, R., and Gómez, J.A., 2014. A conceptual model of check dam hydraulics for gully control: efficiency, optimal spacing and relation with step-pools. Hydrology and Earth System Sciences, 18, 1705–1721. doi:10.5194/hess-18-1705-2014
  • Castillo, V., et al., 2007. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena, 70, 416–427. doi:10.1016/j.catena.2006.11.009
  • Conesa-García, C. and García-Lorenzo, R., 2009a. The effectiveness of check dams on the control of general transitory bed scouring in semiarid catchment areas (South East Spain). Water and Environment Journal, 23 (1), 1–14. doi:10.1111/j.1747-6593.2007.00099.x
  • Conesa-García, C. and García-Lorenzo, R., 2009b. Local scour estimation at check dams in torrential streams in South East Spain. Geografiska Annaler: Series A, Physical Geography, 91, 159–177. doi:10.1111/j.1468-0459.2009.00361.x
  • Conesa-García, C. and García-Lorenzo, R., 2010. Bed scour-sedimentation balance induced by check dams in semiarid catchments with different lithology. In: C. Conesa-García and M.A. Lenzi, eds. Check Dams, Morphological Adjustments and Erosion Control in Torrential Streams. New York: Nova Science Publishers, 283–306.
  • Conesa-García, C., García-Lorenzo, R., and López-Bermúdez, F., 2007. Bed stability variations after check dam construction in torrential channels (South-East Spain). Earth, Surface, Processes and Landforms, 32, 2165–2184. doi:10.1002/esp.1521
  • Conesa-García, C. and García-Lorenzo, R., 2009c. Bankfull hydraulic geometry adjustments caused by check dams in ephemeral channels (South-East Spain, Western Mediterranean). In: W.P. Hayes and M.C. Barnes, eds. Dams: impacts, stability and design. New York: Nova Science, 75–99.
  • Conesa-García, C. and Pérez-Cutillas, P., 2007. Relation between the location of check dams and adjacent vegetation cover in ephemeral gullies (southeast Spain). In: J. Casalí and R. Giménez, eds. Progress in gully erosion research. Pamplona: Universidad Pública de Navarra, 30–32.
  • Coon, W.F., 1998. Estimation of roughness coefficients for natural stream channels with vegetated banks. Denver: US Geologycal Survey. Water-Supply Paper 2441.
  • Darby, S.E., 1999. Effect of riparian vegetation on flow resistance and flood potential. Journal of Hydraulic Engineering, 125 (5), 443–454. doi:10.1061/(ASCE)0733-9429
  • Defina, A. and Bixio, A.C., 2005. Mean flow and turbulence in vegetated open channel flow. Water Resources Research, 41 (7), 1–12, W07006. doi:10.1029/2004WR003475
  • DEFRA/Environment Agency, 2003. Reducing uncertainty in river flood conveyance, roughness review. Lincoln: DEFRA. Project W5A-057. 204.
  • Devi, T.B., Sharma, A., and Kumar, B., 2017. Studies on emergent flow over vegetative channel bed with downward seepage. Hydrological Sciences Journal, 62 (3), 408–420. doi:10.1080/02626667.2016.1230673
  • Dombroski, D., et al., 2013. Modelling interactions of flow and vegetation for improved riverine system management. In: American Water Resources Association, ed Environmental flows, 24–25 June. Hartford, CT: American Water Resources Association.
  • Ebrahimi, N.G., et al., 2008. Effects of flow and vegetation states on river roughness coefficients. Journal of Applied Sciences, 8, 2118–2123. doi:10.3923/jas.2008.2118.2123
  • Ei-Hakim, O. and Salama, M.M., 1992. Velocity distribution inside and above branched flexible roughness. Journal of Irrigation and Drainage Engineering, 118, 914–927.
  • Everitt, B.L., 1980. Ecology of saltcedar - a plea for research. Environmental Geology, 3, 77–84. doi:10.1007/BF02473474
  • Fathi-Maghadam, M., and Kouwen, N, 1997. Nonrigid, nonsubmerged, vegetative roughness on floodplains. Journal of Hydraulic Engineering, Asce, 123, 51–57.
  • Fathi-Moghadam, M., et al., 2011. Determination of friction factor for rivers with nonsubmerged vegetation in banks and floodplains. Scientific Research and Essays, 6 (22), 4714–4719. doi:10.5897/SRE11.751
  • Fathi-Moghadam, M. and Drikvandi, K., 2012. Manning roughness coefficient for rivers and flood plains with non-submerged vegetation. International Journal of Hydraulic Engineering, 1 (1), 1–4. doi:10.5923/j.ijhe.20120101.01
  • Fisher-Antze, T., et al., 2001. 3D numerical modeling of open-channel flow with submerged vegetation. Journal of Hydraulic Research, 39 (3), 303–310. doi:10.1080/00221680109499833
  • Freeman, G.E., Rahmeyer, W.H., and Copeland, R.R., 2000. Determination of resistance due to shrubs and woody vegetation. Vicksburg, MS: US Army Engineer Research and Development Center, Technical Report, ERDC/CHL TR-00-25.
  • Galia, T. and Skarpich, V., 2016. Response of bed sediments on the grade-control structure management of a small piedmont stream, River Research and Applications, version of record online: 21 November 2016. doi:10.1002/rra.3111
  • Gurnell, A.M., et al., 2006. Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications, 22 (6), 1535–1567. doi:10.1002/rra.929
  • Hession, W.C. and Curran, J.C., 2013. The impacts of vegetation on roughness in fluvial systems. In: J.F. Shroder, D.R. Butler, and C.R. Hupp, eds. Treatise on Geomorphology, Vol 12, Ecogeomorphology. San Diego, CA: Academic Press, 75–93.
  • Huthoff, F. and Augustijn, D.C.M., 2006. Hydraulic resistance of vegetation: predictions of average flow velocities based on a rigid-cylinders analogy. Enschede: University of Twente, CE&M research report 2006R-001/WEM-003, 67.
  • Jarrett, R.D., 1985. Determination of roughness coefficients for streams in Colorado. US Geological Survey Water-Resources Investigations Report 85-4004, Lakewood, CO: US Geological Survey.
  • Järvelä, J., 2002. Flow resistance of flexible and stiff vegetation: a flume study with natural plants. Journal of Hydrology, 269 (1–2), 44–54. doi:10.1016/S0022-1694(02)00193-2
  • Järvelä, J., 2004. Determination of flow resistance caused by non-submerged woody vegetation. International Journal of River Basin Management, 2 (1), 61–70. doi:10.1080/15715124.2004.9635222
  • Järvelä, J., 2005. Effect of submerged flexible vegetation on flow structure and resistance. Journal of Hydrology, 307 (1–4), 233–241. doi:10.1016/j.jhydrol.2004.10.013
  • Kouwen, N., 1988. Field estimation of the biomechanical properties of grass. Journal of Hydraulics Research, 26 (5), 559–568. doi:10.1080/00221688809499193
  • Kouwen, N. and Fathi-Moghadam, M., 2000. Friction factors for coniferous trees along rivers. Journal of Hydraulic Engineering, 126 (10), 732–740. doi:10.1061/(ASCE)0733-9429(2000)126:10(732)
  • Kouwen, N. and Li, R.M., 1980. Biomechanics of vegetative channel linings. Journal of the Hydraulic Division, ASCE, 106 (6), 1085–1103.
  • Kouwen, N. and Unny, T.E., 1973. Flexible roughness in open channels. Journal of the Hydraulics Division, ASCE, 99 (5), 713–728.
  • Kubrak, E., Kubrak, J., and Rowinski, P.M., 2008. Vertical velocity distributions through and above submerged, flexible vegetation. Hydrological Sciences Journal, 53 (4), 905–920. doi:10.1623/hysj.53.4.905
  • Kutija, V. and Hong, H.T.M., 1996. A numerical model for assessing the additional resistance to flow introduced by flexible vegetation. Journal of Hydraulic Research, 34 (1), 99–114. doi:10.1080/00221689609498766
  • Masjedi, A., Fathi Moghadam, M., and Shomalnasab, B., 2009. Investigation of nonsubmerged vegetation cover resistance against flow in riversides. JWSS - Journal of Water and Soil Science, 12 (46), 533–541.
  • Mustaffa, N., Ahmad, N.A., and Razi, M.A.M., 2016. Variations of roughness coefficients with flow depth of grassed swale. IOP Conference Series: Materials Science and Engineering, 136. doi:10.1088/1757-899X/136/1/012082
  • Negm, A.M., 2008. Effect of partially or fully submerged vegetation on roughness coefficients in rectangular open channels. In: Proceedings of ICFDP9: ninth international congress of fluid dynamics & propulsion, 18–21 December 2008. Alexandria, Egypt.
  • Nichols, M.H., et al., 2016. Semiarid watershed response to low-tech porous rock check dams. Soil Science, 181 (7), 275–282. doi:10.1097/SS.0000000000000160
  • Norman, L.M., et al., 2016. Hydrologic response of streams restored with check dams in the Chiricahua Mountains, Arizona. River Research and Applications, 32, 519–527. doi:10.1002/rra.2895
  • Nyssen, J., et al., 2004. The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. Soil Use and Management, 20 (1), 55–64. doi:10.1111/j.1475-2743.2004.tb00337.x
  • Okamoto, T. and Nezu, I., 2010. Flow resistance law in open-channel flows with rigid and flexible vegetation. In: A. Dittrich, et al., eds. River flow 2010: proceedings of the International Conference on Fluvial Hydraulics, Braunschweig, 8–10 September 2010. Karlsruhe: Bundesanstalt für Wasserbau, 261–268.
  • Panigrahia, K. and Khatua, K.K., 2015. Prediction of velocity distribution in straight channel with rigid vegetation. Aquatic Procedia, 4, 819–825. doi:10.1016/j.aqpro.2015.02.102
  • Petryk, S. and Bosmajian, G.B., 1975. Analysis of flow through vegetation. Journal of the Hydraulic Division, ASCE, 101 (7), 871–884.
  • Polyakov, V.O., et al., 2014. Effect of check dams on runoff, sediment yield, and retention on small semiarid watersheds. Journal of Soil and Water Conservation, 69 (5), 414–421. doi:10.2489/jswc.69.5.414
  • Puigdefábregas, J. and García-Ruiz, J.M., 1985. Efectos de la construcción de pequeñas presas en causes anastomosados del Pirineo Central. Cuadernos De Investigación Geográfica, 11, 91–102 (in Spanish). doi:10.18172/cig.946
  • Righetti, M. and Armanini, A., 2002. Flow resistance in open channel with sparsely distributed bushes. Journal of Hydrology, 269, 55–64. doi:10.1016/S0022-1694(02)00194-4
  • Sandercock, P.J., Hooke, J.M., and Mant, J.M., 2007. Vegetation in dryland river channels and its interaction with fluvial processes. Progress in Physical Geography, 31 (2), 107–129. doi:10.1177/0309133307076106
  • Shimizu, Y. and Tsujimoto, T., 1994. Numerical analysis of turbulent open-channel flow over a vegetation layer using a turbulence model. Journal of Hydroscience and Hydraulic Engineering, 11, 57–67.
  • Souliotis, D. and Prinos, P., 2010. 3-D Numerical computations of turbulence in a partially vegetated shallow channel. In: A. Dittrich, et al., eds. River flow 2010: proceedings of the International Conference on Fluvial Hydraulics, Braunschweig, 8–10 September 2010. Karls-ruhe: Bundesanstalt für Wasserbau, 83–90.
  • Stephan, U. and Gutknecht, D., 2002. Hydraulic resistance of submerged flexible vegetation. Journal of Hydrology, 269 (1–2), 27–43. doi:10.1016/S0022-1694(02)00192-0
  • Temple, D.M., 1987. Closure of ‘velocity distribution coefficients for grass-lined channels’. Journal of Hydraulic Engineering, ASCE, 113 (9), 1224–1226. doi:10.1061/(ASCE)0733-9429(1987)113:9(1224)
  • Wu, F.C., Shen, H.W., and Chou, Y.J., 1999. Variation of Roughness Coefficients for unsubmerged and submerged vegetation. Journal of Hydraulic Engineering, 125 (9), 934–942. doi:10.1061/(ASCE)0733-9429(1999)125:9(934)
  • Wu, W., He, Z., and Wang, S.S.Y., 2006. Flow conveyance and sediment transport capacity in vegetated channels. In: The 7th International Conference on Hydroscience and Engineering (ICHE-2006), 10–13 September. Philadelphia, PA: Drexel University.
  • Wynn-Thompson, T. and Hall, K., 2012. Predicting friction factor in herbaceous emergent wetlands. In: American Geophysical Union, AGU Fall Meeting, 3–7 December 2012, San Francisco, CA: AGU.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.