792
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effect of overpumping and irrigation stress on hydrochemistry and hydrodynamics of a Saharan oasis groundwater system

, , &
Pages 227-250 | Received 09 May 2017, Accepted 02 Nov 2017, Published online: 09 Jan 2018

References

  • Abd el Samie, S.G. and Sadek, M.A., 2001. Groundwater recharge and flow in the Lower Cretaceous Nubian Sandstone aquifer in the Sinai Peninsula, using isotopic techniques and hydrochemistry. Hydrogeology Journal, 9, 378–389. doi:10.1007/s100400100140
  • Allison, G.B., 1982. The relationship between 18O and deuterium in water and in sand columns undergoing evaporation. Journal of Hydrology, 76, 163–169. doi:10.1016/0022-1694(82)90127-5
  • Appelo, C.A.J. and Postma, D., 1993. Geochemistry, groundwater and pollution. 2nd ed. Rotterdam: Balkema.
  • Atlas, E. and Pytkowicz, R.M., 1977. Solubility behavior of apatites in seawater. Limnology and Oceanography, 22, 290–300. doi:10.4319/lo.1977.22.2.0290
  • Banner, J.L., et al., 1989. Isotopic and trace-element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochimica Et Cosmochimica Acta, 53, 383–398. doi:10.1016/0016-7037(89)90390-6
  • Belmaker, R., et al., 2007. Controls on the radiocarbon reservoir ages in the modern dead sea drainage system and in the last glacial lake Lisan. Radiocarbon, 49, 969–982. doi:10.1017/S0033822200042831
  • Ben Hassen, A., et al., 2010. Pétrographie et géochimie comparées des pellets phosphatés et de leur gangue dans le gisement phosphaté de Ras-Draâ (Tunisie), Implications sur la genèse des pellets phosphatés. Swiss Journal of Geosciences, 103, 457–473. doi:10.1007/s00015-010-0029-x
  • Bishop, W.F., 1975. Geology of Tunisia and adjacent parts of Algeria and Libya. American Association of Petroleum Geologists Bulletin, 59, 413–450.
  • Böhlke, J.K. and Denver, J.M., 1995. Combined use of groundwater dating, chemical and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resources Research, 31, 2319–2339. doi:10.1029/95WR01584
  • Bryant, R.G., et al., 1994b. Marine-like potash evaporite formation on a continental playa: case study from Chott el Djerid, southern Tunisia. Sedimentary Geology, 90, 26–29. doi:10.1016/0037-0738(94)90043-4
  • Burdon, D.J. and Malzoum, J., 1958. Some chemical types of groundwater from Syria. In: UNESCO Symposium Teheran. Paris, Unesco, 73–90.
  • Burnett, W.E., 1977. Geochemistry and origin of phosphorite deposits of Peru and Chile. Geological Society of America Bulletin, 88, 813–823. doi:10.1130/0016-7606(1977)88<813:GAOOPD>2.0.CO;2
  • Cartwright, I., et al., 2004. Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Applied Geochemistry, 19, 1233–1254. doi:10.1016/j.apgeochem.2003.12.006
  • Castany, G., 1982. Bassin sédimentaire du Sahara septentrional (Algérie-Tunisie): aquifères du continental intercalaire et du Complexe Terminal. Bulletin Bureau Recherches Géologiques Minières, 2, 127–147.
  • Clark, I. and Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Boca Raton: New York.
  • Coleman, M.L., et al., 1982. Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry, 54, 993–995. doi:10.1021/ac00243a035
  • Conrad, G. and Fontes, J.C. 1970. Hydrologie isotopique du Sahara nord-occidental. Isotope Hydrology. IAEA, Vienne, 405–419.
  • Coque, R., 1962. La Tunisie présaharienne: étude géomorphologique. Paris: Armond Colin.
  • Cornet, A., 1964. Introduction à l’hydrogéologie saharienne. Revue de Géographique, Physique et de Géologie Dynamique, 2, 5–72.
  • Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133, 1702–1703. doi:10.1126/science.133.3465.1702
  • Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16, 436–468. doi:10.3402/tellusa.v16i4.8993
  • Dassi, L., 2011. Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: a multi-tracer approach. Applied Geochemistry, 26, 1386–1398. doi:10.1016/j.apgeochem.2011.05.012
  • Dassi, L., 2014. Application of Geochemical and Isotopic Tools to Groundwater Studies in Central and Southern Tunisia. Thesis (HDR). University of Sfax.
  • Dassi, L. and Tarki, M., 2014. Isotopic tracing for conceptual models of groundwater hydrodynamics in multilayer aquifer systems of central and southern Tunisia. Hydrological Sciences Journal, 59, 1240–1258. doi:10.1080/02626667.2014.892206
  • Dassi, L., Zouari, K., and Faye., S., 2005a. Identifying sources of groundwater recharge in the Merguellil basin (Tunisia) using isotopic methods: implication of dam reservoir water accounting. Environmental Geology, 49, 114–123. doi:10.1007/s00254-005-0069-0
  • Dassi, L., et al., 2005b. Flow exchange between the deep and the shallow groundwaters in the Sbeïtla synclinal basin (Tunisia): an isotopic approach. Environmental Geology, 47, 501–511. doi:10.1007/s00254-004-1170-5
  • Davis, J.A., et al., 2004. Assessing conceptual models for subsurface reactive transport of inorganic contaminants. Transaction-American Geophysical Union, 85, 449–455. doi:10.1029/2004EO440002
  • DGRE (Direction Générale des Ressources en Eau), 2010. Annuaire de l’exploitation des nappes profonde de la Tunisie. Tunis, Tunisia: Direction Générale des Ressources en Eau.
  • Edmunds, W.M., et al., 1997. Recharge characteristics and groundwater quality of the Grand Erg Oriental Basin. Final Report, IC (Avicenne) Contract CT93AVI0015, Technical report WD/97/46R, Hydrogeology Series, British Geological Survey, Wallingford, UK.
  • Edmunds, W.M., et al., 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry, 18, 805–822. doi:10.1016/S0883-2927(02)00189-0
  • Edmunds, W.M. and Wright, E.P., 1979. Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya. Journal of Hydrology, 40, 215–241. doi:10.1016/0022-1694(79)90032-5
  • Epstein, S. and Mayeda, T.K., 1953. Variation of O18 content of waters from natural sources. Geochimica Et Cosmochimica Acta, 4, 213–224. doi:10.1016/0016-7037(53)90051-9
  • ETAP, 2015. Entreprise Tunisienne des Activités Pétrolières (Tunisian National Oil Company). Forages Pétroliers dans la région de Kébili, Rapports Internes.
  • FAO (Food and Agricultural Organization of the United Nations), 2002. Livestock: intensification and its risks, pp. 58–63. In: World Agriculture: Towards 2015/2030. Summary report. Rome, Italy: FAO.
  • Felhi, C., 1988. Rapport de synthèse des travaux de reconnaissance géologique fin 1987 du gisement de Nefta-Tozeur (Ras-Draâ). Rapport inédit, Compagnie de Phosphates de Gafsa, 73.
  • Fontes, J.C., et al., 1983. Paléohydrologie Isotopique de l’oued el Akarit (sud Tunisie) au Pleistocène Supérieur et à l’holocène. Palaeogeography Palaeoclimatology Palaeoecology, 43, 41–62. doi:10.1016/0031-0182(83)90047-0
  • Galfati, I., 2010. Geochemistry and mineralogy of Paleocene Oum El Khecheb phosphorites (Gafsa-Metlaoui) Tunisia. Geochemical Journal, 44, 189–210. doi:10.2343/geochemj.1.0062
  • Garcia, M.G., Del Hidalgo, M., and Blesa, M.A., 2001. Geochemistry of groundwater in the alluvial plain of Tucuman province Argentina. Hydrogeology Journal, 9, 597–610. doi:10.1007/s10040-001-0166-4
  • Gascoyne, M., 2003. Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholih on the Canadian Shield, southeastern Manitoba. Applied Geochemistry, 19, 519–560. doi:10.1016/S0883-2927(03)00155-0
  • Gat, J.R. and Matsui, E., 1991. Atmospheric water balance in theAmazon Basin. An isotopic evapotranspiration model. Journal of Geophysical Research, 96, 13179–13188. doi:10.1029/91JD00054
  • Göbel, P., et al., 2004. Near-natural stormwater management and its effects on the water budget and groundwater surface in urban areas taking account of the hydrogeological conditions. Journal of Hydrology, 299, 267–283. doi:10.1016/j.jhydrol.2004.08.013
  • Gonfiantini, R., Dincer, T., and Derekoy, A.M., 1974. Environmental isotope hydrology in the Hodna region, Algeria. In: Isotope techniques in groundwater hydrology. Symposium Proceedings (11–15 March 1974, Vienna, Austria), 293–316. Vienna: International Atomic Energy Agency.
  • Gueddari, M., et al., 1983. Geochemistry of brines of the chott El Jerid in southern Tunesia — application of Pitzer’s equations. Chemical Geology, 39, 165–178. doi:10.1016/0009-2541(83)90078-5
  • Guendouz, A., et al., 2003. Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeology Journal, 11, 483–495. doi:10.1007/s10040-003-0263-7
  • Gulbrandsen, R.A., Roberson, C.E., and Neil, S.T., 1984. Time and the crystallization of apatite in seawater. Geochimica Et Cosmochimica Acta, 48, 213–218. doi:10.1016/0016-7037(84)90365-X
  • Hajjaji, W., et al., 2014. Les sables siliceux barrémiens en Tunisie: essais de fabrication des pigments et du verre. In: 2ème journée de valorisation de la silice et du et des Sables Siliceux (21–23 Févier 2014, Hammamet, Tunisie).
  • Izbicki, J.A., et al., 2004. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA. Journal of Hydrology, 292, 30–47. doi:10.1016/j.jhydrol.2003.12.034
  • Kallergis, G., Lambrakis, N.J., and Nokas-Zographos, H., 1997. Estimating of the refreshening time of the aquifers in the coastal and island regions (in Greek). In: Proceedings of the Third National Congress of the Greek Committee for Water Resources Management, Greece, 225–228.
  • Kamel, S., 2007. Caractérisation hydrodynamique et géochimique des aquifères de Djérid (Sud-ouest Tunisien). Thesis (PhD). University of Tunis.
  • Kamel, S., et al., 2005. Geochemical and isotopic investigation of the aquifer system in the Djerid-Nefzaoua basin, southern Tunisia. Environmental Geology, 49, 159–170. doi:10.1007/s00254-005-0076-1
  • Kearney, T.H., 1906. Date varieties and date culture in Tunis. US Department of Agriculture. Bureau of Plant Industry, 92, 111–130.
  • Kehew, A.E., et al., 1998. Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer Southwestern Michigan. Groundwater, 36, 849–856. doi:10.1111/gwat.1998.36.issue-5
  • Lloyd, J.W. and Heathcote, J.A., 1985. Natural Inorganic Hydrochemistry in Relation to Groundwater, An Introduction. 2nd ed. Mishawaka: USA.
  • Machavaram, M.V. and Krishnamurthy, R.V., 1995. Earth surfaceevaporative process: a case study from the Great Lakes regionof the United States based on deuterium excess in precipitation. JournalGeochimica Et Cosmochimica Acta, 59, 4279–4283. doi:10.1016/0016-7037(95)00256-Y
  • Mamou, A., 1990. Caractéristiques et évaluation des ressources en eau du sud tunisien. Thesis (HDR). University Paris Sud.
  • McLean, W., Jankowski, J., and Lavitt, N., 2000. Groundwater quality and sustainability in alluvial aquifer, Australia. In: O. Sililom, et al., eds. Groundwater – past achievements and future challenges. Rotterdam: Balkema.
  • Meckelein, W., 1977. Geographische Untersuchungen am Nordrand der tunesischen Sahara (Geographical investigations on the northern fringe of the Tunisian Sahara, in German). Stuttgart, Germany: Stuttgarter Geographische Schriften, 247–301.
  • Mengis, M., et al., 1999. Multiple geochemical and isotopic approaches for assessing ground water NO3−elimination in a riparian zone. Groundwater, 37, 448–457. doi:10.1111/gwat.1999.37.issue-3
  • Merlivat, L. and Jouzel, J., 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research, 84, 5029–5033. doi:10.1029/JC084iC08p05029
  • Millington, A.C., et al., 1989. Monitoring salt playa dynamics using Thematic Mapper data. IEEE Transactions on Geoscience and Remote Sensing, 27, 754–761. doi:10.1109/36.35964
  • Montoroi, J.-P., Grünberger, O., and Nasri, S., 2002. Groundwater geochemistry of a small reservoir catchment in Central Tunisia. Applied Geochemistry, 17, 1047–1060. doi:10.1016/S0883-2927(02)00076-8
  • OTEDD (Observatoire Tunisien de l’Environnement et du Développement Durable). 2010. Indicateurs de développement durable.
  • Parkhurst, D.L., 1995. User’s guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations: U.S. Geological Survey Water Resources Investigations, Report 95-4227, 143 p.
  • Pearson, F.J. and Hanshaw, B.B., 1970. Sources of dissolved carbonate species in a groundwater and their effects on carbon-14 dating, in Isotope Hydrology. International Atomic Energy Agency, 9–13 March 1970. Vienna, Austria, 271–285.
  • Pearson, F.J. and Swarzenki, W.V., 1974. 14C evidence for the origin of arid region groundwater, northeastern province, Kenya. Isotope Techniques in Groundwater Hydrology. IAEA. In isotopes and radiation sources, symposium on isotope techniques in groundwater hydrology, 11–15 March 1974 Vienna. Austria, 109–123.
  • Petalas, C. and Lambrakis, N.J., 2006. Simulation of intense salinization phenomena in coastal aquifers-the case of the coastal aquifers of Thrace. Journal of Hydrology, 324, 51–64. doi:10.1016/j.jhydrol.2005.09.031
  • Petalas, C.P. and Diamantis, I.B., 1999. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeology Journal, 7, 305–316. doi:10.1007/s100400050204
  • Pilla, G., et al. 2006. Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy. Hydrogeology Journal, 9, 127–150.
  • Plummer, L.N., 1977. Defining reactions and mass transfer in part of the Floridan aquifer. Water Resources Research, 13, 801–812. doi:10.1029/WR013i005p00801
  • Plummer, L.N. and Sprinkle, C.L., 2001. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeology Journal, 9, 127–150. doi:10.1007/s100400000121
  • Portugal, E., Álvarez, J., and Romero, B.I., 2006. Hydrochemical and isotopical tracers in the lacustrine aquifer of the Cerro Prieto area, Baja California, México. Journal of Geochemical Exploration, 88, 139–143. doi:10.1016/j.gexplo.2005.08.027
  • Sacks, L.A. and Tihansky, A.B., 1996. Geochemical and isotopic composition of ground water, with emphasis on sources of sulfate, in the upper floridan aquifer and intermediate aquifer system in southwest Florida. USGS Water-Resources Investigations. Technical Report, 96-4146.
  • Salmon, S.U. and Malmström, E., 2004. Geochemical processes in mill tailings deposits: modelling of groundwater composition. Applied Geochemistry, 19, 1–17. doi:10.1016/S0883-2927(03)00129-X
  • SASS (Système Aquifère du Sahara Septentrional), 2002. Une conscience de bassin, hydrogéologie. Vol et Annexes. OSS/SASS, Tunis.
  • Sidle, R.C., 2000. Stream flow generation in steep headwaters: A linked hydro-geomorphic paradigm. Hydrological Process, 14, 369–385. doi:10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P
  • Simler, R., 2012. Diagrammes software, Avignon Hydrogeology Laboratory. France: Avignon University.
  • Somasundaran, P. and Wang, Y.H.C., 1984. Surface chemical characteristics and adsorption properties of apatite. In: Adsorption on and surface chemistry of hydroxyapatite. 10 ed., March 9, 2016. McGraw-Hill Education, 129–149.
  • Tarki, M., et al., 2016. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia. Applied Radiationand Isotopes, 110, 138–149. doi:10.1016/j.apradiso.2016.01.009
  • Tarki, M., et al., 2011. Geochemical and isotopic composition of groundwater in the complex terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage. Environmental Earth Sciences, 64, 85–95. doi:10.1007/s12665-010-0820-z
  • Tarki, M., Dassi, L., and Jedoui, Y., 2012. Groundwater composition and recharge origin in the shallow aquifer of the Djérid oases, southern Tunisia: implications of return flow. Hydrological Sciences Journal, 57, 1–15. doi:10.1080/02626667.2012.681783
  • Timms, W.A., 2001. The importance of aquitard windows in development of alluvial groundwater systems: Lower Murrumbidgee, Australia. Thesis (PhD). University of New South Wales.
  • Trabelsi, B., 2013. Les sables de Bèglia et ses equivalents lateraux: reservoirs potentiels d’eau et d’hydrocarbure. Thesis (MS). University of tunis.
  • Uliana, M.M., Banner, J.L., and Sharp, J.J.M., 2007. Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. Journal of Hydrology, 334, 334–346. doi:10.1016/j.jhydrol.2006.10.015
  • UNESCO, 1972. ERESS : Etude des ressources en eau de Sahara septentrional. Paris: UNESCO.
  • UNESCO, 2004. Managing shared aquifer resources in Africa. The United Nations Educational, Scientific and Cultural Organization. Bo Appelgren, Fontenoy, France.
  • White, A.F. and Chuma, N.J.C., 1987. Carbon and isotopic mass balances models of Oasis Valley, Forth mile Canyon groundwater water basin, southern Nevada. Water Resources Research, 23, 571–582. doi:10.1029/WR023i004p00571
  • Xu, Y. and Schwartz, F.W., 1994. Lead immobilization by hydroxyapatite in aqueous solutions. Journal of Contaminant Hydrology, 15, 187–206. doi:10.1016/0169-7722(94)90024-8
  • Xu, Y., Schwartz, F.W., and Traina, S.J., 1994. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environmental Science and Technology, 28, 1472–1480. doi:10.1021/es00057a015
  • Zaporozec, A., 1972. Graphical interpretation of water-quality data. Groundwater, 10, 32–43. doi:10.1111/gwat.1972.10.issue-2
  • Zuppi, G.M. and Sacchi, E., 2004. Hydrogeology as a climate recorder: Sahara (North Africa) and the Po Plain (Northern Italy). Global and Planetary Change, 40, 79–91. doi:10.1016/S0921-8181(03)00099-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.