960
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Advantages and challenges of using soil water isotopes to assess groundwater recharge dominated by snowmelt at a field study located in Canada

&
Pages 679-695 | Received 19 May 2017, Accepted 31 Jan 2018, Published online: 12 Mar 2018

References

  • Adomako, D., et al., 2010. Estimating groundwater recharge from water isotope (δ2H, δ18O) profiles in the Densu River basin, Ghana. Hydrological Sciences Journal, 55 (8), 1405–1416. doi:10.1080/02626667.2010.527847
  • Allison, G.B., Gee, G.W., and Tyler, S.W., 1994. Vadose-Zone techniques for Estimating groundwater recharge in arid and semiarid regions. Soil Science Society of America Journal, 58 (1), 6–14. doi:10.2136/sssaj1994.03615995005800010002x
  • Beyer, W., 1964. Zur bestimmung der wasserdurchlässigkeit von kiesen und sanden aus der kornverteilungskurve. WWT-Wasserwirtschaft Wassertechnik, 14, 165–168.
  • Boumaiza, L., Rouleau, A., and Cousineau, P.A. 2015. Estimation de la conductivité hydraulique et de la porosité des lithofaciès identifiés dans les dépôts granulaires du paléodelta de la rivière Valin dans la région du Saguenay au Québec. In: Proceedings of GeoQuebec 2015, 20–23 September, Quebec City, Canada. Richmond, BC, Canada: The Canadian Geotechnical Society, 9.
  • Bredehoeft, J., 2009. It is the discharge. Ground Water, 45 (5), 523. doi:10.1111/gwat.2007.45.issue-5
  • Chapuis, R.P., 2004. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41, 787–795. doi:10.1139/t04-022
  • Chesnaux, R., 2013. Regional recharge assessment in the crystalline bedrock aquifer of the Kenogami uplands, Canada. Hydrological Sciences Journal, 58 (2), 421–436. doi:10.1080/02626667.2012.754100
  • de Vries, J.J. and Simmers, I., 2002. Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal, 10 (1), 5–17. doi:10.1007/s10040-001-0171-7
  • Delin, G.N., et al., 2007. Comparison of local to regional-scale estimates of ground-water recharge in Minnesota, USA. Journal of Hydrology, 334 (1–2), 231–249. doi:10.1016/j.jhydrol.2006.10.010
  • Environment Canada, 2011. Canada’s National Climate Archive. http://www.climate.weatheroffice.ec.gc.ca/climate_normals/ [Accessed 15 November 2016].
  • Gaj, M., et al., 2016. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: a soil water balance. Hydrology and Earth System Sciences, 20, 715–731. doi:10.5194/hess-20-715-2016
  • Gogolev, M.I., 2002. Assessing groundwater recharge with two unsaturated zone modeling technologies. Environmental. Geology, 42 (2–3), 248–258. doi:10.1007/s00254-001-0494-7
  • Hayashi, M., van der Kamp, G., and Schmidt, R., 2003. Focused infiltration of snowmelt water in partially frozen soil under small depressions. Journal of Hydrology, 270 (3–4), 214–229. doi:10.1016/S0022-1694(02)00287-1
  • Hazen, A. 1892. Some physical properties of sand and gravel, with special reference to their use in filtration. 24th annual report. Boston: Massachussetts State Board of Health, Pub. Doc. No. 34, 539–556.
  • Healy, R.W. and Cook, P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10 (1), 91–109. doi:10.1007/s10040-001-0178-0
  • Huet, M., et al., 2016. Comparing various approaches for assessing groundwater recharge at a regional scale in the Canadian Shield. Hydrological Sciences Journal, 61 (12), 2267–2283. doi:10.1080/02626667.2015.1106544
  • Koeniger, P., 2003. Tracer hydrological investigations on groundwater recharge. Freiburg: Institut für Hydrologie, Freiburger Schriften zur Hydrologie No. 16 (in German).
  • Koeniger, P., et al., 2016. Review on soil water isotope-based groundwater recharge estimations. Hydrological Processes, 30 (16), 2817–2834. doi:10.1002/hyp.v30.16
  • Leibundgut, L., Maloszewski, P., and Külls, C., 2010. Tracers in hydrology. John Wiley & Sons Ltd. doi:10.1002/9780470747148
  • Maciejewski, S., et al., 2006. Modelling of water flow through typical Bavarian soils (Germany) based on lysimeter experiments: 1. Estimation of hydraulic characteristics of the unsaturated zone. Hydrological Sciences Journal, 51, 285–297. doi:10.1623/hysj.51.2.285
  • Maloszewski, P., et al., 2006. Modelling of water flow through typical Bavarian soils based on lysimeter experiments: 2. Environmental deuterium transport. Hydrological Sciences Journal, 51, 298–313. doi:10.1623/hysj.51.2.298
  • McConville, C., et al., 2001. Evaluation of recharge in a small temperate catchment using natural and applied δ18O profiles in the unsaturated zone. Ground Water, 39 (4), 616–623. doi:10.1111/gwat.2001.39.issue-4
  • Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, 2016. Données du Programme de Surveillance du climat. Québec: Direction générale du suivi de l’état de l’environnement.
  • Mueller, M.H., et al., 2014. Tracking water pathways in steep hillslopes by δ18O soil depth profiles of soil water. Journal of Hydrology, 519, 340–352. doi:10.1016/j.jhydrol.2014.07.031
  • NAVFAC DM7, 1974. Design manual – soil mechanics, foundations, and earth structures. Washington, DC: U.S. Government Printing Office.
  • Orlowski, N., et al., 2013. Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis. Journal of Sensors and Sensor Systems, 2, 179–193. doi:10.5194/jsss-2-179-2013
  • Rosenbom, A.E., et al., 2008. Fluorescence imaging applied to tracer distributions in variably saturated fractured clayey till. Journal of Environment Quality, 37, 448–458. doi:10.2134/jeq2007.0145
  • Rothfuss, Y., Vereecken, H., and Brüggemann, N., 2013. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy. Water Resources Research, 49, 3747–3755. doi:10.1002/wrcr.20311
  • Rutledge, A.T., 2007. Update on the use of the RORA program for recharge estimation. Ground Water, 45 (3), 374–382. doi:10.1111/gwat.2007.45.issue-3
  • Saxena, R.K. and Dressie, Z. 1984. Estimation of groundwater recharge and moisture movement in sandy formations by tracing natural oxygen-18 and injected tritium profiles in the unsaturated zone. In: International Atomic Energy Agency (IAEA) Proceedings Series 270/46, 12–16 September 1983, Vienna, Austria, 139–150. ISBN 92-0-040084-1. Vienna: International Atomic Energy Agency (IAEA).
  • Scanlon, B.R., Healy, R.W., and Cook, P.G., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10 (1), 18–39. doi:10.1007/s10040-001-0176-2
  • Sprenger, M., et al., 2015a. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrology and Earth System Sciences, 19, 2617–2635. doi:10.5194/hess-19-2617-2015
  • Sprenger, M., et al., 2016a. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Reviews of Geophysics, 54, 674–704. doi:10.1002/2015RG000515
  • Sprenger, M., et al., 2016b. Travel times in the vadose zone: variability in space and time. Water Resources Research, 52, 5727–5754. doi:10.1002/2015WR018077
  • Sprenger, M., Herbstritt, B., and Weiler, M., 2015b. Established methods and new opportunities for pore water stable isotope analysis. Hydrological Processes, 29, 5174–5192. doi:10.1002/hyp.10643
  • Stumpp, C., et al., 2009. Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: case study lysimeter station “Wagna” (Austria). Journal of Hydrology, 369, 198–208. doi:10.1016/j.jhydrol.2009.02.047
  • Stumpp, C., et al., 2012. Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: a long-term study using stable water isotopes. Vadose Zone Journal, 11. doi:10.2136/vzj2011.0075
  • Stumpp, C. and Hendry, J., 2012. Spatial and temporal dynamics of water flow and solute transport in a heterogeneous glacial till: the application of high-resolution profiles of δ18O and δ2H in pore waters. Journal of Hydrology, 438-439, 203–214. doi:10.1016/j.jhydrol.2012.03.024
  • Stumpp, C. and Maloszewski, P., 2010. Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O. Journal of Hydrology, 394, 407–415. doi:10.1016/j.jhydrol.2010.09.014
  • Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.
  • Volkmann, T.H.M. and Weiler, M., 2014. Continual in situ monitoring of pore water stable isotopes in the subsurface. Hydrology and Earth System Sciences, 18, 1819–1833. doi:10.5194/hess-18-1819-2014
  • Vukovic, M. and Soro, A., 1992. Determination of hydraulic conductivity of porous media from grain-size composition. Littletown, CO: Water Resources Publications, 83 p.
  • Wassenaar, L.I., et al., 2008. High resolution pore water δ2H and δ18O measurements by H2O (liquid)-H2O (vapor) equilibration laser spectroscopy. Environmental Science & Technology, 42, 9262–9267. doi:10.1021/es802065s
  • Yin, L., et al., 2011. Groundwater-recharge estimation in the Ordos Plateau, China: comparison of methods. Hydrogeology Journal, 19 (8), 1563–1575. doi:10.1007/s10040-011-0777-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.