9,236
Views
128
CrossRef citations to date
0
Altmetric
Original Articles

How the performance of hydrological models relates to credibility of projections under climate change

, ORCID Icon, , , , & show all
Pages 696-720 | Received 03 Feb 2017, Accepted 19 Feb 2018, Published online: 22 Mar 2018

References

  • Abbaspour, K.C., et al., 2007. Modelling of hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333, 413–430. doi:10.1016/j.jhydrol.2006.09.014
  • Aich, V., et al., 2014. Comparing impacts of climate change on streamflow in four large African river basins. Hydrology and Earth System Sciences, 18 (4), 1305–1321. doi:10.5194/hess-18-1305-2014
  • Andersson, J.C.M., et al., 2017. Process refinements improve a hydrological model concept applied to the Niger River basin. Hydrological Processes, 31 (25), 4540–4554. doi:10.1002/hyp.11376
  • Andréassian, V., et al., 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research, 40 (5), W05209. doi:10.1029/2003WR002854
  • Archfield, S.A., et al., 2015. Accelerating advances in continental domain hydrologic modelling. Water Resources Research, 51 (12), 10078–10091. doi:10.1002/2015WR017498
  • Arheimer, B., Dahné, J., and Donnelly, C., 2012. Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan. Ambio, 41 (6), 600–612. doi:10.1007/s13280-012-0323-0
  • Arheimer, B. and Lindström, G., 2015. Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100). Hydrology and Earth System Sciences, 19, 771–784. doi:10.5194/hess-19-771-2015
  • Arnell, N.W. and Gosling, S.N., 2016. The impacts of climate change on river flood risk at the global scale. Climatic Change, 134 (3), 387–401. doi:10.1007/s10584-014-1084-5
  • Arnold, J.G., Allen, P.M., and Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology, 142, 47–69. doi:10.1016/0022-1694(93)90004-S
  • Beck, H.E., et al., 2016. Global-scale regionalization of hydrologic model parameters. Water Resources Research, 52 (5), 3599–3622. doi:10.1002/2015WR018247
  • Beck, H.E., et al., 2017. Global evaluation of runoff from ten state-of-the-art hydrological models. Hydrology and Earth System Sciences, 21, 2881–2903. doi:10.5194/hess-21-2881-2017
  • Bergström, S., 1976. Development and application of a conceptual runoff model for Scandinavian catchments. Norrköping: Swedish Meteorological and Hydrological Institute, SMHI RHO 7.
  • Bergström, S., et al., 2001. Climate change impacts on runoff in Sweden – assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Research, 16, 101–112. doi:10.3354/cr016101
  • Beven, K. and Alcock, R.E., 2012. Modelling everything everywhere: a new approach to decision-making for water management under uncertainty. Freshwater Biology, 57 (Suppl. 1), 124–132. doi:10.1111/j.1365-2427.2011.02592.x
  • Beven, K. and Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6 (3), 279–298. doi:10.1002/(ISSN)1099-1085
  • Beven, K.J., 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320 (1), 18–36. doi:10.1016/j.jhydrol.2005.07.007
  • Beven, K.J., 2009. Environmental modelling – an uncertain future? London: Routledge.
  • Beven, K.J., 2011. I believe in climate change but how precautionary do we need to be in planning for the future? Hydrological Processes (HPToday), 25, 1517–1520. doi:10.1002/hyp.7939
  • Beven, K.J., 2012. Causal models as multiple working hypotheses about environmental processes. Comptes Rendus Geoscience, Académie des Sciences, Paris, 344, 77–88. doi:10.1016/j.crte.2012.01.005
  • Beven, K.J., 2016. EGU Leonardo lecture: facets of hydrology – epistemic error, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal, 61 (9), 1652–1665. doi:10.1080/02626667.2015.1031761
  • Beven, K.J. and Binley, A.M., 2014. GLUE, 20 years on. Hydrological Processes, 28 (24), 5897–5918. doi:10.1002/hyp.10082
  • Beven, K.J. and Kirby, M.J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24 (1), 43–69. doi:10.1080/02626667909491834
  • Beven, K.J. and Smith, P.J., 2015. Concepts of information content and likelihood in parameter calibration for hydrological simulation models. ASCE Journal of Hydrologic Engineering. doi:10.1061/(ASCE)HE.1943-5584.0000991
  • Beven, K.J. and Westerberg, I., 2011. On red herrings and real herrings: disinformation and information in hydrological inference. Hydrological Processes (Hptoday), 25, 1676–1680. doi:10.1002/hyp.7963
  • Biemans, H., et al., 2009. Effects of precipitation uncertainty on discharge calculations for main river basins. Journal of Hydrometeorology, 10, 1011–1025. doi:10.1175/2008JHM1067.1
  • Bierkens, M.F.P., 2015. Global hydrology 2015: state, trends, and directions. Water Resources Research, 51 (7), 4923–4947. doi:10.1002/2015WR017173
  • Bierkens, M.F.P., et al., 2015. Hyper-resolution global hydrological modelling: what is next? “Everywhere and locally relevant.”. Hydrological Processes, 29, 310–320. doi:10.1002/hyp.10391
  • Blazkova, S. and Beven, K., 2009. A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: skalka catchment, Czech Republic. Water Resources Research, 45, W00B16. doi:10.1029/2007WR006726
  • Blöschl, G. and Montanari, A., 2010. Climate change impacts – throwing the dice? Hydrological Processes, 24, 374–381.
  • Borsuk, M., et al., 2001. Stakeholder values and scientific modeling in the Neuse river watershed. Group Decision and Negotiation, 10, 355–373. doi:10.1023/A:1011231801266
  • Bravo, J., et al., 2012. Coupled hydrologic-hydraulic modeling of the Upper Paraguay River Basin. Journal of Hydrologic Engineering, 17 (5), 635–646. doi:10.1061/(ASCE)HE.1943-5584.0000494
  • Cameron, D., Beven, K., and Naden, P., 2000. Flood frequency estimation under climate change (with uncertainty). Hydrology and Earth System Sciences, 4 (3), 393–405. doi:10.5194/hess-4-393-2000
  • Chiew, F.H.S., et al., 2014. Observed hydrologic non-stationarity in far south-eastern Australia: implications for modelling and prediction. Stochastic Environmental Research and Risk Assessment, 28 (1), 3–15. doi:10.1007/s00477-013-0755-5
  • Choi, H.T. and Beven, K.J., 2007. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in distributed rainfall-runoff modelling within GLUE framework. Journal of Hydrology, 332 (3–4), 316–336. doi:10.1016/j.jhydrol.2006.07.012
  • Christensen, J.H., et al., 2010. Weight assignment in regional climate models. Climate Research, 44, 179–194. doi:10.3354/cr00916
  • Clark, M.P., et al., 2016. Characterizing uncertainty of the hydrologic impacts of climate change. Current Climate Change Report, 2, 55. doi:10.1007/s40641-016-0034-x
  • Coron, L., et al., 2012. Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resources Research, 48, W05552. doi:10.1029/2011WR011721
  • Coron, L., et al., 2011. Pathologies of hydrological models used in changing climatic conditions: a review. In: S.W. Franks, et al., eds. Hydro-climatology: variability and change. Wallingford, UK: International Association of Hydrological Scoiences, IAHS Publ. 344, 39–44.
  • Dankers, R., et al., 2014. First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proceedings of the National Academy of Sciences, 111, 3257–3261. doi:10.1073/pnas.1302078110
  • Di Baldassarre, G., et al., 2011. Future hydrology and climate in the River Nile basin: a review. Hydrological Sciences Journal, 56 (2), 199–211. doi:10.1080/02626667.2011.557378
  • Döll, P., Kaspar, F., and Lehner, B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270 (1–2), 105–134. doi:10.1016/S0022-1694(02)00283-4
  • Donnelly, C., et al., 2017. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Climatic Change, 143, 13. doi:10.1007/s10584-017-1971-7
  • Donnelly, C., Andersson, J.C.M., and Arheimer, B., 2016. Using flow signatures and catchment similarities to evaluate a multi-basin model (E-HYPE) across Europe. Hydrological Sciences Journal, 61 (2), 255–273. doi:10.1080/02626667.2015.1027710
  • Duan, Q.Y., Gupta, V.K., and Sorooshian, S., 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76 (3), 501. doi:10.1007/BF00939380
  • Ehret, U., et al., 2012. Should we apply bias correction to global and regional climate model data? Hydrology and Earth System Sciences, 16, 3391–3404. doi:10.5194/hess-16-3391-2012
  • Euser, T., et al., 2013. A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences, 17, 1893–1912. doi:10.5194/hess-17-1893-2013
  • Fowler, K.J.A., et al., 2016. Simulating runoff under changing climatic conditions: revisiting an apparent deficiency of conceptual rainfall-runoff models. Water Resources Research, 52, 1820–1846. doi:10.1002/2015WR018068
  • Gain, A.K., et al., 2011. Impact of climate change on the stream flow of lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling. Hydrology and Earth System Sciences Discussions, 8, 365–390. doi:10.5194/hessd-8-365-2011
  • Gelfan, A., et al., 2015. Testing the robustness of the physically-based ECOMAG model with respect to changing conditions. Hydrological Sciences Journal, 60 (7–8), 1266–1285. doi:10.1080/02626667.2014.935780
  • Gelfan, A., et al., 2017. Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues. Climatic Change, 141 (3), 499–515. doi:10.1007/s10584-016-1710-5
  • Gerten, D., et al., 2004. Terrestrial vegetation and water balance: hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286, 249–270. doi:10.1016/j.jhydrol.2003.09.029
  • Gosling, S., et al., 2017. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1°C, 2°C and 3°C. Climatic Change, 141 (3), 577–595. doi:10.1007/s10584-016-1773-3
  • Gosling, S.N. and Arnell, N.W., 2011. Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis. Hydrological Processes, 25, 1129–1145. doi:10.1002/hyp.7727
  • Greuell, W., et al., 2015. Evaluation of five hydrological models across Europe and their suitability for making projections under climate change. Hydrology and Earth System Sciences Discussions, 12, 10289–10330. doi:10.5194/hessd-12-10289-2015
  • Gudmundsson, L., et al., 2012a. Comparing large-scale hydrological model simulations to observed runoff percentiles in Europe. Journal of Hydrometeorology, 13 (2), 604–620. doi:10.1175/JHM-D-11-083.1
  • Gudmundsson, L., et al., 2012b. Evaluation of nine large‐scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resources Research, 48 (11). doi:10.1029/2011WR010911
  • Haddeland, I., et al., 2011. Multimodel estimate of the global terrestrial water balance: setup and first results. Journal of Hydrometeorology, 35 (12), 869–884.
  • Haddeland, I., et al., 2014. Global water resources affected by human interventions and climate change. Pnas, 111 (9), 3251–3256. doi:10.1073/pnas.1222475110
  • Hagemann, S. and Dümenil Gates, L., 2001. Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. Journal of Geophysical Research, 106 (D2), 1503–1510. doi:10.1029/2000JD900568
  • Hanasaki, N., et al., 2008. An integrated model for the assessment of global water resources – part 2: applications and assessments. Hydrology and Earth System Sciences, 12, 1027–1037. doi:10.5194/hess-12-1027-2008
  • Hattermann, F.F., et al., 2014. Modelling flood damages under climate change conditions – a case study for Germany. Natural Hazards and Earth System Sciences, 14 (12), 3151–3168. doi:10.5194/nhess-14-3151-2014
  • Hattermann, F.F., et al., 2017. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large scale river basins. Climatic Change, 141 (3), 561–576. doi:10.1007/s10584-016-1829-4
  • Hattermann, F.F., Huang, S., and Koch, H., 2015. Climate change impacts on hydrology and water resources. Meteorologische Zeitschrift, 24 (2), 201–211. doi:10.1127/metz/2014/0575
  • Hempel, S., et al., 2013. A trend-preserving bias correction – the ISIMIP approach. Earth System Dynamics Discussions, 4, 49–92. doi: 10.5194/esdd-4-49
  • Hinshelwood, C., 1966/67. The qualitative and the quantitative. Manchester Literary and Philosophical Society, 109, 10918–10926.
  • Hinshelwood, C.N., 1971. The qualitative and the quantitative. In: Yu.I. Soloviev and N.I. Rodnoy, eds. Philosophical problems of modern chemistry. Moscow: Progress, 21–32 [in Russian].
  • Huang, S., et al., 2010. Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrological Processes, 24, 3289–3306. doi:10.1002/hyp.7753
  • Huang, S., et al., 2013b. Projections of impact of climate change on river flood conditions in Germany by combining three different RCMs with a regional hydrological model. Climatic Change, 116, 663. doi:10.1007/s10584-012-0586-2
  • Huang, S., et al., 2017. Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change, 141 (3), 381–397. doi:10.1007/s10584-016-1841-8
  • Huang, S., Krysanova, V., and Hatterman, F.F., 2013a. Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological mode. Acta Geophysica, 61 (1), 151–193. doi:10.2478/s11600-012-0065-1
  • Hundecha, Y., et al., 2016. A regional parameter estimation scheme for a pan-European multi-basin model. Journal of Hydrology: Regional Studies, 6, 90–111. doi:10.1016/j.ejrh.2016.04.002
  • IPCC (Intergovernmental Panel on Climate Change), 2014. Climate change 2014: synthesis report. In: Core Writing Team, R.K. Pachauri, and L.A. Meyer, eds. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.
  • Kaspersen, P.S., et al., 2012. Methodological framework, analytical tool and database for the assessment of climate change impacts, adaptation and vulnerability in Denmark. Lyngby, Denmark: Technical University of Denmark, DTU Management Engineering Report Series, Report no. 11.2012.
  • Kauffeldt, A., et al., 2013. Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17 (7), 2845–2857. doi:10.5194/hess-17-2845-2013
  • Kauffeldt, A., et al., 2016. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling and Software, 75, 68–76. doi:10.1016/j.envsoft.2015.09.009
  • Kelley, D.I., et al., 2013. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences, 10, 3313–3340. doi:10.5194/bg-10-3313-2013
  • Kjellström, K., et al., 2010. Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Climate Research, 44, 135–150. doi:10.3354/cr00932
  • Klemeš, V., 1986. Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31 (1), 13–24. doi:10.1080/02626668609491024
  • Koirala, S., et al., 2014. Global-scale land surface hydrologic modeling with the representation of water table dynamics. Journal of Geophysical Research – Atmospheres, 119, 75–89. doi:10.1002/2013JD020398
  • Krysanova, V., et al., 2017. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide – a synthesis. Environmental Research Letters, 12, 105002. doi:10.1088/1748-9326/aa8359
  • Krysanova, V. and Hattermann, F., 2017. Intercomparison of climate change impacts in 12 large river basins: overview of methods and summary of results. Climatic Change, 141 (3), 363–379. doi:10.1007/s10584-017-1919-y
  • Krysanova, V., Kundzewicz, Z.W., and Piniewski, M., 2016. Assessment of climate change impacts on water resources. Chapter 148. In: V. Singh, ed. Handbook of applied hydrology. 2nd ed. New York: McGraw-Hill.
  • Kundzewicz, Z.W., et al., 2017. Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrological Sciences Journal, 62 (1), 1–14. doi:10.1080/02626667.2016.1241398
  • Kundzewicz, Z.W., et al., 2018. Uncertainty in climate change impacts on water resources. Environmental Science and Policy, 79, 1–8. doi:10.1016/j.envsci.2017.10.008
  • Lindström, G., et al., 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrology Research, 41 (3–4), 295. doi:10.2166/nh.2010.007
  • Liu, Y.L., et al., 2009. Towards a limits of acceptability approach to the calibration of hydrological models: extending observation error. Journal of Hydrology, 367 (1–2), 93–103. doi:10.1016/j.jhydrol.2009.01.016
  • Luo, Y.Q., et al., 2012. A framework for benchmarking land models. Biogeosciences, 9, 3857–3874. doi:10.5194/bg-9-3857-2012
  • Merz, R., Parajka, J., and Blöschl, G., 2011. Time stability of catchment model parameters: implications for climate impact analyses. Water Resources Research, 47, W02531. doi:10.1029/2010WR009505
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153
  • Motovilov, Y.G., et al., 2013. Assessing runoff sensitivity to climate change in the Arctic basin: empirical and modelling approaches. In: A. Gelfan, eds. Cold and mountain region hydrological systems under climate change: towards improved projections. Wallingford, UK: International Association of Hydrological Sciences, IAHS Publ. 360, 105–112.
  • Müller Schmied, H., et al., 2014. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrology and Earth System Sciences, 18, 3511–3538. doi:10.5194/hess-18-3511-2014
  • Nijssen, B.N., et al., 2001. Predicting the discharge of global rivers. Journal of Climate, 14 (15), 3307–3323. doi:10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2
  • Nóbrega, M.T., et al., 2011. Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15, 585–595. doi:10.5194/hess-15-585-2011
  • Olsson, J., et al., 2016. Hydrological climate change impact assessment at small and large scales: key messages from recent progress in Sweden. Climate, 4, 39. doi:10.3390/cli4030039
  • Paiva, R.C.D., et al., 2013. Largescale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resources Research, 49, 1226–1243. doi:10.1002/wrcr.20067
  • Pechlivanidis, I. and Arheimer, B., 2015. Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrology and Earth System Sciences, 19, 4559–4579. doi:10.5194/hess-19-4559-2015
  • Piniewski, M., et al., 2016. Hydrological modelling of the Vistula and Odra basins using SWAT. Hydrological Sciences Journal, 62 (8), 1266–1289. doi:10.1080/02626667.2017.1321842
  • Prudhomme, C., et al., 2010. Scenario-neutral approach to climate change impact studies: application to flood risk. Journal of Hydrology, 390 (3–4), 198–209. doi:10.1016/j.jhydrol.2010.06.043
  • Prudhomme, C., et al., 2011. How well do large-scale models reproduce regional hydrological extremes in Europe? Journal of Hydrometeorology, 12 (6), 1181–1204. doi:10.1175/2011JHM1387.1
  • Prudhomme, C., et al., 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences, 111, 3262–3267. doi:10.1073/pnas.1222473110
  • Refsgaard, J.C., et al., 2013a. A framework for testing the ability of models to project climate change and its impacts. Climatic Change, 122 (1–2), 271–282. doi:10.1007/s10584-013-0990-2
  • Refsgaard, J.C., et al., 2013b. The role of uncertainty in climate change adaptation strategies – a Danish water management example. Mitigation and Adaptatkion Strategies for Global Change, 18, 337–359. doi:10.1007/s11027-012-9366-6
  • Refsgaard, J.C., Storm, B., and Clausen, T., 2010. Système Hydrologique Europeén (SHE): review and perspectives after 30 years development in distributed physically-based hydrological modelling. Hydrology Research, 41 (5), 355–377. doi:10.2166/nh.2010.009
  • Ritter, A. and Muñoz-Carpena, R., 2013. Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. doi:10.1016/j.jhydrol.2012.12.004
  • Roudier, P., et al., 2016. Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135 (2), 341–355. doi:10.1007/s10584-015-1570-4
  • Schewe, J., et al., 2014. Multimodel assessment of water scarcity under climate change, 2014. Proceedings of the National Academy of Sciences, 111, 3245–3250. doi:10.1073/pnas.1222460110
  • Seibert, J., 1997. Estimation of parameter uncertainty in the HBV model. Nordic Hydrology, 28 (4/5), 247–262.
  • Sood, A. and Smakhtin, V., 2015. Global hydrological models: a review. Hydrological Sciences Journal, 60 (4), 549–565. doi:10.1080/02626667.2014.950580
  • Strauch, M., et al., 2017. Adjustment of global precipitation data for enhanced hydrologic modelling of tropical Andean watersheds. Climatic Change, 141 (3), 547–560. doi:10.1007/s10584-016-1706-1
  • Strömqvist, J., et al., 2012. Water and nutrient predictions in ungauged basins – set-up and evaluation of a model at the national scale. Hydrological Sciences Journal, 57 (2), 229–247. doi:10.1080/02626667.2011.637497
  • Taylor, K.E., Stouffer, R.J., and Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485–498. doi:10.1175/BAMS-D-11-00094.1
  • Thirel, G., Andréassian, V., and Perrin, C., 2015. On the need to test hydrological models under changing conditions. Hydrological Sciences Journal, 60 (7–8), 1165–1173. doi:10.1080/02626667.2015.1050027
  • Tuppad, P., et al., 2011. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: extended capability and wider adoption. Transactions of the ASABE, 54 (5), 1677–1684. doi:10.13031/2013.39856
  • Van Beek, L.P.H., Wada, Y., and Bierkens, M.F.P., 2011. Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 47 (7), W07517. doi:10.1029/2010WR009791
  • Vautard, R., et al., 2014. The European climate under a 2°C global warming. Environmental Research Letters, 9 (3), 034006. doi:10.1088/1748-9326/9/3/034006
  • Vetter, T., et al., 2015. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth System Dynamics, 6, 17–43. doi:10.5194/esd-6-17-2015
  • Vetter, T., et al., 2017. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change, 141 (3), 419–433. doi:10.1007/s10584-016-1794-y
  • Viney, N.R., et al., 2009. The usefulness of bias constraints in model calibration for regionalisation to ungauged catchments. In: R.S. Anderssen, R.D. Braddock, and L.T.H. Newham, eds. 18th World IMACS/MODSIM Congress [online], July 2009, Cairns, Australia. Cairns: Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, 3421–3427. Available from: http://www.mssanz.org.au/modsim09/F12/kragt.pdf
  • Vörösmarty, C.H.J., et al., 2000. Global water resources: vulnerability from climate change and population growth. Science, 289.5477, 284–288. doi:10.1126/science.289.5477.284
  • Vrugt, J.A., et al., 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39 (8). doi:10.1029/2002WR001746
  • Weedon, G.P., et al., 2011. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12, 823–848.
  • Widén-Nilsson, E., Halldin, S., and Xu, C., 2007. Global water-balance modelling with WASMOD-M: parameter estimation and regionalisation. Journal of Hydrology, 340.1 (2007), 105–118. doi:10.1016/j.jhydrol.2007.04.002
  • Yang, T., et al., 2014. Climate change and probabilistic scenario of streamflow extremes in an alpine region. Journal of Geophysical Research – Atmospheres, 119, 8535–8551. doi:10.1002/2014JD021824
  • Zhang, Y., et al., 2016. Evaluating regional and global hydrological models against streamflow and evapotranspiration measurements. Journal of Hydrometeorology, 17, 995–1010. doi:10.1175/JHM-D-15-0107.1